
Timed automata

Limitation with LTSs

• They allow to express sequences of actions,
choices, loops, and concurrency

• But they cannot model time and time-dependent
constraints

• Time is essential in many real-world scenarios
– Railway systems, e.g.: a crossing barrier takes x seconds

to get lowered, and must be lowered y seconds before
the train arrives

– Embedded controllers, e.g.: a safety system in a power
plant must react within x seconds

• Idea: extend LTSs by adding time

Modelling and Verification 2

Timed LTS (TLTS)

A TLTS is a 6-ple á S,	A,	D, T,Q, s0	ñ
– S	: States, A	: Actions,T		Í S	´ A	´ S : Labelled transition

relation, s0 : Initial state (like LTS)

•D : Time domain
– Usually, D=	Â≥0 (real numbers ≥ 0)

•Q Í S	´ D ´ S : Timed transition relation
– s	—t→ s’:	From state s, the system can reach state s’ by

waiting for a time t

Modelling and Verification 3

TLTS: Constraints on Q

We need to introduce these constraints so that the
TLTS “makes sense” (i.e., it respects our intuitions
about time)
• Time determinism

– If s	—t→ s’ and s	—t→ s’’ then s’	=	s’’
– Waiting cannot lead to different states

• Time additivity
– If s	—t1→ s’ and s’	—t2→ s’’	 then s	—(t1+t2)→ s’’
– Waiting t1	and then t2	is the same as waiting (t1+t2)

Modelling and Verification 4

Representation of TLTSs (1/2)

• We were able to represent LTSs as graphs with
labelled edges. We cannot give a similar, graphical
representation of TLTS

• Let’s try anyway…
• Example: double click in a GUI

– At time t	=	0, user clicks the mouse button.
– If user clicks the button again while t	≤	0.2s, the

computer registers a double click
– Otherwise, the computer registers a single click

Modelling and Verification 5

Representation of TLTSs (2/2)

• The user can do the 2nd click at any moment in
that 0.2 seconds timespan

• Q and S	will have an infinite (non-countable)
number of elements!

Modelling and Verification 6

Timed automata

• A “compact” formalism to describe TLTSs

• Communicating automata + clocks
– Clocks = variables whose values increase continuously
– The values of all clocks increase at the same speed
– Can be tested: is the value of c (≤,≥, =, ≠) some value?
– Can be reset to 0

• Software support: Uppaal www.uppaal.org

Modelling and Verification 7

http://www.uppaal.org/

TA example: double click

• ? and ! denote input and output actions
• x is a clock

– 1st click resets x (x	:=	0)
– If a 2nd click happens while x	≤	0.2, a double click is

registered
– Otherwise, a single click is registered

• (: initial state)

Modelling and Verification 8

Clock conditions (1/2)

• Guards (Attached to transitions)
– The transition is enabled iff. the guard is satisfied

• Invariants (Attached to states)
– The invariant is true as long as the system stays in that

state
– Example: this TA ouputs “hello” before x	>	5

Modelling and Verification 9

Clock conditions (2/2)

• A condition can be:
– A comparison of the value of a clock x with a constant c
– A comparison of (x	- x’) with c
– A negation (NOT) of a condition, or a conjunction (AND)

or disjunction (OR) of conditions

Y ::=	x	op c	|	x	– x’	op c	|	¬Y |	Y ÙY |	Y ÚY
op	::=	<	|	>	|	≤	|	≥	|	=	|	≠	

Modelling and Verification 10

TA: Definition

A TA is a 6-ple á S,	A,	X, T, Inv, s0	ñ
– S	: States, A	: Actions, s0 : Initial state (like LTS)

• X : Set of clocks
• T : Transition relation: set of 6-ples (s,	a,	g,	r,	s’)

– s,	s’	: source and target states
– a Î A : action
– g ÎY : a guard over clocks
– r Í X : a subset of clocks that will be reset

• Inv : S ® Y maps each state to an invariant
• All sets are finite

Modelling and Verification 11

Exercise: Communication medium with
timeout

Complete the following CA to make a TA such that:
• Action RCV can occur between 1 and 4 TU after

action SND
• If action RCV has not occurred after 4 TU, then

action TIMEOUT occurs within 1 TU

Modelling and Verification 12

idle sent

RCV

SND

TIMEOUT

Solution

Complete the following CA to make a TA such that:
• Action RCV can occur between 1 and 4 TU after

action SND
• If action RCV has not occurred after 4 TU, then

action TIMEOUT occurs within 1 TU

Modelling and Verification 13

idle sent

[h ³ 1 Ù h £ 4] RCV

SND [h := 0]

[h > 4] TIMEOUT

h £ 5

Exercise

Modelling and Verification 14

Complete the following CA to make a TA such that:
• Action B occurs between 2 and 4 TU after action A
• Action C occurs at least 4 TU after action A and at

least 1 TU after action B
Hint: use two clocks

A B C

Solution

Modelling and Verification 15

Complete the following CA to make a TA such that:
• Action B occurs between 2 and 4 TU after action A
• Action C occurs at least 4 TU after action A and at

least 1 TU after action B
Hint: use two clocks

hA £ 4

A
[hA := 0]

[hA ³ 2 Ù hA £ 4]
B

[hB := 0]
[hA ³ 4 Ù hB ³ 1]

C

Semantics of TA (1/2)

• General idea: associate a TLTS to every TA
TA = á S,	A,	X, T, Inv, s0	ñ

TLTS = á S	´V,	A,	Â≥0, T’,	Q, (s0	,	v0) ñ
• States of TLTS = (States of TA) ´ (clock valuation)

–A valuation v	:	X	®Â≥0 is a function that assigns a value
to every clock. V		is the set of all valuations
–v0 is the valuation such that all clocks are set to 0.
–v+t			(t	ÎÂ≥0)		is the valuation v’ where all values in v
are increased by t time units: "x	ÎX.	v’(x)	= v(x)	+ t

• Initial state of TLTS: (s0	,	v0)

Modelling and Verification 16

Semantics of TA (2/2)

• T’ (discrete transitions): (s,	v)	—a	→ (s’,	v’)		iff.
– TA contains a transition (s,	a,	g,	r,	s’)
– Valuation v satisfies the guard g
– All clocks in r are reset to 0 in v’, while all other clocks

have the same value in v and v’
– v’ satisfies the invariant Inv(s’)

• Q (timed transitions): (s,	v)	—t→ (s,	v+t)		iff.
all valuations between v and v+t satisfy Inv(s)

– " dt	Î [0,	t] .	v+dt ⊨ Inv(s)

Modelling and Verification 17

Timelock

• May arise from using invariants incorrectly
• Example:

• What happens when x	=	3?
– Clock x is never reset: time stops

• Unacceptable! Either reset x, or add other
edges/states describing what happens when x	=	3

• Can be detected automatically via verification

Modelling and Verification 18

s

x ≤ 3
a

x < 2

Critical paths and Zeno effect

• Example:

• Critical path: infinite actions in zero time
– (s,	∅)	—a	→ (s,	∅)	—a	→ (s,	∅)	—a	→ …

• Zeno effect: infinite actions in finite time
– (s,	∅)	—a	→ (s,	∅)	—1/2→ (s,	∅)	—a	→ (s,	∅)	—1/4→ …
– Will perform an infinity of a actions in 1 time unit

• These kinds of paths are generally allowed, but
it’s good to prove that time passes (there are
paths that are not critical/Zeno)

Modelling and Verification 19

s a

Time progress

• For some time interval t and some n, every state
of the TLTS admits at least one path of length ≤ n
such that at least t time units pass

• The system may still contain critical/Zeno paths
• Example:

Modelling and Verification 20

s a s’

[x := 0] b

[x > 1] c

– “aaa…” path is critical
– “bc” path takes at

least 1 time unit

Parallel composition of TA (1/2)

• Same idea as with CA: we want to decompose
complex (timed) systems into small components

• Again, rendez-vous on pairs of actions according to
a synchronization set L
– Symmetrical (same actions)
– Asymmetrical (input/output pairs) (e.g., Uppaal)

• But we also have to take into account:
– Guards
– Resets
– Invariants

Modelling and Verification 21

Parallel composition of TA (2/2)

• TA1 = á S1,	A1	,	X1, T1	, Inv1,	s01	ñ,
• TA2 = á S2,	A2	,	X2, T2	, Inv2,	s02	ñ with X1	∩ X2=	∅
• L ⊆ A1 ∩ A2 (synchronization actions)
Then,
TA1 ⊗L TA2 = á S1	×S2	,	A1∪A2	,	X1∪X2	, T, Inv,	(s01	,s02)ñ
• Inv(s1	,	s2)	= Inv1 (s1)	∧	Inv2 (s2)	
• T	:

Modelling and Verification 22

Exercise

TA1 ⊗L TA2 = á S1	×S2	,	A1∪A2	,	X1∪X2	, T, Inv, (s01	,s02)ñ
• Inv(s1	,	s2)	= Inv1 (s1)	∧	Inv2 (s2)	
• T	:

Modelling and Verification 23

idle sent

[h ³ 1 Ù h £ 4] RCV

SND [h := 0]

[h > 4] TIMEOUT

h £ 5
send
x £ 6

[x ³ 4] SND [x := 0]

⊗{ SND }

Solution

Modelling and Verification 24

send, idle
x £ 6

send, sent

[h ³ 1 Ù h £ 4] RCV

[x ³ 4] SND [h := 0; x := 0]

[h > 4] TIMEOUT
h £ 5 Ù x £ 6

Conclusions

• TA allow to describe systems where time matters
• This introduces additional complexities

– Underlying model (TLTS) has uncountably ∞ states and
transitions

– Timelocks, critical paths, Zeno effect…

• We can compose TAs via a product ⊗
• Automated tools can verify several aspects related

to TA correctness

Modelling and Verification 25

