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Model-checking

Verify that a finite-state concurrent system satisfies  
a set of desired correctness properties

system
description

compiler

model
(LTS)

correctness
properties

model-checker

yes / no + diagnostic
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Labeled Transition Systems

An LTS is a quadruple
M = (S, A, T, s0)

LTS representations:
• explicit (« predecessor » function)

– iterative computations using sets of states
– BCG (Binary Coded Graphs) environment [Garavel-92]

• implicit (« successor » function)
– on-the-fly exploration of the transition relation
– Open / Caesar environment [Garavel-98]
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Verification of sequential systems

Analysis of single trace LTSs using model-checking:

• Intrusion detection
– Check security properties of log files

– USTAT rule-based expert system [Ilgun-et-al-95]

• Program debugging
– Check correctness queries on execution traces

– OPIUM analysis system for Prolog [Ducassé-99]

• Run-time monitoring
– Check temporal properties of event traces

– MOTEL monitoring system [Dietrich-et-al-98] 
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Context of the work

• Goal: enhance the performance (speed, memory) of 
model-checking for acyclic LTSs (ALTSs)

• Temporal logic adopted:
– Modal µ-calculus [Kozen-83,Stirling-01]
– « Assembly language » for temporal logics

• Simplification of µ-calculus on ALTSs:
– Syntactic reduction (valid on all LTSs)

full µ-calculus → guarded µ-calculus
– Semantic reduction (valid on ALTSs)

guarded µ-calculus → alternation-free µ-calculus

• Optimization of model-checking algorithms on ALTS
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Modal mu-calculus

Let M = (S, A, T, s0) be an LTS.
Syntax of the modal µ-calculus:

Action formulas

α ::= a  ¬α  α1 ∨ α 2

State formulas

ϕ ::= F  ¬ϕ  ϕ1 ∨ ϕ 2  〈 α 〉 ϕ  X  µX . ϕ
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Action formulas

Let M = (S, A, T, s0). Semantics [[ α ]] ⊆ A:
• [[ a ]] = { a }
• [[ ¬α ]] = A \ [[ α ]]
• [[ α1 ∨ α 2 ]] = [[ α1 ]] ∪ [[ α2 ]]

Derived operators:
• T = a ∨ ¬ a
• F = ¬T
• α1 ∧ α 2 = ¬ (¬α 1 ∨ ¬α 2)
• α1 ⇒ α2 = ¬α 1 ∨ α 2

• α1 ⇔ α2 = (α1 ⇒ α2) ∧ (α2 ⇒ α1)
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State formulas

Let M = (S, A, T, s0) and ρ : Y → 2S a context mapping 
variables to state sets. Semantics [[ ϕ ]]ρ ⊆ S:

• [[ F ]]ρ = ∅ • [[ ¬ϕ ]]ρ = S \ [[ ϕ ]]ρ
• [[ ϕ1 ∨ ϕ 2 ]]ρ = [[ ϕ1 ]]ρ ∪ [[ ϕ2 ]]ρ
• [[ 〈 α 〉 ϕ ]]ρ = { s ∈ S | ∃ (s, a, s’) ∈ T . a ∈ [[ α ]] ∧

s’∈ [[ ϕ ]]ρ }
• [[ Y ]]ρ = ρ (Y) • [[ µY . ϕ ]]ρ = ∪ k≥0 Φρ

k (∅ )
where Φρ : 2S → 2S , Φρ (U) = [[ ϕ ]]ρ[U/Y]

Derived operators:
• [ α ] ϕ = ¬ 〈 α 〉 ¬ϕ • νY . ϕ = ¬µY . ¬ϕ [¬Y / Y]
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Guarded mu-calculus

• ϕ is guarded (weakly guarded) wrt X if all (except 
those at top-level) free occurrences of X in ϕ fall in 
the scope of a 〈 〉 or [ ] modality

ϕ = X ∧ [ a ] Z ∧ µ Y . 〈 b 〉 X ∨ 〈 c 〉 Y
is guarded wrt Z, weakly guarded wrt X

• ϕ is guarded if for all subformulas σX.ϕ1 of ϕ
(σ ∈ {µ, ν}), ϕ1 is guarded wrt X

CTL operators yield guarded formulas:
E [ϕ1 U ϕ2] = µX . ϕ2 ∨ (ϕ1 ∧ 〈 T 〉 X)
A [ϕ1 U ϕ2] = µX . ϕ2 ∨ (ϕ1 ∧ 〈 T 〉 T ∧ [ T ] X)
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Translation to guarded mu-calculus

ϕ1 = 〈 (a | b*)* . c 〉 T
= µX . 〈 c 〉 T ∨ 〈 a 〉 X ∨ µ Y . X ∨ 〈 b 〉 Y

Translation to weakly guarded form (unfolding):
ϕ2 = µX . 〈 c 〉 T ∨ 〈 a 〉 X ∨ (X ∨ 〈 b 〉 µY . X ∨ 〈 b 〉 Y)

Translation to guarded form (flattening):
ϕ3 = µX . 〈 c 〉 T ∨ 〈 a 〉 X ∨ (F ∨ 〈 b 〉 µY . X ∨ 〈 b 〉 Y)

= µX . 〈 c 〉 T ∨ 〈 a 〉 X ∨ 〈 b 〉 µY . X ∨ 〈 b 〉 Y
= 〈 (a | b+)* . c 〉 T = ϕ1
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Unfolding (direct)
σ1X1

ϕ1

σ2X2

ϕ2

σnXn

ϕn

X1

Xn Xn

X1

Xn Xn

σnXn σnXn

ϕn

X1

X1

Xn Xn

ϕn ϕn

|ϕn|2

Overall size: |ϕ|2|ϕ|
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Unfolding (with factorization)

|ϕn|+|ϕn|

Overall size: |ϕ|2

σ1X1

ϕ1

σ2X2

ϕ2

σnXn

ϕn

X1

Xn Xn

X1

Xn Xn

σnXn

ϕn

ϕn

X1

Xn Xn



© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 14

Flattening (with conversion in DNF)

Eliminate all top-level unguarded 
occurrences of X in σX.ϕ
[Kozen-83,Walukiewicz-95]:

• Convert ϕ in DNF
σX.ϕ = σX.(X ∧ P(X)) ∨ Q(X)

• Apply the identities
µX.(X ∧ P(X)) ∨ Q(X) = µX.Q(X)
νX.(X ∧ P(X)) ∨ Q(X) = νX.P(X) ∨ Q(X)

Problem:
quadratic blow-up for each fixed 

point subformula ⇒
exponential blow-up for the 

whole formula

σX

∧

∨ϕ1

ϕ2

ϕn X

∧

∧
…ϕ3
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Flattening (direct)

Replace all top-level unguarded occurrences of X in 
σX.ϕ by F if σ = µ and by T if σ = ν:

• Apply the absorption property
X ∧ ϕ [T/X] ⇒ ϕ ⇒ X ∨ ϕ [F/X]

• Obtain equivalent formulas
µX.ϕ ⇒ µX.X ∨ ϕ [F/X] = µX.ϕ[F/X] ⇒ µX.ϕ
νX.ϕ ⇒ νX.ϕ[T/X] = νX.X ∧ ϕ [T/X] ⇒ νX.ϕ

Keep the size of the formula unchanged

Translation to guarded form (unfolding + flattening)
⇒ quadratic blow-up of the formulas
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Simplification of guarded formulas

Let M = (S, A, T, s0) be an ALTS and ϕ guarded wrt X.
Theorem: [[ µX.ϕ ]]ρ = [[ νX.ϕ ]]ρ for any context ρ.

νX.ϕ
µX.ϕ

S

…

…

=> νX.ϕ = µX.ϕ
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Summary

• Translation from full to guarded µ-calculus
– Unfolding (with factorization) and flattening (direct)
– Quadratic blow-up of the formulas

• Reduction of guarded µ-calculus on ALTSs
– Equivalence between minimal and maximal fixed points
⇒ Reduction to alternation-free µ-calculus

• Model-checking of full µ-calculus on ALTSs
– Reduction to alternation-free mu-calculus
– Linear local model-checking algorithms
⇒ O (|ϕ|2 · (|S| + |T|)) time and space complexity
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Local model-checking

• Let M = (S, A, T, s0) an ALTS, ϕ guarded alt-free. 
Model-checking method:
– Translation of ϕ to HML with recursion
– Encoding of the verification problem s0 |= ϕ

as a boolean equation system (BES)
– Local resolution of the BES by DFS traversal of its 

dependency graph

• M acyclic and ϕ guarded
⇒ BES with acyclic dependency graph
⇒ vertices stabilized when popped from the DFS stack
⇒ no need to store edges for back-propagation
⇒ O (|ϕ| · |S|) space complexity
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Distributed summing protocol

P0 P1

P2

I01 I02 I11 I12

O1O0

R
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Model and property

Property:
result eventually delivered

µX . 〈 T 〉 T ∧ [ ¬ “R 10” ] X

Translation in HMLR:
X0 = X1 ∧ X2

X1 = 〈 T 〉 T
X2 = [ ¬ “R 10” ] X0

I01 1

I01 1

I01 1 I11 3

I11 3

I11 3

I02 2

I02 2

I02 2

I12 4

I12 4

I12 4

R 10

0

1 2

3 4 5

6 7

8

9

ALTS of the
protocol:
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Verification
10
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X0 = X1 ∧ X2

X1 = 〈 T 〉 T
X2 = [ ¬ “R 10” ] X0

Zij = sj |= Xi

R 10
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Handling unguarded        
alternation-free formulas

• Let M = (S, A, T, s0) an ALTS and ϕ alternation-free.
Space complexity of model-checking:
O (|ϕ|·(|S|+|T|)) time, O (|ϕ|·|S|) space if ϕ guarded
O (|ϕ|2·(|S|+|T|)) time, O (|ϕ|2·|S|) space if ϕ unguarded

• Model-checking of unguarded alternation-free ϕ:
– Translation of the problem s0 |= ϕ into a BES
– Identification of the SCCs in the BES dependency graph
– Local resolution by DFS of the dependency graph
⇒ stabilize SCCs when their root is popped
⇒ no need to store edges for back-propagation
⇒ O (|ϕ|·|S|) space complexity
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Implementation
(within the CADP toolbox)

Evaluator 3.5 on-the-fly model-checker developed using the 
Open/Caesar generic environment [Garavel-98] of CADP

source
program

compiler Evaluator 3.5

cc

executable

temporal
formula

yes / no + diagnostic

graph
module (C)

O/C
library

O/C
interface
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Applications

Industrial project BULL-INRIA:
• Verification of multiprocessor architectures    

(cache coherency protocols)
• Off-line analysis of execution traces (100,000 

events) obtained by intensive testing
• Several hundreds PDL temporal formulas                 

[ R1 ] 〈 R2 〉 T
• Reduction of the formulas (conversion ν → µ)
• Application of the improved DFS algorithms
⇒ gains in speed (less LTS traversals)

and memory (no transitions stored)
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Conclusion

Already done:
• Reduction results for µ-calculus on acyclic LTSs

(applicable for other logics, e.g. CTL)
• Memory-efficient local model-checking algorithms
• Implementation in CADP (Evaluator 3.5)
• Industrial applications (hardware verification)

Ongoing work:
• Apply the solving algorithms to preorder checking
• Devise single-scan algorithms for traces

http://www.inrialpes.fr/vasy/cadp


