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Proliferation of formal methods

• There are so many formal methods!
– see the Formal Methods Web page of J. Bowen
– see Wikipedia

• Why?
there are (at least) 4 possible causes

• Can we integrate them?
(this is the theme of this IPA school)

• Warning! The talk might be biaised towards:
– process calculi, especially LOTOS
– verification, especially explicit-state verification, 

especially CADP
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Cause #1: different concepts 
• Complex systems exhibit different aspects

– data: types, functions, equations…
– concurrency: behavior, processes, communication, 

synchronization…
– real-time: delays, deadline (urgency)
– performance and probabilities

• Multiplicity of concepts in real systems is a 
philosophical problem

• Two schools:
– The rigoric one
– The flexible one
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The "rigoric" school

• Scientists like to keep things simple (Occam’s
razor principle)

• They like if the world can be seen and 
described using one single formalism

• Wonderful result: any formalism with the 
expressiveness of a Turing machine can do 
the job — Yet, this is not always adequate
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Counter-examples
• Example 1: algebraic data types

– no support to model concurrency
– SOS semantics ends up being coded in the program!

• Example 2: "pure" process calculi
– "pure CSP", "basic LOTOS", pi-calculus, etc.
– FIFOs modeled by dynamic creation of processes!

• Example 3: real time
– Continous delays modeled by discrete ticks!
– Urgency (“must”) modeled by choice (“may”)
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The "flexible" school

• Convenience first: do not hesitate to combine 
concepts if needed

• Issue #1: coherence
– how to ensure a sound semantics?

• Issue #2: redundancy
– means of expression can be duplicated

(e.g. data vs processes)
– requires guidelines for a preferred style
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Cause #2: various verification approaches

• Two options:
– one-language 
– two-languages

• Actually plenty of other options:
– state-based vs action-based, linear-time vs branching-time, etc.

Verification is essentially a comparison:

COMPLEX simple

(untrusted)

(trusted)

checker

true | false + diagnostic



10

The “one language” approach

• COMPLEX and simple are described in the 
same language

• Example 1: theorem proving
COMPLEX and simple are formulas

• Example 2: equivalence checking
COMPLEX and simple are automata (LTS, etc.)
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The “two languages” approach
• COMPLEX and simple are described using two 

different languages
– COMPLEX is often in an imperative language
– simple is often in a declarative language

• Example 1: Hoare’s logic
– COMPLEX is a sequential program
– simple is a pre- and a post-condition

• Example 2: Model checking
– COMPLEX is a concurrent program (or hardware)
– simple is a temporal logic formula
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Cause #3: different application domains
• Computer science is, in principle, unified
• But it has different applications fields:

– Telecommunications
– Avionics
– Hardware architectures
– Embedded systems
– Web services
– etc.

• Formal methods are often influenced by their
potential users

• Tradeoff between a single universal formal method
and several specialized ("domain specific") ones
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Examples
• Avionics:

– Many engineers have an electronics or control theory background
– Graphical languages are appealing to them (LUSTRE/SCADE, …)

• Telecommunications:
– Engineers are familiar with message queues
– They like languages with built-in FIFO queues 

(which queues? bounded or unbounded? reliable or lossy? order-
preserving or not…)

– Estelle, SDL

• Hardware:
– Designers want to model instantaneous communication (as 

electricity on a wire)
– Rendezvous is sometimes too simple for hardware design
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Cause #4: human factors

• Scientific creativity naturally leads to 
different variants

• Formal methods are, to a large extent, a 
matter of individual (subjective, aesthetic, 
philosophical) taste:
– graphical vs textual
– totally functional, totally algebraical, etc.
– prohibit or require nondeterminism
– …
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Other personal reasons
• The weight of history: joining forces with a 

competitor may be perceived as a defeat

• A tactic to survive in the international 
competition:
defining a different language is a way to protect
oneself against comparisons

• National schools:
– UK: CCS, CSP…
– NL: ACP, mCRL…

• Even an international standard (LOTOS) based on 
CCS + CSP was not sufficient…
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Summary

• 4 reasons for proliferation of formal methods
– cause #1: different concepts
– cause #2: different verification techniques
– cause #3: different application domains
– cause #4: human factors

• Is this proliferation suitable or not?
– diversity (= positive)?
– or fragmentation (= negative)? 
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We could accommodate…
• "Moral" arguments:

– All formal methods are equal in dignity ☺
– We should preserve the diversity of formal

methods as we should preserve threatened
species ☺

• "Economical" arguments:
– Competition is suitable by essence
– We already have several operating systems, 

graphical user interfaces, file systems, object
oriented languages
(but not as many as formal methods)



18

But…

• The global picture is confused
• Formal methods have a limited industrial

acceptance
• Training is expensive, and industry wants to 

know in which method to invest
• Tool development is expensive and 

fragmentation prevents reaching a critical
mass of investment
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What we should do…

• Increase collaboration (rather than
competition)

• Integrate/interconnect formal methods and 
tools from different origins

•Expected benefits:
– reduce the complexity presented to end-users
– factorize tool development
– reuse tools developed for other languages
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Several forms of integration

•Low-level integration: semantic models
– code is shared and reused between tools
– the user still perceives that it has different

tools
– common semantic models

•High-level integration:
– more ambitious
– common user interfaces
– unified languages



A word about CADP
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What is CADP?
A toolbox for verifying asynchronous systems

• At the crossroads between 2 branches of computer 
science:
– Concurrency theory
– Computer-aided verification

• Development started in 1986 …
– Caesar: LOTOS compiler / state space generator
– Aldebaran: bisimulation tool

… continuously enhanced for 20 years
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CADP wrt other model checkers

• Parallel programs (rather than sequential programs)

• Message passing (rather than shared memory)

• Languages with a formal semantics (process calculi)

• Dynamic data structures (records, lists, trees…)

• Explicit-state (rather than symbolic)

• Action-based (rather than state-based)

• Branching-time logic (rather than linear-time logic)
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CADP verification features
• Several paradigms:

– Model checking (modal μ-calculus)
– Equivalence checking (bisimulations)
– Visual checking (graph drawing)

• Several techniques:
– Reachability analysis
– On-the-fly verification
– Compositional verification
– Distributed verification
– Static analysis
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Other CADP features
•Beyond mere verification:

– Multiple input languages
– Step-by-step simulation
– Rapid prototyping
– Test generation
– Performance evaluation

•Generic software components for verification
•Modular, extensible architecture (APIs)
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CADP today
•A comprehensive toolbox

– 42 tools
– 17 software libraries

•5 computing platforms supported
– Sparc/Solaris, Intel/Linux, Intel/Windows, PowerPC/MacOS X, 

Intel/MacOS X

• International dissemination
– License agreements signed with 395 organizations
– Licenses granted for 909 machines (in 2007-2008)
– 104 case-studies accomplished using CADP
– 32 research tools connected to CADP
– 28 university lectures based on CADP (since 2002)
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Three main uses of CADP
•Design of critical systems:

– academic and industrial case-studies

•Teaching concurrency theory:
– practical feedback of process calculi, LTS, 

behavioural equivalences, μ-calculus, etc.
– lab exercises

•Research in verification:
– new tools developed using CADP libraries
– new tools interfaced with CADP tools
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CADP and integration issues
• CADP is the oldest software program 

implementing concurrency theory results
that is still used and enhanced

• From the beginning, the architecture of 
CADP was designed
– to be modular
– to be interfaced with other tools

• In the sequel, we review the CADP 
approaches to integration



Integration at a low-level: 
semantic models
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Step #1: Interconnection at LTS level
• temporal logics (80's)

– XESAR
– MEC

• bisimulation tools (80's)
– ALDEBARAN
– AUTO
– PIPN
– MEIJE
– SQUIGGLES
– SCAN

• bisimulation tools (90's)
– CWB
– FC2

• graph drawing tools (90's)
– GML
– VCG
– VISCOPE

LOTOS
program

CAESAR 
compiler

LTS
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The BCG format
• Various problems:

– each of these tools had its own LTS format
– these formats were often poorly defined (ambiguous)
– these formats were textual (verbose, loss of disk space)

• Idea: define a generic LTS format
– a binary format with compression techniques
– typed information attached to states and transitions

• BCG (Binary-Coded Graphs):
– a compact file format for storing LTSs
– a set of APIs
– a set of software libraries (30,000 lines of code)
– a set of tools (binary programs and scripts)
– conversions between BCG and other formats
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Step #2: XTL
• How to exploit the contents of BCG files?
• XTL is both:

– a query language for LTSs encoded in BCG
– a compiler for this language

XTL compiler

LTS XTL

results
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XTL

• Main features of XTL
– functional language with model checking features
– special types: states, state sets, transitions, 

transition sets, labels…
– access to the typed objects of the BCG file

• Applications of XTL
– libraries: HML, CTL, ACTL, mu-calculus
– rapid prototyping of temporal logics
– temporal logics extended with value passing
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XTL: An example
The 〈A〉F modality of HML (Hennessy-Milner logic) can
be expressed in XTL

〈A〉F denotes the set of states S that
– lead to states satisfying F

– following transitions satisfying A

def Diamond (A:labelset, F:stateset):stateset =
{ S:state where

exists T:edge among out (S) in
(label (T) among A) and (target (T) among F)

end_exists }
end_def
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Step #3: On-the-fly LTS exploration
• Motivations:

– Most model checkers are dedicated to one particular
input language (Spin, SMV, …)

– They can't be reused easily for other languages

– How can we "open" model-checkers to get access to 
their LTS on-the-fly?

• Idea: introduce modularity by separating
– language-dependent aspects:

compilers from languages into an LTS model

– language-independent algorithms:
algorithms for LTS exploration
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Implicit LTS: Open/Caesar
Another practical issue arising in the early 90's
How to combine:
• a separation betwen LTS generation and LTS verification
• and the need for "on-the-fly" verification?
Both were needed, but seemed incompatible at first sight

Solution: the Open/Caesar architecture [Garavel-1998]
• A programming interface to separate language-dependent

from language-independent aspects
• Many tools have been written above this interface: 

simulation, testing, verification, etc.
• Other languages than LOTOS have been connected to this

interface
• An essential feature of CADP, often replicated in other

papers/tools
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OPEN/CAESAR architecture

Open/Caesar API

LOTOS LTS
communicating

LTSs … UML/RT

implicit LTS

SDL

CAESAR BCG.OPEN EXP.OPEN IF.OPEN UMLAUT…

LTS generation
interactive simulation
random execution
on the fly verification
partial verification
test generation

Open/Caesar
librairies
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OPEN/CAESAR libraries
A set of predefined data structures

– EDGE: list of transitions (e.g., successor lists)
– HASH: catalog of hash functions
– STACK_1: stacks of states and/or labels
– DIAGNOSTIC_1: set of execution paths
– TABLE_1: state tables
– BITMAP: Holzmann’s "bit state" tables

Specific primitives for on the fly verification
– possibility to attach additional information to states
– stack or table overflow => backtracking
– etc.
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#include "caesar_graph.h"
#include "caesar_edge.h"
#include "caesar_table_1.h"

TYPE_TABLE_1 t;     TYPE_STATE s1, s2;                        TYPE_EDGE e1_en, e;
TYPE_LABEL l;         TYPE_INDEX_TABLE_1 n1, n2      TYPE_POINTER dummy;

INIT_GRAPH ();
INIT_EDGE (FALSE, TRUE, TRUE, 0, 0);
CREATE_TABLE_1 (&t, 0, 0, 0, 0, TRUE, NULL, NULL, NULL, NULL);
if (t == NULL) ERROR ("not enough memory for table");

START_STATE ((TYPE_STATE) PUT_BASE_TABLE_1 (t));
PUT_TABLE_1 (t);
while (!EXPLORED_TABLE_1 (t)) {

s1 = (TYPE_STATE) GET_BASE_TABLE_1 (t);
n1 = GET_INDEX_TABLE_1 (t);
GET_TABLE_1 (t);

CREATE_EDGE_LIST (s1, &e1_en, 1);
if (TRUNCATION_EDGE_LIST () != 0) ERROR ("not enough memory for edge lists");

ITERATE_LN_EDGE_LIST (e1_en, e, l, s2) {
COPY_STATE ((TYPE_STATE) PUT_BASE_TABLE_1 (t), s2);
(void) SEARCH_AND_PUT_TABLE_1 (t, &n2, &dummy);
print_edge (n1, STRING_LABEL (l), n2);

}
DELETE_EDGE_LIST (&e1_en);

}

An example: GENERATOR
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OPEN/CAESAR applications
– EXECUTOR: random walk
– SIMULATOR:  interactive simulation (textual) 
– XSIMULATOR: interactive simulation (graphical) 
– GENERATOR: exhaustive LTS generation
– REDUCTOR: LTS generation with safety reduction
– PROJECTOR: LTS generation with constraints
– TERMINATOR: Holzmann's bit-space algorithm
– EXHIBITOR: search paths defined by reg. expr. 
– TGV: test sequence generation
and more…
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Step #4: On-the-fly verification
• Motivation:

– The Open/Caesar architecture allows LTS 
exploration in a modular, generic way

– Can we get further, with extra software 
components especially dedicated to LTS 
verification?

• Approch followed in CADP:
– additional software layer on top of OPEN/CAESAR
– BES (Boolean Equation Systems) represented 

internally as boolean graphs
– BES: a unified formalism for model checking and 

equivalence checking
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Support for BES in CADP
• CAESAR_SOLVE_1:

– a library for solving (alternation-free) BES on the fly
– 7 solving algorithms implemented so far
– based on top of the OPEN/CAESAR API

• 4 applications of CAESAR_SOLVE_1:
– BES_SOLVE: solver for an explicit (alternation free) BES 

contained in a gzipped text file
– EVALUATOR3: evaluation of mu-calculus formulas 

(extended with regular expressions)
– REDUCTOR: on-the-fly minimization of an LTS (several

equivalences: strong, branching, weak, etc.)
– BISIMULATOR: on-the-fly comparison of two LTS (an 

implicit one in OPEN/CAESAR and an explicit one in BCG)
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Step #5: Model checking with data 
• Introducing data computation in formulas
• Approach:

– A richer formula language:
[ {RECV ?l:NatList} ]
let n:Nat := sum (l) in

< {DELIVER !n} > < {ACK !n} > true
end let

– Parameterized Boolean Equation Systems (PBES) 
[Mateescu's PhD thesis]

– Evaluator 4 model checker (under testing)
• The concept of PBES is now reused in other tools



44

Summary

In CADP, integration at the level of semantic 
models was achieved in 5 successive steps:

• #1: BCG (format for explicit LTS)
• #2: XTL (exploration of explicit LTS)
• #3: Open/Caesar (exploration of implicit LTS)
• #4: BES (model- and equivalence-checking on

implicit LTS)
• #5: PBES (BES extended with data computations)



Integration at a high-level:
user-interfaces
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Interfaces: A key feature for industry

• Early verification tools only had simple 
command-line interfaces:
– ad hoc command interpreters (QUASAR, CWB)
– LISP or Tcl/Tk commands (Meije, FcTools)

• More elaborate interfaces have been 
developed for CADP 

• Two lines of work:
– a graphical user interface (EUCALYPTUS)
– a scripting language for verification (SVL)
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EUCALYPTUS graphical-user interface

• Version 1 (1994)
• Version 2 (1996-

now)
• Main features:

– file types
– user-friendly

contextual
menus

– support all the 
CADP tools
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SVL (Script Verification Language)

•Scripting language for 
verification scenarios

•Special constructs for:
– equivalence checking
– model checking
– compositional

verification

• "Semantics-aware"

"F.exp" = leaf branching reduction of
hide G in

(
"spec.lotos":P1 [A, B, G]
|[G]| 
"spec.lotos":P2 [C, G]
) ;

"D.seq" = deadlock of "F.exp";
"L.seq" = livelock of "F.exp";

an SVL script
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A layered software architecture

Code libraries with APIs

Command-line tools

EUCALYPTUS
graphical user interface

SVL
scripting language



3. Integration at a high level:
languages
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The LOTOS compilers available in CADP

control and
data flow 

optimizations
(static analysis)

LOTOS
program

"symbolic"
model

C code for
types+functions

LTS
explicit (BCG) or
implicit (C code)

• simulation 
• code generation
• verification:

— equivalence checking
— model checking
— visual checking

• testing
• performance evaluation
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How can we reuse these compilers?
• Academic and industrial users:

– In general, users dislike learning new languages
– They want to continue using their favorite languages

• CADP developers:
– The LOTOS tool chain is a huge work
– Developing tools for a new language is costly
– Can we reuse this tool chain for other languages?

• Idea: translate new languages to LOTOS to reuse
the LOTOS compilers
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Attempt #1: LOTOS vs mCRL
• This was a desirable goal (VASY-CWI collaboration)
• But there are several incompatilities that make the 

tranlation cumbersome
• The most annoying one was the order of algebraic

equations in data types
– LOTOS (as handles by CADP) enforces decreasing priority

between equations (rewrite system with priorities)
forall X, Y: T
X eq X = true;
X eq Y = false; (* lower precedence *)

– mCRL has no priority at all (a random selection is made)

• We stopped considering this translation
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Attempt #2: From CSP to LOTOS
• CSPm (machine-readable CSP): a version of CSP 

supported by the FDR model checker
• CSPm and LOTOS are close (both derive from CSP)
• But translation from CSPm to LOTOS is difficult:

– CSPm has higher-order functions (λ-expressions)
– CSPm allows lazy computations and list

comprehensions, whereas CADP relies upon a 
strict rewrite strategy

– the choice operator “[]” of CSPm does not 
translate easily to LOTOS

•We stopped considering this translation
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Attempt #3: From CHP to LOTOS

• CHP (Communicating Hardware Processes):
– a process calculus to describe asynchronous 

circuits [Martin-86]
– inspired by guarded commands and CSP

• TAST synthesis tool (TIMA Lab., Grenoble)
– compiles CHP specifications to VLSI circuits

• But no model checker available for CHP
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CHP vs LOTOS (1/2)
• CHP has hardware-oriented data types

– bit arrays
– machine words, etc.

• CHP has an imperative syntax:
– variable assignment
– symmetric sequential composition
– loop statement

• CHP has two different parallel operators:
– collateral composition (inside processes)
– parallel composition to combine processes
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CHP vs LOTOS (2/2)
• Main difference: interprocess communications

– CHP communication reflect the low-level aspects of 
hardware implementation

– communication channels are shared variables
– rendezvous is achieved using special protocols

• In CHP, communication is:
– oriented (an emitter and a receiver)
– dissymetric (an active side and a passive side)
– not atomic (it may takes several steps)

• CHP has a specific "probe" operator: 
– before rendezvous, the receiver can check the value 

that the emitter is ready to send
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• chp2lotos: 19,300 lines of code
• code specialization for different kinds of 

probes (reduction up to a factor of 156)
• validated on 500 CHP specifications

Translator from CHP to LOTOS

LOTOSLOTOSCHPCHP intermediate 
representationparsing

simplified
representation

channel
profiles

optimization
code
gene-

ration
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Application to asychronous circuits 

ANOC node input controller
(complex arrangement of 
14 asynchronous processes)

•Three case-studies 
(joint work between 
VASY and CEA-LETI)

• DES (Data Encryption 
Standard) chip

• ANOC (Asynchronous 
Network on Chip) 
communication node

• FAUST network on chip
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Attempt #4: From FSP to LOTOS

Work inspired by this book:
Jeff Magee and Jeff Kramer (Imperial College)
Concurrency: State Models and Java Programs
Wiley, 2006

FSP: a simple, popular process algebra
- concise, expressive, user-friendly
- supported by the LTSA too (animation and LTL 

property checking)

Joint work undertaken to connect FSP and CADP, 
so as to verify larger FSP models
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Translation from FSP to LOTOS
• Some features of FSP are missing in LOTOS:

– priority operator
– label renaming

• Fortunately, these features are handled by 
the EXP.OPEN and SVL tools of CADP

• So, an FSP specification can be translated 
into a set of LOTOS, EXP, SVL files
10,500 lines of FSP produce
72,000 l. LOTOS, 8,000 l. EXP, 2,000 l. SVL
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Translator from FSP to LOTOS

•fsp2lotos: 25,500 lines of code

• Validated on 574 FSP specifications
(the LTSs produced by LTSA and CADP are 
checked to be strongly equivalent)

• fsp2lotos will be shipped with the next 
version of CADP
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Enhancements to LOTOS
• 1988: Ed Brinksma’s PhD thesis on Extended LOTOS
• 1993-2001: ISO project to standardize an enhanced

version of LOTOS
• Initial goal: a simple revision of LOTOS
• Final result: E-LOTOS 

– complete rewrite of LOTOS
– abstract data types replaced by functional types
– process operators replaced by equivalent functional / 

imperative constructs
– new features: time, exceptions, modules
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E-LOTOS: A mitigated result
•Positive aspects of E-LOTOS:

– better than LOTOS in most respects
– simpler syntax (away from the "algebraic" mania)
– formal semantics (timed LTS, SOS rules)
– industrial users tend to prefer E-LOTOS to LOTOS

•Negative aspects of E-LOTOS:
– semantics too complex, irregular at places
– lack of funding for E-LOTOS
– never implemented entirely
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LOTOS NT
• A "reasonable subset" of E-LOTOS proposed by 

the VASY team (1995-now)
• Main idea: getting closer to programming

languages, still retaining the formal aspects
• Three parts:

– types
– functions
– processes

• Language uniformity: functions are a 
particular case of processes

• (no support for time at the moment)
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LOTOS NT types
• Inductives types:

– set of constructors with named typed
parameters

– special cases: enumerated types, records, 
unions, lists, trees, etc.

– shorthand notations for lists and sets
• Notations for constants:

– natural numbers: 123, 0xAD, 0o746, 0b1011
– integer numbers: -421, -0xFD, -0o76, -0b110
– characters: 'a', '0', '\n' , '\\', '\'''

• Standard functions ("==", "<=", "<", ">=", ">" , field
selectors and updaters) are defined automatically
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Sample LOTOS NT types
type DAY is (* enumerated type *)

MON, TUE, WED, THU, FRI, SAT, SUN
with "==", "<=", "<", ">=", ">" 

end type

type DATE is (* record type *)
DATE (D : DAY, N : NAT, M : NAT, Y : NAT)
with "get", "set" 
(* for selectors X.D, ... and updaters X.{D => E}*)

end type

type NAT_LIST is (* inductive type *)
NIL,
CONS (HEAD : NAT, TAIL : NAT_LIST)

end type
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LOTOS NT functions
• Three kinds of parameters: "in" (call by value), "out" 

and "inout" (call by reference)
• Function overloading allowed
• Functions defined using standard algorithmic

statements:
– Local variable declarations and assignments
– Sequential composition
– Breakable loops
– If-then-else conditionals
– Case statements
– (Uncatchable) exceptions

• Type checking and variable initialization analysis
ensure a clean imperative style
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Sample LOTOS NT functions (1/2)

function GET_HEAD (L : NAT_LIST) : NAT 
raises EMPTY_LIST : NONE is
case L in

var HEAD : NAT in
NIL -> raise EMPTY_LIST

| CONS (HEAD, any NAT_LIST) -> return HEAD
end case

end function
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Sample LOTOS NT functions (2/2)
function COUNT (L : NAT_LIST, out EVENS, out ODDS : NAT) : NAT is

EVENS := 0; ODDS := 0;
loop SCAN_L in

case L in
var HEAD : NAT, TAIL : NAT_LIST in

NIL -> break SCAN_L
| CONS (HEAD, TAIL) ->

if IS_EVEN (HEAD) 
then EVENS := EVENS + 1
else ODDS := ODDS + 1
end if;
L := TAIL

end case
end loop;
return ODDS + EVENS

end function
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LOTOS NT processes
• Processes are a superset of functions:

– variable assignment
– if-then-else, case, loops, etc.
– symmetric sequential composition (as in ACP)

• Additional operators:
– action
– choice
– parallel composition
– gate hiding, etc.

• A safer language than LOTOS:
– bracketed syntax
– typed channels (overloading allowed)
– static semantics constraints (variable initialization, etc.)
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Sample LOTOS NT process
channel C is

(N : Nat)
end channel
process ELEVATOR [CALL, GO, UP, DOWN: C] (CURRENT, TARGET: FLR) is

loop
if TARGET > CURRENT then

CURRENT := CURRENT + 1; UP (CURRENT)
elsif TARGET < CURRENT then

CURRENT := CURRENT - 1; DOWN (CURRENT)
else (* TARGET == CURRENT *)

select
CALL (?TARGET)
[]
GO (?TARGET)

end select
end if

end loop
end process



73

Attempt #5: TRAIAN and LNT2LOTOS
• TRAIAN (1996-now):

– a LOTOS NT → C compiler
– so far, only LOTOS NT data types are compiled
– intensively used to build VASY compilers
– http://www.inrialpes.fr/vasy/traian

• LNT2LOTOS (2005-now):
– a LOTOS NT → LOTOS translator
– translation for types and functions finished
– translation for processes being implemented
– currently 22,300 lines of code
– already in use by Bull
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Summary
•Translations that do not work:

– mCRL to LOTOS
– CSPm to LOTOS

•Translations that work:
– CHP to LOTOS
– FSP to LOTOS
– LOTOS NT to LOTOS

• Translations under study:
– System C/TLM to LOTOS 



Concluding remarks
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Conclusion
• Diversity of formal methods: a fact

plenty of reasons for it
• Integration of formal methods: 

– economically suitable
– scientifically interesting

• 3 different approaches used for CADP:
– integration at a low-level: semantic models
� BCG, XTL, Open/Caesar, BES, PBES

– integration at a high level: user-interfaces
� graphical user interfaces, script languages

– integration at a high level: languages
� translation of CHP, FSP, LOTOS NT to LOTOS
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More information…

http://vasy.inrialpes.fr


