Timed automata

Limitation with LTSs

They allow to express sequences of actions,
choices, loops, and concurrency

But they cannot model time and time-dependent
constraints

Time is essential in many real-world scenarios

- Railway systems, e.g.: a crossing barrier takes x seconds
to get lowered, and must be lowered y seconds before
the train arrives

- Embedded controllers, e.g.: a safety system in a power
plant must react within x seconds

ldea: extend LTSs by adding time

Modelling and Verification 2

Timed LTS (TLTS)

ATLTSisa6-ple (S A A T,0,s,)

- §: States, 4: Actions, T < SxA xS: Labelled transition
relation, s,: Initial state (like LTS)

eA : Time domain
- Usually, A = R=9 (real numbers > 0)

e® S xA xS : Timed transition relation

- s—t— s’zFrom state s, the system can reach state s’by
waiting for a time t

Modelling and Verification

TLTS: Constraints on ®

We need to introduce these constraints so that the
TLTS “makes sense” (i.e., it respects our intuitions
about time)

e Time determinism
- If s—t— s”’and s—t— s” then s’=5s"
- Waiting cannot lead to different states
e Time additivity
- If s—t;— s”and s’—t,— s” then s—(t;+t,)— s”
- Waiting t, and then t,is the same as waiting (t;+t,)

Modelling and Verification

Representation of TLTSs (1/2)

« We were able to represent LTSs as graphs with
labelled edges. We cannot give a similar, graphical
representation of TLTS

e Let’s try anyway...

« Example: double click in a GUI

- At time ¢ = 0, user clicks the mouse button.

- If user clicks the button again while ¢ < 0.Zs, the
computer registers a double click

- Otherwise, the computer registers a single click

Modelling and Verification 5

Representation of TLTSs (2/2)

e The user can do the 2nd click at any moment in
that 0.2 seconds timespan

e ® and S will have an infinite (non-countable)
number of elements!

(> click < :
s N
Ry (NN

click klick /click

doubleClick

Modelling and Verification

Timed automata

e A “compact” formalism to describe TLTSs

« Communicating automata + clocks

Clocks = variables whose values increase continuously
The values of all clocks increase at the same speed
Can be tested: is the value of ¢ (<,>, =, #) some value?
Can be reset to 0

e Software support: Uppaal

Modelling and Verification

http://www.uppaal.org/

TA example: double click

e 7 and ! denote input and output actions

e xis a clock
- 1st click resets x (x:=0)
- If a 2nd click happens while x < 0.2, a double click is

registered
- Otherwise, a single click is registered
e (O :initial state) doubleClick!

Modelling and Verification

Clock conditions (1/2)

e Guards (Attached to transitions)
- The transition is enabled iff. the guard is satisfied

e Invariants (Attached to states)

- The invariant is true as long as the system stays in that
state

- Example: this TA ouputs “hello” before x > 5

hello!

Modelling and Verification

Clock conditions (2/2)

e A condition can be:
- A comparison of the value of a clock x with a constant ¢
- A comparison of (x-x’) with ¢
- A negation (NOT) of a condition, or a conjunction (AND)
or disjunction (OR) of conditions

Yi=xopc|x-Xopc|¥Y |YAY|¥YVY
opi=<|>|<Z|=|=]|#

Modelling and Verification 10

TA: Definition

ATAisab6-ple (S A X T Inv,s,)
- §: States, A4: Actions, s,: Initial state (like LTS)
e X: Set of clocks
e T: Transition relation: set of 6-ples (s,a g r, s)
- s, 5’: source and target states
- a€ A : action
- ge ¥ : aguard over clocks
- rc X : a subset of clocks that will be reset
e Inv:S — ¥ maps each state to an invariant

e All sets are finite

Modelling and Verification 11

Exercise: Communication medium with
timeout

Complete the following CA to make a TA such that:

e Action RCV can occur between 1 and 4 TU after
action SND

e |f action RCV has not occurred after 4 TU, then
action TIMEOUT occurs within 1 TU

RCV

TIMEOUT

Modelling and Verification 12

Solution

Complete the following CA to make a TA such that:

e Action RCV can occur between 1 and 4 TU after
action SND

e |f action RCV has not occurred after 4 TU, then
action TIMEOUT occurs within 1 TU

[h>1Ah<4] RCV

idle SND [h :=0] sent
h<5

[h>4] TIMEOUT

Modelling and Verification

13

Exercise

Complete the following CA to make a TA such that:
e Action B occurs between 2 and 4 TU after action A

e Action C occurs at least 4 TU after action A and at
least 1 TU after action B

Hint: use two clocks
O——0O—0O—=0O

Modelling and Verification 14

Solution

Complete the following CA to make a TA such that:
e Action B occurs between 2 and 4 TU after action A

e Action C occurs at least 4 TU after action A and at
least 1 TU after action B

Hint: use two clocks

A [hAZZ/\hAS4]
B hA24/\hBZ1]

@ [hy := 0] [hB := 0] C O

Modelling and Verification 15

Semantics of TA (1/2)

e General idea: associate a TLTS to every TA
TA=(SAXTInvs,)
TLTS = (SxV, A R=0, T, 0, (59, vy))
o States of TLTS = (States of TA) x (clock valuation)

-A valuation v: X — R=01is a function that assigns a value
to every clock. Iis the set of all valuations

-v, is the valuation such that all clocks are set to 0.

—-v+t (te R=0) is the valuation v’where all values in v
are increased by ¢ time units: VxeX vx)=v(x)+ ¢

e Initial state of TLTS: (s,, v))

Modelling and Verification 16

Semantics of TA (2/2)

e 77 (discrete transitions): (s, v)—a— (s, v’) iff.
- TA contains a transition (s,a, g r, s’)
- Valuation v satisfies the guard g

- All clocks in rare reset to 0 in v, while all other clocks
have the same value in vand v’

- v’satisfies the invariant /nv(s’)

e O (timed transitions): (s, v) —t— (s, v+t) iff.
all valuations between vand v+t satisfy /nv(s)
- Vdte|0, t]. v+dtEe Inv(s)

Modelling and Verification

17

Timelock

May arise from using invariants incorrectly
Example: X <2

a

What happens when x = 37
- Clock x is never reset: time stops

Unacceptable! Either reset x, or add other
edges/states describing what happens when x =3

Can be detected automatically via verification

Modelling and Verification

18

Critical paths and Zeno effect

Example: @D .

Critical path: infinite actions in zero time
- (s d)—a— (s F)—a— (s d)—a— ..
Zeno effect: infinite actions in finite time

- (s d)—a— (s P)—1/2 > (s F)—a— (s F)—1/4— ..

- Will perform an infinity of a actions in 1 time unit

These kinds of paths are generally allowed, but
it’s good to prove that time passes (there are
paths that are not critical/Zeno)

Modelling and Verification

19

Time progress

e For some time interval ¢#and some n, every state
of the TLTS admits at least one path of length < n
such that at least ¢ time units pass

e The system may still contain critical/Zeno paths

e Example:
- “aaa...” path is critical [x:=0]b
- “bc” path takes at
least 1 time unit ' ‘

[x>1] C

Modelling and Verification

20

Parallel composition of TA (1/2)

e Same idea as with CA: we want to decompose
complex (timed) systems into small components

e Again, rendez-vous on pairs of actions according to
a synchronization set L
- Symmetrical (same actions)
- Asymmetrical (input/output pairs) (e.g., Uppaal)

e But we also have to take into account:

- Guards
- Resets
- Invariants

Modelling and Verification 21

Parallel composition of TA (2/2)

o TAy= (5,4, X, Ty, Invy, 594/,
e TA,=(S5,A4,, X, T,, Inv, s,,) with X;n X, =@
e L € 4,n A, (synchronization actions)
Then,
TA; QL TAy = (5 X5, AN AL, XX, T Inv, (Sp1,502))
e Inv(s,, s,)= Inv;(s;)N Inv,(s,)

e T s1 225 s, ad L so 220 sh ag L
(81, 82) el (3'1, 82) (81, 82) 227, (81, 8'2)
S1 ﬂ) So w)52 a €L

(91/\9), a, (riUrz)
) - - > (81,85)

Modelling and Verification 22

(81,8

Exercise

[X > 4] SND [x := 0]

[h>1Ah<4] RCV

<end ®¢snp 3 idle SND [h := 0] sent
X<6 h<5

[h > 4] TIMEOUT
TA, @ TA, = (5, XS, A,UA,, X;UX,, T, Inv, (5);,5),))
e Inv(s,, s,)= Inv;(s;)N Inv,(s,)

o 7 slusl a¢ L 32ﬂ>32 a gL
(s1,82) 225 (s}, s2) (51,52) 225 (51, 54)
31£L1i+ g, 22072, sh a€L
(51, 59) (91/\92),61, (r1Urz) s (s, 55)

Modelling and Verification 23

Solution

[h>1Ah<4]RCV

send, idl
X<6

[X > 4] SND [h :=0; x :=0]

[h > 4] TIMEOUT

send, sen
h<5Ax<6

Modelling and Verification

24

Conclusions

TA allow to describe systems where time matters

This introduces additional complexities

- Underlying model (TLTS) has uncountably = states and
transitions

- Timelocks, critical paths, Zeno effect...
We can compose TAs via a product &

Automated tools can verify several aspects related
to TA correctness

Modelling and Verification 25

