
Refined interfaces
for compositional verification

Frédéric Lang
INRIA Rhône-Alpes / VASY
655, avenue de l'Europe

F-38330 Montbonnot Saint Martin
France

2

Context
• Verification of concurrent systems

– Processes running asynchronously in parallel

– Formal descriptions (e.g. LOTOS)

– Action-based models (state/transition graphs)

• Enumerative ("explicit state") verification methods
– Systematic exploration of the state/transition graph

– Example: model checking, equivalence checking, ...

• State explosion problem
– Exponential growth of the state/transition graph

– Several methods can be used to palliate state explosion

• Tool support: the CADP toolbox

3

Compositional Verification
• Compositional verification: "divide and conquer"

– Partition the system into subsystems

– Minimize each subsystem modulo a strong or weak bisimulation
preserving the properties to verify

– Recombine subsystems to get a system equivalent to the initial one

• Compositional verification may fail
– Concurrent processes constrain each others

– Separating tightly-coupled processes → explosion

• Solution: use interfaces
– [Graf-Steffen-91], [Cheung-Kramer-93], [Krimm-Mounier-97]

– Use interfaces to model the environment

• This talk: automated interface generation

4

State/transition graphs
• Semantic model of processes, also called Labelled

Transition System (LTS)

• Transitions between states are labelled by events

– Synchronizable/observable events

– Non-synchronizable/hidden event τ

• CADP toolbox allows on-the-fly exploration of

state/transition graphs (OPEN/CAESAR)

b

c

ca

a

τ

5

Using interface constraints
• A big graph P can be reduced using interface constraints,

represented as a graph I and a set of labels A through
which P and I interact

• Projection operator P ⎤⎥A I (Graf & Steffen, Krimm & Mounier)

– Computes the sub-graph of P reachable in P ⎥⎥A I

– I can be reduced modulo safety equivalence after hiding all
labels outside A

• A similar approach exists for CSP (Cheung & Kramer)
– Normal parallel composition instead of projection

– Requires tau elimination and determinization (expensive) in I
to ensure context transparency

6

Example of projection

⎤⎥{A, B, C} =

7

The PROJECTOR tool of CADP
Software implementation of projection (Krimm & Mounier 1997)

PROJECTOR

OPEN/CAESAR
graph P

BCG graph
(interface) I

Synchronization set
A

BCG Graph
P ⎤⎥A I

8

Computing the interface constraints
• Solution 1: User-specified interface

– The user provides an interface

– A correct interface is hard to guess

– But correctness can be checked afterwards

• Solution 2: Synthesized interface
– A correct interface is computed automatically from the

environment

– Krimm & Mounier give an algorithm based on the analysis of a
LOTOS expression describing the system as a parallel composition

The interface I is a process of the composition

The synchronization set A is derived automatically

9

Limitation 1 of K&M algorithm

The method to compute the synchronization set A is
specific to LOTOS parallel composition

How can we synthesize interfaces in expressions that use
different and/or more general operators?

10

Limitation 2 of K&M algorithm

It is impossible to compute interface constraints induced
by several (not necessarily close) processes

Sometimes, only such constraints allow reductions

11

Example of limitation 2

• Restricting P3 w.r.t. P1 or P2 yields no reduction:

P3 ⎤⎥{a, d} P1 = P3 ⎤⎥{c, d} P2 = P3

• Restricting P3 w.r.t. both P1 and P2 (synchronized on b)

would yield better reductions

b

a
d

c

b
d

d d

a a a

ccc⎥⎥{a, b, d} (⎥⎥{c, d})
P1 P2 P3

12

Limitation 3 of K&M algorithm

Interfaces may be not precise enough when
nondeterministic synchronization is involved

(i.e., a given transition may nondeterministically choose
to synchronize or not with another)

13

Example of limitation 3

• When P1, P2, and P3 are ready for a b transition, P1 must
choose to synchronize with either P2 or P3

• Restricting P2 w.r.t. P1 yields no reduction:

P2 ⎤⎥{a} P1 = P2

• However P1 implies that two successive b actions cannot
be reached without an a in between

a

b

a

b b

a, b b

a
c

⎥⎥{a, b} (⎥⎥{a})
P1 P2 P3

14

Refined interfaces
• We propose a new algorithm which solves the limitations

of K&M algorithm

• Our algorithm works in three phases

1. Translation of the composition of processes into a general model

called "synchronization networks"

2. Extraction of an "interface network" from the network model

3. Generation of the interface graph corresponding to the interface

network

15

Phase 1: synchronization networks
• A general synchronization model for an arbitrary number

of processes P1, ..., Pn

• Synchronization vectors of the form L1, ..., Ln → L where
each Li is either a label or the symbol • (inaction)

• Semantics of L1, ..., Ln → L
– Li transitions such that Li ≠ • execute synchronously in the

respective Pi's

– L is the label resulting from synchronization in the product graph

• Constraints are added so that τ transitions cannot be
renamed nor cut

• Most equivalences (strong, branching, observational, ...)
are congruences for synchronization networks

16

Example 1

can be represented by the set of synchronization vectors
a, •, a → a
b, b, • → b
•, c, c → c
d, d, d → d

b

a
d

c

b
d

d d

a a a

ccc
⎥⎥{a, b, d} (⎥⎥{c, d})

P1 P2 P3

17

Example 2

can be represented by the set of synchronization vectors
a, a, a → a
b, b, • → b
b, •, b → b
•, •, c → c

a

b

a

b b

a, b b

a
c

⎥⎥{a, b} (⎥⎥{a})
P1 P2 P3

} nondeterministic synchronization on b

18

Phase 2: Interface network extraction
• Extraction of a network N' representing a subset of the

environment of a process to be constrained

• Inputs:

– The synchronization network N of a system P1, ..., Pn

– The index i of the process Pi to be constrained

– A (user-given) set of indices {j1, ..., jm}, representing a subset
Pj1, ..., Pjm of the processes in the environment of Pi

• Algorithm: for each vector v in N, create in N' a vector
v[j1], ..., v[jm] → vi

where vi = v[i] if v[i] ≠ • (Pi active)
vi = τ otherwise (Pi inactive)

19

Illustration

Input
vectors

Output
vectors τ

P1 P3

•

P2 P4 P5 P6

P3P2 P6

Interface network
extraction for restricting
P4 w.r.t. P2, P3, P6

20

Example
• P1, P2, P3 synchronized by the vectors

a, a, a → a

b, b, • → b

b, •, b → b

•, •, c → c

• The interface network for restricting P2 w.r.t. P1 is:
a → a

b → b

b → τ

• → τ (This last one can be removed : only •'s in left-hand side)

21

Phase 3: interface graph generation

• Generate the graph corresponding to N'

• Thanks to congruence, Pj1, ..., Pjm can be reduced modulo

safety equivalence beforehand

• Partial order reduction allows to avoid useless

interleavings

22

Using the generated interface

• The (possibly large) graph of Pi can be replaced by

(smaller) graph of Pi ⎤⎥A I where I is an interface obtained

by our algorithm

• A formal proof is provided in the FORTE'2006 paper

23

Limitation 1 solved
• Our algorithm can handle synchronization networks, a

general model similar to MEC and FC2 networks

• We implemented the translation into networks for

– CCS, CSP, LOTOS, mCRL parallel composition

– E-LOTOS generalized parallel composition and m among n

synchronization

• The translation can still be done for other operators

24

Limitation 2 solved
• Interface constraints restricting a processes w.r.t. several

processes of its environment can be synthesized

Example

Interface I for restricting P3 w.r.t. P1 and P2:

P3 ⎤⎥{a, c, d} I = is smaller than P3

b

a
d

c

b
d

d d

a a a

ccc⎥⎥{a, b, d} (⎥⎥{c, d})
P1 P2 P3

d

a a

cc
d

c

ca

a
τ

25

Limitation 3 solved
• Interfaces are precise even in presence of nondeterministic

synchronization

Example

Interface I for restricting P2 w.r.t. P1:

P2 ⎤⎥{a, b} I = is smaller than P2

a

b

a

b b

a, b b

a
c

⎥⎥{a, b} (⎥⎥{a})
P1 P2 P3

a

b
τ

a

b

26

Implementation in CADP
• Algorithm implemented in Exp.Open 2.0 (-interface option)

• Example: odp.exp

hide all but WORK in

par EXPORT, IMPORT in

par WORK #2 in
"object_1.bcg"

|| "object_2.bcg"

|| "object_3.bcg"

|| "object_4.bcg"

end par

|| "trader.bcg"

end par

end hide

27

Implementation in CADP
Command:

exp.open -weaktrace -interface "5: 1 2 3" "odp.exp" \

generator "trader_interface.bcg"

• Generates an interface graph "trader_interface.bcg" for

restricting the 5th graph ("trader.bcg") w.r.t. the 1st, 2nd

and 3rd graphs ("object_{1,2,3}.bcg") in "odp.exp"

• Partial order reduction preserving observable traces is

applied (-weaktrace)

28

Applications (1/3)

Philips' HAVi Home Audio-Video leader election

• Modeled in LOTOS by J. Romijn (Eindhoven)

• Largest process (404,477 states) was:

– Reduced downto 365,923 states (182s, 46Mb) using interface

obtained by K&M algorithm

– Reduced downto 645 states (11s, 8.5Mb) using a refined interface

http://www.inrialpes.fr/vasy/cadp/demos/demo_27.html

29

Applications (2/3)
ODP (Open Distributed Processing) Trader

• Modeled in E-LOTOS by Garavel & Sighireanu (INRIA)

• Uses m among n synchronization to model the dynamicity

of object exchanges

• Trader reduced from 1 M states without interface downto

256 states using a refined interface

http://www.inrialpes.fr/vasy/cadp/demos/demo_37.html

30

Applications (3/3)
Cache Coherency Protocol

• Modeled in LOTOS by M. Zendri (Bull)

• 5 agents accessing a remote directory concurrently

• No reduction using interface obtained by K&M algorithm

• Remote directory reduced from 1 M states downto 60
states using refined interface

• Directory generated for a configuration with 7 agents (81
states)

http://www.inrialpes.fr/vasy/cadp/demos/demo_28.html

31

Refined abstraction in SVL
• SVL: Scripting language for verification in CADP

• SVL already contained an operator written "P –|[A]| I" or

"abstraction I sync A of P" corresponding to "P ⎤⎥A I"

• SVL now has a new "refined abstraction" operator, which

– generates the interface automatically using EXP.OPEN, and

– restricts the process using PROJECTOR

32

SVL refined abstraction example

"cache.bcg" = root leaf strong reduction of

(

(AGENT_1 ||| AGENT_2 ||| AGENT_3)

|[GET_LINE_STATUS, PUT_LINE_STATUS]|

(refined abstraction AGENT_1, AGENT_2
using DIR_ABSTRACT of DIRECTORY)

);

33

Conclusions
• We provided a new algorithm to synthesize interface

constraints automatically

• Our algorithm solves the 3 limitations of K&M's algorithm
– It does not depend on a particular input language

– It permits to take into account constraints induced by several
processes

– It permits a finer analysis of synchronization patterns between
processes, thus yielding better reductions

• The method is fully implemented in CADP

• It is easy to use thanks to the SVL scripting language

• Experiments indicate possible reductions by several orders
of magnitude

