
Reconciling Concurrency Theory 
with Other Branches of 

Computer Science 

Hubert Garavel 
Inria Grenoble – LIG 

and Saarland University (part-time) 
http://convecs.inria.fr  

Open Problems in Concurrency Theory                                                                                            Bertinoro (Italy), June 18-21, 2014 

http://convecs.inria.fr/


Concurrency theory in 2014 
Scientifically relevant, but difficult to defend 

a rather mathematical branch of computer science 
economical impact difficult to assess 

Argument #1 
 distributed computing is everywhere: from microarchitectures to the cloud 
 concurrency theory helps to correctly design and verify complex systems 

Argument #2 
one lacks good languages to program parallel machines 
concurrency theory studies languages with native parallel composition 

Yet: 
students and engineers find process calculi difficult ("steep learning curve") 
academic colleagues do not spontaneously adopt process calculi 



Outline 

 
LNT: a born-again process calculus 
Upward encodings 
Expressiveness / Convenience 
Conclusion 



LNT: a born-again process calculus 



Action prefix    (1/2) 
A key operator of many process calculi: 
    a . P  |   a !x . P   | a ?x . P    with a action, P process, x variable 

Advantages: 
well accepted by (most of) the concurrency theory community 
simple syntax  
simple SOS rules 
convenient for proofs 

Drawback #1:   non-standard wrt other programming languages 
action prefix is asymmetric:   a . P     action a followed by a process P 
everywhere else: symmetric sequential composition  
                                                     P ; P'    process P followed by another process P' 
students always tend to write symmetric sequential composition by default  
 



Action prefix    (2/2) 
Drawback #2:   incompatible with regular expressions 

computer scientists know regular expressions (command shells, text editors) 
they naturally tend to write regular expressions, rather than prefix terms 

Drawback #3:   no "loop" operator 
one is forced to use recursion and introduce extra processes 
many proposals for introducing loops, but few implementations (if any) 

Drawback #4:   prohibits control-flow sharing 
action prefix forces to write trees and prohibits DAGs 
Ex1:   (a . c . nil + b . c . nil)   rather than   (a+b) . c . nil 
Ex2:   if x then (a . c . nil) else (b . c . nil) rather than (if x then a else b) . c . nil 
to avoid such undesirable unfoldings, one must introduce auxiliary processes 
but  this is poorly readable control flow ("goto"-like programming) 
 and obscures the data flow (requires value parameters to be passed) 



Attempt #1: LOTOS, CSP 
Action prefix was recognized to be insufficient as soon as 1985 
Idea: keep action prefix,  add symmetric sequential composition 

noted ">>" in LOTOS and ";" in CSP 

Many drawbacks: 
two operators for almost the same purpose 
Ex (LOTOS): a ; b ; exit >> c ; d ; stop 
each sequential composition >> creates a τ-transition in the LTS 
no neutral element for sequential composition (modulo strong bisimulation) 
sub-term sharing for control flow is possible but heavy 
(a ; exit [] b ; exit) >> c; stop 
In CSP, the values of variables do not move across sequential composition 
(?x : T -> SKIP) ; (x -> STOP)          the left x remains local to (?x : T -> SKIP) 
In LOTOS, the values of variables may move across sequential composition 
(Recv ?x:T; exit (x)) >> accept x:T in Send !x; stop    ok, but awfully complex 
 
 



Attempt #2: ACP & Co (PSF, µCRL, mCRL2) 
Idea: discard action prefix; use symmetric sequential composition 
Advantages    (in absence of value passing) 

simplicity      —  and no creation of extra τ-transitions 
allows control-flow sharing 
subsumes regular expressions (and even context-free grammars) 

Drawbacks   (all related to value passing) 
Input?x:Int ; Output !x ; exit   cannot be written this way (i.e., as in LOTOS) 
it must be written  Σ (x:Int, Input (x) . Output (x))     => no notation for input 
the value of x is not chosen during the input, but before (in the sum operator) 
ambiguous: no dedicated syntax to distinguish between inputs and outputs 
Σ (x:Int, a (x))  can mean either   a?x:Int ; exit    or   choice x:Int [] a !x ; exit 
certain forms of control-flow sharing cannot be expressed in these languages 
Ex:    (a ?x [] τ ; b ?x) ; c !x  …  
                                                  where should the sum operator for "b ?x" be put? 
 
 



Early conclusions 
 ACTION PREFIX IS THE ROOT OF ALL EVIL 
CCS, CSP, LOTOS are not optimal for describing complex systems 
ACP & Co. do slightly better, but do not solve all issues 
A better language (named "LNT") has to be designed 

 
DECISION 1 for LNT: 

get rid of action prefix 
use ACP-style sequential composition 
 

Next step: find a proper solution for value-passing issues 
must be intuitive for mainstream software engineers 
thus, necessarily different from both CCS/CSP/LOTOS and ACP & Co. 



Control-flow and data-flow sharing 
As mentioned before, control-flow sharing is intuitive and suitable 

Ex1:   ( A [] B ) ; C                                              nondeterministic  choice 
Ex2:   ( if x then A else B ) ; C                          deterministic  choice 
Ex3:   ( case x in a -> A | b -> B ) ; C               deterministic  choice 

The values of variables should implicitly move across ";" operators 
Ex4:   ( A ?x [] B ?x) ; C !x … 
Ex5:  ( if c then A ?x else x := 0 ) ; B !x … 

In most process calculi, variables are write-once 
they are so-called "dynamic constants" 
simple syntax:   declaration and initialization of variables are bound together 
simple semantics:   [value/variable] substitutions are sufficient 

But dynamic constants are not mainstream in computer languages 
they isolate process calculi from the crowd of software developers 
 



Introducing "true" variables 
DECISION 2 FOR LNT: 

ordinary (i.e., "write-many") variables are suitable 
both in the data part (functions) and in the behavior part (processes) 
variable declarations and variable modifications need to be separated 
successive assignments to the same variable are permitted 

Variable declarations 
var X : T in … end var 

Variable modifications 
X := E                                             assignment 
G ?X  where E (X)                        input with (optional) predicate 
X := any T where E (X)               nondeterministic assignment with predicate 
calls to functions and processes (Ada-like "in", "out", and "in out" parameters) 

 



Uninitialized variables   (1/2) 
Problem: certain syntactically correct terms have no clear meaning 

Ex:  ( A ?x  [] B ?y ) ; C !x+y 
but this term becomes meaningful if prefixed with   x := 0 ; y := 0  

Whether a term has a meaning or not is undecidable  (≈ halting) 
Solution #1: reading uninitialized variables has undefined effects 

usual solution in imperative languages (as in C, etc.) 
unacceptable if a formal semantics is sought 

Solution #2: initialize all variables implicitly when they are declared 
e.g. set integers to zero, Booleans to false (as in Eiffel) 
allows formal semantics but hides user mistakes 

Solution #3: give uninitialized variables  nondeterministic values 
tricky: implicit summation operator by reading an uninitialized variable 
allows formal semantics but hides user mistakes 
 

 



Uninitialized variables   (2/2) 
Solution #4: add restrictions to reject "dubious" programs 
Either using syntactic restrictions: 

CCS:   asymmetric action prefix is just a means to avoid   (a ?x + b ?y) . c !x+y 
ACP:  output-only syntax for actions is another means for the same issue 
syntactic restrictions are very primitive defense means; better solutions exist 

Or using static semantics restrictions: 
standard means to rule out syntactically correct, yet problematic programs 
process calculi neglect static semantics and try to do everything using syntax 

DECISION 3 FOR LNT: static semantics constraints on initializations 
reject programs in which variables are not provably set before used 
sufficient conditions based on static data-flow analysis 
inspired by the Hermes (IBM) and Java (Sun) languages 
well-accepted by programmers, catches many mistakes 

 



"Context-free" recursion 
Symmetric sequential composition allows context-free recursion 

Example:   process P =  null  []  ( A ; P ; B ) 
(note that action prefix syntactically prohibits this) 
 

Assessment: 
this recursion is not so useful in practice 
the same behaviour can be  easily described using  regular processes with 
value parameters 

 

DECISION 4 for LNT: static semantic restrictions on recursion 
LNT processes: only tail-recursion is allowed 
note: non-tail recursion could yet be eliminated automatically (e.g.  µCRL) 
LNT functions: no restriction on the use of recursion 



Shared variables 
Separation of declaration and assignment allows shared variables 

Example:   var X:int in ( Input ?X || Input ?X ) ; Output  !X 
(note that this is impossible when variables are write-once) 

Assessment 
This could be an opportunity to combine message-passing and shared- 
variable paradigms in the same formal language 
A nice semantics could probably be found for shared variables 
For the moment, LNT remains in the message-passing framework 

DECISION 5 for LNT: static semantic restrictions on shared variables 
LNT parallel branches may inherit variables from their enclosing scope 
In principle, all parallel branches can read all shared variables 
If a branch writes a shared variable, the other branches can neither write 
nor read this variable      (i.e., exclusive write access policy) 
 
 



Dynamic semantics of LNT 
 Annex B of the LNT2LOTOS Reference Manual 

written by Frédéric Lang (16 pages) 
ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/Champelovier-Clerc-
Garavel-et-al-10.pdf  

For LNT functions: 
 state = memory store (mapping: variable → value) 
 LNT instructions define transitions between states (i.e., store updates) 

For LNT processes: 
 Labelled transition systems 
 LTS state = <process term, memory store> 
 SOS rules define transitions between LTS states 
 Sequential composition: ACP-like  rules + store updates 
 Static semantics restrictions avoid complications in the dynamic semantics 

ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/Champelovier-Clerc-Garavel-et-al-10.pdf
ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/Champelovier-Clerc-Garavel-et-al-10.pdf


Upward encodings 



Encoding reg. exp. and ACP in LNT 
Regular expressions  ------------->   LNT 

          ε                                                      null    — but adds a tick √ 
          a                                                      a         — but adds a tick √ 
          R1 . R2                                            R1 ; R2 
          R1 | R2                                           select R1 [] R2 end select 
          R*                                                    loop  R end loop 
 

ACP                             -------------->   LNT 
          0                                                      stop 
          1                                                      null 
          Σ (x : T, P(x))                                  var x:T in x := any T; P (x) end var 
           Parallel composition and renaming are orthogonal issues 

 



Encoding CCS in LNT 
CCS                               ------------->   LNT 

          nil                                                   stop 
          a . P                                                a ; P 
          a !x . P                                           a (x) ; P 
          a ?x:T . P                                       var x:T in a (?x) ; P end var 
          P1 + P2                                         select P1 [] P2 end select 
 

Other CCS operators 
recursion:  translates to either a loop operator or an LNT process call 
CCS "complement" gates, parallel and restriction are orthogonal issues 
 

 



Encoding LOTOS in LNT  
For those LOTOS operators that also exist in CCS: 

apply the same rules as for the CCS to LNT translation 
but LOTOS has additional operators that do not exist in CCS 

 
LOTOS                         ------------->   LNT 

          G ?x:T [V] in P                          var x:T in G (?x) where V ; P end var 
          let x:T = V in P                          var x:T in x := V ; P end var 
          choice x:T [] P                          var x:T in x := any T ; P end var 
          exit                                            null 
          exit  (V1, …, Vn)          null 
          P1 >> P2                                    P1 ; τ ; P2 
          P1 >> accept x:T in P2            P1 ; τ ; P2      (where P1 assigns x) 

 



The quest for a unifying framework 
for process calculi 

The usual approach 
search for a "core" calculus of very primitive elements 
try to express classical process calculi using this "core" calculus 
the core calculus is "low level", whereas the process calculi are "high level" 

 

LNT: a different approach 
translate classical process calculi to LNT 
the classical process calculi are "low level", whereas LNT is "high level" 
the translations to LNT are straightforward (i.e., "syntactical" substitutions) 
the classical process calculi appear as a "subset" or a particular "specification 
style" of LNT, which is more general 



Expressiveness / Convenience 



Reusing algorithmic control structures 
Once  symmetric sequential composition and "standard" value 
passing rules are adopted,  all the usual constructs of algorithmic 
programming languages come "for free" 
In LNT, 70% of constructs look familiar (Ada-like syntax): 

if-then-else (with elsif) 
case with pattern matching 
while … loop,    for … loop,   forever loop with break 
functions with return statement 

LNT functions and processes have many constructs in common 
Additional process constructs (coming from concurrency theory): 

nondeterministic assignment:    X := any T where P (X) 
nondeterministic choice:  select … [] … [] … end select 
parallel composition: par … ||… || … end par 
hiding: hide … end hide 



More flexible specification styles 
LNT favors alternatives to the traditional "condition/action" style 
A  recent example: 

select 
      L := {} 
 []  L := {0, 1} 
 []  L := {1, 0, 2} 
 []  … 
end select ; 
SEND (L); 
while L != {} loop 
    X := X - head (L); 
    L := tail (L) 
end loop  
 

nondeterministic choice used to  
produce a finite set of values among 
a potentially infinite domain 
 
(there are no input/output actions  in  
 the branches of this select statement) 

statically unbounded number of assignments 
 



Challenge 1: Guarded commands 
Proposed by Dijkstra — used, e.g., in the PRISM model checker 
LNT can express guarded commands naturally and concisely: 

 

Using traditional process calculi: 
• 1 recursive process having n parameters 
• n recursive process calls 
• n2 parameters passed (most of which unchanged) 
• LNT = linear code size, others = quadratic code size 

process GuardedCommands  [G1, G2, … Gn : void]  is 
        var X1, X2, … Xn : int  in 
               X1 := 0 ; X2 := 0 ; … ; Xn := 0 
               loop 
                      select 
                            only if X1 < 9  then G1 ; X1 := X1+1 end if 
                            [] … [] 
                            only if Xn < 9  then Gn ; Xn := Xn+1 end if 
                      end select 
               end loop 
        end var 
end process 



Challenge 2: DAG control patterns 
LNT can directly express DAG-like control patterns:  

e.g., choice-DAGs:    (P1 [] P2) ; (Q1 [] Q2) ; (R1 [] R2) 
but also if-DAGs, case-DAGs, etc. 

process DAG  [Input, Output : IntChannel]  (X1, …, Xn : Int) is 
    if X1 = 0 then Input (?X1) end if ; 
    if X2 = 0 then Input (?X2) end if ; 
    … 
    if Xn = 0 then Input (?Xn) end if ; 
    Output (combination (X1, X2, …, Xn)) 
end process Using traditional process calculi: 

• n processes having n parameters each 
• n2 parameters passed 
• LNT = linear code size, others = quadratic code size 
• tedious and error prone 



Challenge 3: Map-Reduce 
Given n inputs X1, X2, ..., Xn, compute g (f1 (X1), f2 (X2), …, fn (Xn)) 
Each computation Yi = fi (Xi) is given to one parallel processor 

var X1, X2, …, Xn : S, 
       Y1, Y2, …, Yn : T in 
   Input (?X1, ?X2, …, ?Xn); 
   par 
             Y1 := f1 (X1) 
        || Y2 := f2 (X2) 
        || … 
        || Yn := fn (Xn) 
   end par ; 
   Output (g (Y1, Y2, …, Yn)) 
end var 
 

Input ?X1, X2, …, Xn : S ;  
   ( 
        exit (f1 (X1), any T, …, any T) 
   || exit (any T, f2 (X2), … any T) 
   || … 
   || exit (any T, any T,  …, fn (Xn)) 
    )  
     >> accept Y1, Y2, …, Yn : T in 
        Output (g (Y1, Y2, …, Yn)) 
end var 
 LNT = linear code size, LOTOS = quadratic code size, not compositional  



Conclusions 



Revisiting classical process calculi 
Classical process calculi are good, yet not optimal 

they are difficult to learn and to master 
they face certain problems when scaling  to large, complex systems 
(prohibition of control-flow sharing, quadratic explosion of code size, etc.) 
a better tradeoff between convenience and semantic simplicity is possible 

A critical assessment of action prefix and write-once variables 
forcing write-once variables is simple, but overly restrictive and clumsy 
CCS action prefix is a "trick" to syntactically forbid write-many variables  
ACP output-only syntax is another trick to also forbid write-many variables 

Why are (most) process calculi designed like this? 
 need for having a formal semantics (forbid uninitialized variables) 
 individual preferences for functional languages, algebras, etc. 
ignores the difference between syntax checks and static semantics checks 
process calculi came too early: Hermes (1986-92) and Java (95) arrived later 



LNT: an alternative approach 
Key concepts: 

 remove action prefix 
 add sequential symmetric composition 
 separate variable declaration and modification 
 allow write-many variables 
 static semantics: use data flow analysis to reject dubious programs 
 dynamic semantics: extend LTS states with memory stores 

 

Benefits: 
generalizes regular expressions and the usual calculi: ACP, CCS, CSP, LOTOS 
generalizes sequential imperative languages 
better convenience than the usual calculi (dags, map-reduce, etc.) 
supports action refinement (replacement of an action by a process) 



Design and implementation of LNT 
First attempt: 1993-2000 

 push ideas in the definition of E-LOTOS (ISO standard 15435:2001) 

Second attempt: 1998-2008 
definition of  LOTOS NT, a simplified version of E-LOTOS 
direct implementation : the TRAIAN compiler (data types only → C) 
Mihaela Sighireanu's PhD thesis 

Third attempt: 2005-now 
indirect implementation: LNT → LOTOS (much harder than LOTOS → LNT) 
LNT2LOTOS translator (initially funded by Bull) 
Frédéric Lang: translation of LNT types and functions 
Wendelin Serwe: translation of LNT processes 
D. Champelovier, X. Clerc, etc.: implementation of the translator 
reuse of the LOTOS compilers and verification tools present in CADP 

On the long run: resume direct implementation LNT → C 
 



Feedback about LNT 
LNT is taught to engineering students 

LNT is much easier and faster to learn than LOTOS 
LNT builds on prior knowledge: regular expressions, programming languages 
students don't have to forget what they already learnt in programming 
courses 
they can focus on concurrency theory concepts (choice, parallel, hide, etc.) 
because LNT is intuitive,  students tend to jump writing specifications without 
reading  the formal semantics (a very questionable advantage!) 

 

LNT is used to model real-life applications 
since 2010, LNT has entirely replaced LOTOS in our research team 
a growing list of case-studies: ATVA'13, FMICS'13, FORTE'13, FORTE'14, 
IFM'13, ISSE'13, SAC'14, TACAS'13, SCICO journal (2013 and 2014) 
STMicroelectronics: LNT enabled the development of hardware models that 
were too large to be realistically described in LOTOS 


	Reconciling Concurrency Theory with Other Branches of Computer Science
	Concurrency theory in 2014
	Outline
	LNT: a born-again process calculus
	Action prefix    (1/2)
	Action prefix    (2/2)
	Attempt #1: LOTOS, CSP
	Attempt #2: ACP & Co (PSF, CRL, mCRL2)
	Early conclusions
	Control-flow and data-flow sharing
	Introducing "true" variables
	Uninitialized variables   (1/2)
	Uninitialized variables   (2/2)
	"Context-free" recursion
	Shared variables
	Dynamic semantics of LNT
	Upward encodings
	Encoding reg. exp. and ACP in LNT
	Encoding CCS in LNT
	Encoding LOTOS in LNT 
	The quest for a unifying framework for process calculi
	Expressiveness / Convenience
	Reusing algorithmic control structures
	More flexible specification styles
	Challenge 1: Guarded commands
	Challenge 2: DAG control patterns
	Challenge 3: Map-Reduce
	Conclusions
	Revisiting classical process calculi
	LNT: an alternative approach
	Design and implementation of LNT
	Feedback about LNT

