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Abstract

In the past we concentrated on the conceptual design and theoretical foundation of stochastic
process algebras and applied this promising method mainly to the performance evaluation of
multiprocessor and distributed systems. Nevertheless, we demonstrated at the READPAC–
Workshop in principle and by an example how to apply these ideas to the description of
reliability aspects. Our current version of TIPP allows us to extend these results. In particular
our prototype evaluation tool now provides efficient evaluation of both performance and
dependability measures for quite complex systems.

1 Introduction

Dependability analysis and performance evaluation of computer systems have been carried out
separately for a long time. The idea of integrating reliability modelling and performance modelling,
however, is not new. The examination of reliability with queueing systems for example was
presented already in [40]. Various combined measures for performance and dependability were
proposed in [2]. A general framework for performability analysis was presented in [28]. A more
detailed overview of this area may be found in [39].

Another important direction in this field is the design of new modelling techniques for performability
analysis as well as the integration of dependability aspects into existing paradigms and tools. An
extension of Generalized Stochastic Petri Nets towards performability was introduced in [8].
Trivedi and Haverkort present in [19] an overview of modelling techniques and tools that are
suitable for performability analysis. Our aim is to motivate the use of stochastic process algebras
for performability analysis.

Specification techniques capturing all main characteristics of system behaviour are more costly
than classical methods where separate models are used to describe the functional behaviour, the
performance characteristics, and the reliability aspects. More costly means that:� all aspects of quality have to be considered and specified at the same time;
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� the underlying theory is more demanding and the corresponding models are more complex.

This is true for all advanced techniques including Stochastic Automata, Stochastic Petri Nets and
Stochastic Process Algebras. In order to compensate for these drawbacks, the techniques have to
be used extensively. Then, however, their obvious advantages come to light:� more accurate description of system behaviour,� more comprehensive system analysis, and� formal deduction for models and quality measures from specifications amenable to automa-

tion efforts, i.e.� improved design productivity, i.e. faster and less error prone realization of hardware – and
software products.

In the past we concentrated mainly on both the functioning and performance of systems. This paper
shows how to apply Stochastic Process Algebras also to the modelling of reliability, availability,
and performability aspects.

As parallel computers and communication systems become physically and logically more complex,
their performance is often degradable, i.e. internal or external faults can reduce the quality of a
delivered service significantly. Both hardware- and software architectures supporting graceful
degradation, fault tolerance, and fault avoidance are therefore very important. This is true also for
related modeling and evaluation techniques and an excellent overview on the state-of-the-art may
be found in [18]. Typical questions are e.g.: "How long can the system be expected to work without
interruption?; How much work can the system be expected to accomplish before a failure?; How
it is possible to optimize reconfigurable fault tolerant systems [13], [10].

To answer these questions, the most commonly employed methods are analytical methods and
simulation. Work on our process algebra TIPP concentrates on analytical methods for analysis
purposes. An alternative approach, namely to apply simulation to the analysis of timed process
algebras is presented in [34].

We analyze the performability of a TIPP process by deriving a Continuous Time Markov Chain
(CTMC) from a TIPP process and applying well known analysis algorithms. Unfortunately, model-
ling dependability aspects leads very often to a so-called stiff Markov chain and analysis becomes
very computationally expensive. When using simulation, a similar problem arises, known as the
problem of rare events. Several methods are known from the literature to overcome this problem to
some extent. One of the most promising approaches is to use special solution methods based on the
aggregation–disaggregation algorithm of Courtois [9]. In order to apply such methods successfully,
information about the model structure is needed. The use of high level modelling techniques al-
lows us to exploit structural information provided with a model. Ammar and Islam examined this
problem for stochastic Petri nets [1]. In this paper we will show how this approach in principle can
be adopted for stochastic process algebras.

This paper is organized as follows. In the next section we will present briefly the Stochastic
Process Algebra TIPP (Timed Processes and Performance Evaluation) developed by our group
at the University of Erlangen. Section 3 shows how to model dependability aspects with TIPP.
We will address some common problems that occur usually in performability analysis and sketch
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possible solutions known from the literature and how to exploit the process algebra approach in
order to tackle these problems. Finally, in section 4 an extensive case study is presented and section
5 concludes the paper.

2 The Stochastic Process Algebra TIPP

We briefly summarize the basic ideas of syntax, semantics and model evaluation of the current
version of TIPP. More details may be found in our tutorial paper [15] and recent research reports.
The reader is expected to be familiar with the basic concepts and standard notation of process
algebras, performance evaluation and reliability theory. Excellent introductions may be found in
[23], [29], [25], and [38].

The process algebra TIPP – timed processes and performance/performability evaluation – is an
extension of the classical abstract languages CSP [23] and CCS [29] including random time
variables. The basic elements for descriptions are activities and combination operators. Actions
describe relevant activities of the system; they are considered to be atomic. Descriptions can be
composed in order to yield descriptions of more complex systems. Formally, the ways descriptions
can be built are defined by a grammar.

We assume a fixed set of action namesAct := Com[f�g, where we use � as a distinguished symbol
for internal, invisible actions and Com as the set of regular, visible activities (the communication
actions). An action a can either be passive (a; 11) or exponentially distributed.

Definition 2.1 The set L of terms of the language is given by the following grammar [21]:P ::= 0 j (a; �):P j P + P j PkSP j Pna j rec X : P j X ;
where a 2 Act, � 2 IR+; S � Actnf�g, X 2 Var, and Var is a set of process variables.

The intuitive meaning of these basic elements and operators is as follows: 0 denotes the halting
process, (a; �):P prefixing; next follow the choice operator, the parallel operator including a set S
of synchronizing actions. We also include the hiding operator and the recursion operator allowing
the description of infinite behaviour.

For presenting a semantics for our language we adopted the Structural Operational Semantics
(SOS) style introduced by Plotkin: With each Process P 2 L the semantics associates a transition
system ( L ; P ; �! )
where �!2 L� (Act � IR+ � f�; l; rg)� L
is the least relation that satisfies the rules of Fig. 1.

Again, more detailed explanations, motivations and justifications for TIPP can be found in [15, 21].
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h:i (a; �):P a;�; "���! P hkli P a;�;w���! P 0PkSQ a;�;kl:w�����! P 0kSQ (a 62 S)h+li P a;�;w���! P 0P +Q a;�;+l:w�����! P 0 hkri Q a;�;w���! Q0PkSQ a;�;kr :w�����! PkSQ0 (a 62 S)h+ri Q a;�;w���! Q0P +Q a;�;+r :w�����! Q0 hki P a;�; v���! P 0 Q a;�; w���! Q0PkSQ a;��; (v;w)�����������! P 0kSQ0 (a 2 S)hnyesi P a;�;w���! P 0Pna �;�;w���! P 0na hnnoi P b;�; w���! P 0Pna b;�; w���! P 0na (a 6= b)hreci Pf(recX : P )=Xg a;�;w���! P 0recX : P a;�;w���! P 0
Figure 1: Operational Semantics of TIPP [21]

3 Modelling Unreliable Behaviour

3.1 Examples for Unreliable Systems

The Stochastic Process Algebras allow the modelling of both the functional and temporal aspects
of a system. Unreliable behaviour means that a system or some components of it may function for
some time and then may fail. The choice operator allows the expression of such a behaviour and
two examples may illustrate this:� An arrival process which may be interrupted after some (exponentially distributed time with

rate �) is given by Arriv := (in; �):Arriv + (fail; �):0
Similarly, a processor working in a batch processing mode may fail after some time and then
stop working Proc := (work; �):P roc + (fail; �):0� A processor waiting for jobs to be processed may also fail and then goes to repairProc := (in; 11):Busy + (fail; �):Repair
Of course, the busy processor may fail also while processing a jobBusy := (work; �):P roc + (fail; �):Repair
After failure error detection routines may be started and the faulty component repairedRepair := (det; �1):(rep; �2):P roc
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Of course, structured design of complex systems is supported by the parallel composition operator
which may be used efficiently also for describing complex fault tolerant systems. Again, the basic
idea is shown by simple examples.� Consider some workloads WA and WB mapped onto two unreliable processors ProcA

and ProcB respectively. Then, the overall system behaviour is described by the parallel
compostion SM := (WA kAProcA) k;(WB kBProcB)
where A and B are the synchronizing actions mapping the workload onto the two processors.
Note that the processors may stop processing or resume work after repair, dependent on the
underlying processor models.� Of course, remapping of workload in case of processor failure can also be modelled and a
simple example is shown nextSM := SMA kffailA;failBgSMBSMA := (workA; �):SMA + (failA; �):0 + (failB; 11):SMABSMB := (workB ; �):SMB + (failB; �):0 + (failA; 11):SMABSMAB := (workAB ; �):SMAB + (failAB; �):0� Consider a multiprocessor system with n processors and unlimited workload [17]. Assume
that failures occur with rate i, if i processors are up and j jobs are processed with rate �.
Processor failures are covered with probability c and not covered with probability c = 1� c
[17]. After a covered failure the system is reconfigured quickly (with rate �) and comes up
in a degraded mode. A longer reboot action is required (rate �) if the failure is uncovered.
The repair of a processor may be completed with rate � . All time intervals are assumed to be
exponentially distributed with the corresponding rates. Furthermore we assume that during
reconfiguration of a reboot no other events can occur since these times are extremely small
compared to times related to failures and repair. The behaviour of the processor may be
specified as follows: MPn := (proc; �):MPn+ (covered failure; ic):Reconfn+ (uncovered failure; ic):RebootnMPi := (proc; �):MPi+ (covered failure; ic):Reconfi+ (uncovered failure; ic):Rebooti+ (repair; 11):MPi+1 (0 < i < n)MP0 := (repair; 11):MP1

If there is a single repair facility shared by all processors they may be repaired only one by
one. In this most simple case the repair facility may be described byRepair := (repair; � ):Repair
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Assuming that the multiprocessor starts in a undegraded operation mode, the overall system
behaviour is described in the parallel composition of the multiprocessor and the repair facilitySystem := MPn k;Repair

More sophisticated models are possible introducing special scheduling processes [14], introducing
priorities [20] or making intensive use of immediate transitions [10].

3.2 Reliability and Performability Measures

Applying the operational semantics rules the underlying labelled transition system can be generated
for each system description. This transition system contains all characteristic information and may
be evaluated with respect to the functional behaviour, performance as well as reliability measures.
We concentrate on the analysis of reliability and performability aspects and related measures.
Hiding the action labels and removing immediate actions the transition system can systematically
be reduced to a Markov chain model which can be described and analyzed via some standard notion
and standard measures. Our compact description follows strictly the lines of [13]:

Let fX(t); t � 0g be a homogeneous continuous time Markov chain and let S = fai; i = 1; : : : ; ng
be the finite state space associated with the model. It is also standard to assume k + 1 rewards�1 > : : : > �k+1 which may be associated with states or transitions.

Let S0 be the set of states that represent an operational system and SF be the remaining set of states
that represent a failed system� Point availability

Point availability A(t) is defined as the probability that the system is operational at time t.
Defining an indicator random variableI(t) = ( 1 if X(t) 2 S0

0 otherwise
(1)

the point availability is given byA(t) = P [I(t) = 1] = E[I(t)] (2)� Cumulative operational time

The cumulative operational time O(t) indicates the total amount of operational time during(0; t): O(t) = Z t
0
I(s)ds (3)� Interval availability

The interval availability represents the fraction of time a system is operational during (0; t):AI(t) = O(t)t (4)
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� Reliability is defined as the probability that the system is operational during the entire
observation period: R(t) = 1� lims!t P [O(t) � s] (5)� Lifetime L(t) is equal to the time of the first system failure, if such occurs before t and equal
to t otherwise. L(t) = Z t

0
1� I(s)ds (6)� Mean time to failure MTTF is the limited expected lifetimeMTTF = limt!1E[L(t)] (7)

To value different aspects of system behaviour, one often introduces rewards associated with the
states and/or transitions of the CTMC. Then the model is called a reward model or if we include
immediate transitions an extended reward model [10]. Some important measures are shown next:� Point performability

Let ri be the reward associated with state ai. The instantaneous reward at time t is thenY (t) = ( ri if X(t) = ai
0 otherwise

(8)

The point performability M(t) is defined as its expected valueM(t) = E[Y (t)] = nXi=1

riP [X(t) = ai] (9)

Various classical measures can be derived from this point performability measure. For ex-
ample, the point throughput of an action a can be obtained by:ri =Xj �j where (a; �j) is enabled in state i (10)� Cumulative reward

The cumulative reward during (0; t) is defined byZ(t) = Z t
0
Y (s)ds (11)

More measures have been defined and may be found in the references mentioned above. Analy-
zing the models and determining characteristic quality measures several technical problems may
occur such as state-space explosion and stiffness. Again, the referenced literature deals with these
problems and shows solutions. We will briefly summarize the most important techniques and show
how to apply them to stochastic process algebras in the rest of this section.
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3.3 Solving the Underlying Markov Chain

Dependent on the measures to be computed, the basis for further analysis is either the steady state
analysis of the underlying CTMC, or transient analysis, i.e. the examination of the system’s time
dependent behaviour. In the former, the following linear equation system, known as Chapmann–
Kolmogoroff equation system, has to be solved in order to obtain the steady state probability
distribution �: �Q = 0 subject to

nXi=1

�i = 1 (12)

The matrix Q is the infinitesimal generator matrix of the CTMC underlying a LTS and can pretty
straightforwardly be obtained by reducing parallel arcs and removing loops.

There are plenty of different solution methods for the above equations. Direct solution methods,
like Gaussian elimination, LU–decomposition, or the Grassmann–method, are suitable for small
systems with up to 2000 states and can by applied for every irreducible Markov chain. Iterative
solution schemes, like the Power–method, Gauß–Seidel, or SOR, are much faster than direct
methods, however, the convergence is not always assured [26].

More intelligent solution methods try to exploit information out of the model in order to reduce
the solution effort. Usually, the knowledge of symmetries, regularities, or hierarchies in the model
structure enable the use of very efficient algorithms, like the Matrix–Geometric solution method
[31], the Spectral–Expansion method [7], Disaggregation methods [35] or Tensor–Algebra based
methods [5, 32, 36] to name a few.

Buchholz showed recently in [6] how to adapt his method to a stochastic process algebra similar
to TIPP. The adaption of Siegle’s method to a subset of TIPP is shown in [33]. In Hillston’s
PhD–Thesis [22] and Hermanns’ Masters–Thesis [20] it is shown how to aggregate equivalent
states using notions of equivalence between processes for PEPA and TIPP respectively. Hillston
and Buchholz have examined thoroughly the relation to lumpability of Markov chains.

If steady state analysis is not possible or if time dependent quantities are desired, like the
Point Availability or Point Performability, transient analysis has to be carried out by solving
the Chapmann–Kolmogoroff differential equation system:d�(t)dt = �(t)Q where �(0) = e1 (13)

Although the above differential equation system has a closed solution�(t) = �(0)eQt = 1Xk=0

�(0)(Qt)kk!
(14)

this way is often avoided because of its numerical instability [16]. Instead, the randomization
technique is used very frequently, which is based on the transformation of Q to the stochastic
matrix of an embedded discrete time Markov chain. Among others, this approach was adopted
also by Lindemann [27], who presented a refined randomization technique based on a numerically
stable algorithm for the computation of Poisson–probabilities [12].

Unfortunately, in addition to largeness another well known problem arises, especially in performa-
bility models, namely the problem of having to solve a stiff differential equation system. Typically,
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such systems are caused by transition rates that differ in many orders of magnitude. The above men-
tioned refined randomization scheme is able to tackle this problem to some extent. Nevertheless,
the solution effort remains still relatively high. The use of implicit integration methods is another
possibility, but this method is not able either to reduce the solution effort. Therefore, Trivedi et.
al. [3, 4] have proposed applying aggregation techniques based on the approximate decomposition
method of Courtois [9] to transient analysis of stiff Markov chains. The characterization of a class
of TIPP–Models that could be analyzed using such aggregation techniques is presented next.

3.3.1 Decomposable processes

Many algorithms for the computation of the steady–state solution of continuous time or discrete
time Markov chains are based on the decomposition of the state space into several distinct partitions.
By solving the resulting smaller Markov chains, an approximate solution of the whole model can
be obtained using the aggregation technique of Courtois [9]. There are various iterative aggregation
methods known which are able to estimate the correct solution very accurately by combining the
aggregation technique with iterative solution methods, like SOR, Jacobi, Block–SOR, etc. [37, 26].
Recently, a new approach of this kind based on multigrid methods was presented in [24].

As the quality of the aggregated solution and the required computation effort for these methods
depends strongly on the model structure, we present a characterization of TIPP–processes that
could be analyzed efficiently using such methods:

Definition 3.1 Consider P 2 L, a process with finite state space. P is called LM–decomposable,
if P = L kSM ^ (8a 2 S)(L a;:�! L0 ) L = L0) (15)

which denotes that the process L can only change its state while it is not interacting with the
process M . Further, we require that the process L has also a finite state space and that no free
variables occur within L.

Note that the processes L and M might as well be parallel compositions of other processes. At
the first look the above conditions seem to be very restrictive. However, there is a large variety
of applications that fit this definition. As soon as the mapping of a workload to a machine model
has to be modelled, where the workload has different arrival rates – in queueing theory commonly
referred to as Markov Modulated Poisson Processes [30] – this may easily be modelled by a LM–
decomposable process. Actually, the definition of LM–decomposable processes was motivated
by this class of workload-to-machine-mapping models. A more general class of decomposable
processes, where explicit modelling of workload is not required, will be presented at the end of this
section.

According to the definition of LM–decomposable processes, two partitioning schemes are possible.
For the definition of these schemes we have to introduce some notations.

Definition 3.2 The set of all action names Y1(P ) that correspond to actions a process P may
engage in is defined as:Y1(0) = ; Y1(P kSQ) = Y1(P ) [ Y1(Q)Y1((a; �):P ) = fag [ Y1(P ) Y1(rec X : P ) = Y1(P )Y1(P + Q) = Y1(P ) [ Y1(Q) Y1(Pna) = Y1(P )nfag
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Please note that the set of actions a process P will actually engage in is a subset of Y1(P ) as the
synchronization may disable the execution of some actions.

Definition 3.3 Let P = L kSM be a LM–decomposable process. We define the set of all actions
the process L executes independently from the process M asU := Y1(L)nS (16)

Definition 3.4 Let D � Act, P;Q 2 LP �D Q :$ P = Q_ (8a 2 ActnD)(P a;:�! P 0 ) P 0 �D Q _ Q a;:�! Q0) P �D Q0) (17)

Proposition 3.1 The relation �D is an equivalence relation for a given set D � Act.

Proof: Follows immediately from the definition. 2
The equivalence relation �D judges two processes as equivalent if they can reach each other
only with actions that are not in D. Now, it is easy to define two partitioning schemes for LM–
decomposable processes.

Definition 3.5 PS1(P ) := fQ=�U j Q is reachable fromPg (18)PS2(P ) := fQ=�U j Q is reachable fromPg (19)

Obviously, the equivalence relation�D can be used to define partitions on the state space of more
general processes, too. However, the selection of appropriate action sets D is not trivial in general.
One possibility for a more general class of decomposable processes is shown next:

Definition 3.6 A process P 2 L with finite state space is FR–decomposable, if9F;R � Act where actions in F , R have typically low transition rates

The actions sets F and R should be interpretable as sets of actions that cause failures or carry out
repairs respectively.

One natural partitioning scheme that can be implied for FR–decomposable processes is the parti-
tioning scheme defined by the equivalence classes of the relation�F[R.

Definition 3.7 A decomposable process term is called Near Completely Decomposable (NCDP),
if there is a set of actions S so that the equivalence relation �S leads to a partitioning scheme
where the transition rates between different partitions are very low compared to other transition
rates of the same model.

The last definition is motivated by the well known Near Complete Decomposability property of
some Markov chains and by the fact that performability models very often belong to this class.
A process term that belongs to the NCDP class yields by definition a NCD Markov chain and
is therefore especially suitable for aggregation techniques. Processes that are decomposable need
only be analyzed by efficient blockwise SOR or JOR iteration schemes or by combinations of
aggregation–disaggregation with iterative methods. Of course, decomposable processes are also
candidates for transient analysis based on aggregation. In the next section an example is presented
that falls in this NCDP class.
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4 Example

To demonstrate the applicability of stochastic process algebras to failure modelling we present
an extensive case study in this section. The model to be considered represents a multiprocesser
mainframe that serves two purposes: on the one side it has to maintain a database and therefore
has to process transactions submitted by a number of users, on the other side it is used for program
development and has to provide computing capacity to programmers for compiling and testing
their programs. As hardware failures occur relatively seldom in comparison to software failures,
database inconsistencies, or operating system panics, we will focus on the latter kind of failures
and neglect hardware failures.

One of the main advantages of process algebras is that it allows the creation of highly modular
model descriptions. In our case, we can consider our system as the parallel composition of two
components or processes (cf. Fig. 2).System := Load kAMachine
where A := fuser job; prog job; failg
The process Load represents the system load caused by the database users, the programmers, and
the various failures. The mainframe itself is modelled by the Machine process.
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Figure 2: Model Structure

4.1 Load Modelling

As we want to examine the long term system behaviour dependent on the failure rates and the
recovery strategy, we cannot model the various loads as Poisson processes. In a typical application
like this the load is variable over time. Therefore, we model the three arrival streams by an Markov
Modulated Poisson Process (MMPP).Load := ProgLoad1 kfcgUserLoad1 kfcgFailLoad1
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UserLoad1 := (user job; �1):UserLoad1 + (c; �):UserLoad2UserLoad2 := (user job; �2):UserLoad2 + (c; �):UserLoad3UserLoad3 := (c; �):UserLoad1
...

...

The processes UserLoadi and ProgLoadi generate repeatedly after an exponentally distributed
time delay user jobs and programmer jobs with the rates �i and �i respectively. By analogy, the
process FailLoadi generates with rate �i failures, which can be regarded as special jobs that require
all processors and possess preemptive priority over the other job classes. All load processes change
their phase after an exponentially–� distributed delay. In phase 3 all load processes are idle. We
assume �1 = 0:01667 min�1 �2 = 0:16 min�1 �1 = 0:033 min�1 �2 = 2 min�1�1 = 0:00035 min�1 �2 = 0:0007 min�1 � = 0:00334 min�1

which means that the mean duration of one phase is 5 hours and that in the second phase the
programmer jobs and the failures occur two times more frequently than in phase one.

If we take a closer look at the load process, we may observe that it fulfills exactly the condition
(15) because the process Load can change its state only by executing action c, which however
is not synchronized with the machine model. Therefore, this model falls in the class of LM–
decomposable processes that were introduced in section 3.3.1. Moreover, this model represents
also a FR–decomposable process with F = ffailg and R = frepairg. As the transition rates of
those actions are relatively low, this process belongs to the NCDP class.

4.2 The Machine Model

The second main component of our model represents the mainframe itself. First, we have to
introduce a queue for jobs that have to wait until a processor becomes free. The processing unit is
modelled by the parallel composition of 4 identical processes, each modelling one processor.Machine := Queues kB(P kffail;repairP kffail;repairgP kffail;repairgP )Queues := F0 kC (R0 kfget prog jobgQ0)
where B = fget user job; get prog job; fail; repairgC = fuser job; prog job; get user job; get prog jobg
4.2.1 The Queues

The queuing component is responsible for the buffering of incoming jobs. Additionally, we inte-
grated a scheduling mechanism in this component. Jobs are processed according to a FIFO strategy
with priorities. Programmer jobs have the lowest priority, while failures have the highest priority.
To each class of jobs a separate queue process is assigned. The queue Q0 stores the low priority
jobs while the queues R0 and F0 are for the user jobs and the failures respectively.
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Q0 := (prog job; 11):Q1Qi := (prog job; 11):Qi+1 + (get prog job; �):Qi�1Ql := (get prog job; �):Ql�1R0 := (user job; 11):R1 + (get prog job; 11):R0Ri := (user job; 11):Ri+1 + (get user job; �):Ri�1Rl := (get user job; �):Rl�1F0 := (fail; 11):F1+ (get user job; 11):F0 + (get prog job; 11):F0+ (user job; 11):F0 + (prog job; 11):F0F1 := (repair; 11):F0

The priority mechanism is realized by appropriate synchronization of the three queue processes.
The process Qi for instance is only able to deliver a job to a processor if the other two queues are
in state R0 and F0. Otherwise, the action get prog job is not enabled. Another important fact is
that the process Fi prohibits the insertion of new jobs if it is in state F1, i.e. if a failure occured.
The mean duration of the actions get user job and get prog job is 1=� where � = 48 min�1.

4.2.2 The Processing Unit

The system under investigation contains 4 processors. Each processor waits until it can carry out aget action or until a failure occurs. As failures have preemptive priorities over the other two task
classes, all processors stop processing if the fail action becomes enabled and have to wait until
the system will recover.P := (get user job; 11):PW0 + (get prog job; 11):PW1 + (fail; 11):PfPW0 := (user job ready; �):P + (fail; 11):PfPW1 := (user job ready; �):P + (fail; 11):PfPf := (repair; �=4):P
The following values for the service time distribution and the repair time distribution were used:� = 0:01 min�1 � = 12 min�1 � = 0:3 min�1

There are many ways to describe the machine model. This applies to both the queuing component
and the processing component. Questions of some importance are whether to model the queuing
component by one monolithic process or to use one queue for each class of jobs. By analogy, the
question whether to use one single process for the description of the processors or to use the parallel
composition of several identical processes, each modelling one processor, plays an important role
for model and solution complexity.

For the sake of simplicity, we present here the second solution although in practice we modelled the
processing unit as one single process in order to reduce the state space size and to save computation
time. Obviously, this makes models more complex and one main advantage of the process algebra
approach, namely compositionality, seems to disappear. However, it should be mentioned that
the algebraic theory behind process algebras like TIPP allows the replacement of components of
one process by equivalent ones without changing the behaviour of the model [11, 20]. Moreover,
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the existence of a sound axiomatization allows this step to be carried out automatically [21]. In
Hillston’s thesis this was demonstrated by an example similar to this. Additionally, the relationship
to the concept of lumpability was examined [22].

4.3 Model Evaluation

Two important aspects that are of some interest considering performability models are: how much
does the occurrence of failures influence the performance of the system and how well can different
error recovery strategies help in increasing the system availability. To investigate those aspects
for the current example, we applied steady state analysis in order to obtain some characteristic
performance measures and dependability measures.

First, we have to allocate the length of the queuesQi andRi in a way that the blocking probability is
sufficiently small. In the first analyzed model we assigned 40 places to the first queue and 10 places
to the second one. The resulting state space contained 21648 states and the numerical solution took
about 165 seconds using Gauß–Seidel’s method. However, a closer look at the results showed that
the average queue lengths are sufficiently small that reducing the queue lengths to 10 and 4 would
not sacrifice model accuracy very much. The reduced model contains only 2640 states and solution
takes now less than 5 seconds. Fig. 3 and 4 show these results.
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The impact of various repair strategies and failure arrival rates is another very interesting question
in such models. Therefore, we varied the repair rate � and the failure rate during high load (�2) and
computed the mean availability (cf. Fig. 5) as well as the throughput (cf. Fig. 6) using appropriate
reward functions (cf. section 3.2).A(1) = limt!1A(t) M(1) = limt!1M(t)
As we can see, there is a strong correlation between both measures. Increasing the repair rate leads
to a better throughput of high priority jobs as well as an improvement of system availability.

Using steady state analysis a number of interesting measures can be derived that give useful
information about the system performance and dependability. However, questions regarding the
time dependent behaviour like: how does the system behave on overload situations or how fast
does it reach a steady state remain unanswered. Here, transient analysis is an important tool to
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predict such values. For our example we examined the transient behaviour for a duration of 1500
minutes using the refined randomization technique introduced by [27]. Fig. 7 shows how the point
availability changes over the time dependent on three different repair rates �. Fig. 8 shows a point
performability measure.

For � = 0:01 we can see clearly how the phase change in the load process affects the point
availability. After t = 1400 minutes the system reaches its steady state.

Finally, we changed the initial phases of the three load processes in order to analyze how this
interacts with the system’s performability. Obviously, the initial phase does not influence the
steady state behaviour as long as all the three load processes are in the same phase. However, if we
look at the time dependent measures, things look a bit different (Fig. 9 and Fig. 10).
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We observe that for a long period of time before the steady state is reached the system’s point
availability is better when the system is started in phase 3, i.e. in the silent phase (Fig. 9). Fig. 10
reflects clearly the phase changes in the load processes dependent on the initial phase.

5 Conclusion and Prospects

Performability analysis of computer systems is a very difficult task that requires usually a very
deeply technical knowledge about Markov processes as well as a lot of experience. Using high level
specification techniques, such as stochastic process algebras, Petri nets, or automata networks, it is
possible to automate this process. Consequently, performability analysis can be taught to a wider
audience. Moreover, it is possible to integrate this task into a more comprehensive methodology,
like the software development lifecycle of communication systems. Stochastic process algebras
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and automata networks are especially suitable for this because of their close relationship to the
widely accepted formal description techniques LOTOS, SDL, and ESTELLE.

One of the main drawbacks when using high level modelling techniques for performability analysis
is the lack of tools that provide analysis algorithms tailored to the needs of performability models.
The exploitation of the structural information contained in each model in order to guide the choice
of appropriate algorithms seems to be the right way to solve this problem and this was already
demonstrated for stochastic Petri nets in [1]. We showed how to adopt this idea for stochastic
process algebras by presenting a relatively general class of processes where the use of efficient
solution algorithms is feasible.

Another disadvantage is that high level specifications are very often too detailed and can therefore
increase the computation effort dramatically. This problem has been known since the beginnings
of elementary queueing theory and it is usually tackled by chosing a compact representation of the
state space. This is usually done by hand and requires a lot of experience. Current research in the
area of stochastic process algebras aims at providing facilities to automate this process and first
interesting results were presented in [6], [22].

As far as the topics covered in this paper are concerned, there are many open issues that need
to be further investigated. First, we have to evaluate the comprehensiveness of the introduced
class of decomposable processes by studying more case studies. Further, we plan to integrate
several aggregation–disaggregation techniques in our prototype evaluation tool. The main chal-
lenge, however, will be to show the applicability and the effectiveness of iterative or multilevel
aggregation–disaggregation schemes for the analysis of decomposable processes or more general
processes.
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