Local Model-Checking of Modal Mu-Calculus on Acyclic Labeled Transition Systems

Radu Mateescu*INRIA Rhône-Alpes / VASY 655, avenue de l'Europe F-38330 Montbonnot Saint Martin, France*

Outline

- Introduction
- Modal µ-calculus and acyclic LTSs
- •Local model-checking on acyclic LTSs
- •• Implementation and applications
- Conclusion

Model-checking

Verify that a finite-state concurrent system satisfies a set of desired correctness properties

Labeled Transition Systems

LTS representations:

- • *explicit* (« predecessor » function)
	- iterative computations using sets of states
	- **BCG** (Binary Coded Graphs) environment [Garavel-92]
- • *implicit* (« successor » function)
	- on-the-fly exploration of the transition relation
	- **Open / Caesar** environment [Garavel-98]

Verification of sequential systems

Analysis of single trace LTSs using model-checking:

- *Intrusion detection*
	- Check security properties of log files
	- USTAT rule-based expert system [Ilgun-et-al-95]
- • *Program debugging*
	- Check correctness queries on execution traces
	- OPIUM analysis system for Prolog [Ducassé-99]
- • *Run-time monitoring*
	- –Check temporal properties of event traces
	- MOTEL monitoring system [Dietrich-et-al-98]

Context of the work

- •• Goal: enhance the performance (speed, memory) of model-checking for *acyclic* LTSs (ALTSs)
- • Temporal logic adopted:
	- Modal µ-calculus [Kozen-83,Stirling-01]
	- –« Assembly language » for temporal logics
- •• Simplification of μ -calculus on ALTSs:
	- –Syntactic reduction (valid on all LTSs)

full µ-calculus → guarded µ-calculus

–Semantic reduction (valid on ALTSs)

guarded μ -calculus \to alternation-free μ -calculus

•• Optimization of model-checking algorithms on ALTS

Modal mu-calculus

Let *M* = (*S*, *A*, *T*, *s* 0) be an LTS. Syntax of the modal µ-calculus:

> *Action formulas* $\alpha ::= \alpha \mid \neg \alpha \mid \alpha_1 \vee \alpha_2$ *State formulas* $\varphi ::= F \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \langle \alpha \rangle \varphi \mid X \mid \mu X \cdot \varphi$

Action formulas

Let *M* = (*S*, *A*, *T*, *s* 0). Semantics [[α]] ⊆ *A*:

- • $\left[\left[\begin{array}{c} a \end{array} \right] \right] = \left\{ \begin{array}{c} a \end{array} \right\}$
- • $\left[\left[\begin{array}{c} \neg \alpha \end{array}\right]\right] = A \setminus \left[\left[\begin{array}{c} \alpha \end{array}\right]\right]$
- • $\left[\left[\begin{array}{c}\alpha_1\vee\alpha_2\end{array}\right]\right]=\left[\left[\begin{array}{c}\alpha_1\end{array}\right]\right]\cup\left[\left[\begin{array}{c}\alpha_2\end{array}\right]\right]$

Derived operators:

- T = *a* ∨ [¬]*a*
- \bullet F = \neg T
- $\alpha_1 \wedge \alpha_2 = \neg(\neg \alpha_1 \vee \neg \alpha_2)$
- $\alpha_1 \Rightarrow \alpha_2 = -\alpha_1 \vee \alpha_2$
- $\alpha_1 \Leftrightarrow \alpha_2 = (\alpha_1 \Rightarrow \alpha_2) \wedge (\alpha_2 \Rightarrow \alpha_1)$

State formulas

Let *M* = (*S*, *A*, *T*, *s* 0) and ρ : *Y* → 2 *S* a context mapping variables to state sets. Semantics [[ϕ]]ρ [⊆] *S*:

- • $[[F]]p = \varnothing$ •• [[¬φ]]ρ = *S* \ [[φ]]ρ
- • $[[\varphi_1 \vee \varphi_2]]$ $\rho = [[\varphi_1]]$ $\rho \cup [[\varphi_2]]$ ρ
- • $\left[\left[\langle \alpha \rangle \varphi \right] \right]$ ρ = { $s \in S$ | $\exists (s, a, s') \in T$. $a \in \left[\left[\alpha \right] \right]$ \wedge *s'*∈ [[φ]]ρ }
- • $[(Y)]$ $ρ = ρ(Y)$ •• [[μΥ . φ]]ρ = ∪_{k≥0} $\Phi_{\rm \rho}$ *k* (\varnothing) where Φ $_{\rho} : 2^{\mathsf{S}} \rightarrow 2$ ^{*S*} , Φ_ρ (*U*) = [[φ]]ρ[*U*/*Y*]

Derived operators:

$$
\bullet\ [\ \alpha\]\ \phi = \neg \langle\ \alpha\ \rangle \ \neg \phi \qquad \bullet
$$

$$
\bullet \, \vee Y \, . \, \varphi = \neg \mu Y \, . \, \neg \varphi \, [\neg Y \, / \, Y]
$$

Guarded mu-calculus

• ϕ is *guarded* (*weakly guarded*) wrt *X* if *all* (*except those at top-level*) free occurrences of *X* in ϕ fall in the scope of $a \land a$ or \Box modality

ϕ ⁼ *X* [∧] [*a*] *Z* [∧] µ *Y* . 〈 *b* 〉 *X* ∨ 〈 *c* 〉 *Y*

is guarded wrt *Z*, weakly guarded wrt *X*

• φ is *guarded* if for all subformulas σ*X*. φ_1 of φ (^σ [∈] { µ, ^ν}), ϕ 1 is guarded wrt *X*

CTL operators yield guarded formulas:

$$
E[\varphi_1 \cup \varphi_2] = \mu X \cdot \varphi_2 \vee (\varphi_1 \wedge \langle T \rangle X)
$$

 $\mathsf{A}\left[\mathsf{\phi}_{1} \mathsf{\ U\ \phi}_{2}\right]=\mathsf{\mu} X\ .\ \mathsf{\phi}_{2}\lor(\mathsf{\phi}_{1}\land\mathsf{\langle\,} T\mathsf{\rangle}\ \mathsf{T}\land\mathsf{\Gamma}\mathsf{\Gamma}\mathsf{\bot} X)$

Translation to guarded mu-calculus

$$
\varphi_1 = \langle (a | b^*)^* \cdot c \rangle \mathsf{T}
$$

= $\mu X \cdot \langle c \rangle \mathsf{T} \vee \langle a \rangle X \vee \mu Y \cdot X \vee \langle b \rangle Y$

Translation to weakly guarded form (*unfolding*): $\phi_2 = \mu X$. $\langle \text{ } c \text{ } \rangle \text{ } \text{T} \vee \langle \text{ } a \text{ } \rangle$ $\text{ } \text{ } X \vee \langle \text{ } \text{ } b \text{ } \rangle \text{ } \mu Y$. $X \vee \langle \text{ } b \text{ } \rangle \text{ } Y)$

Translation to guarded form (*flattening*): $\phi_3 = \mu X$. $\langle \text{ } c \text{ } \rangle \text{ } \text{T} \vee \langle \text{ } a \text{ } \rangle$ $\text{ } \text{ } X \vee \text{ } (\text{F} \vee \langle \text{ } b \text{ } \rangle \text{ } \mu \text{ } Y$. $X \vee \langle \text{ } b \text{ } \rangle \text{ } Y)$ = µ*X* . 〈 *c* 〉 T ∨ 〈 *a* 〉 *X* ∨ 〈 *b* 〉 µ*Y* . *X* ∨ 〈 *b* 〉 *Y* $=\langle$ $(a \, \mid \, b^{_{\scriptscriptstyle +}})^{*}$. c \rangle T = $\phi_{_{\scriptscriptstyle 1}}$

Unfolding (direct)

Overall size: |φ|^{2|φ|}

 $|\varphi_{\sf n}|^2$

Flattening (with conversion in DNF)

- Convert φ in DNF σ $X.\phi = \sigma X.$ $(X \wedge P(X)) \vee Q(X)$
- •• Apply the identities $\mu X.$ $(X \wedge P(X)) \vee Q(X) = \mu X.$ $Q(X)$ $\forall X.$ $(X \wedge P(X)) \vee Q(X) = \forall X. P(X) \vee Q(X)$

Problem:

quadratic blow-up for each fixed point subformula \Rightarrow exponential blow-up for the whole formula

Flattening (direct)

Replace all top-level unguarded occurrences of *X* in ^σ*X*.ϕ by F if σ = µ and by T if σ = ν:

•• Apply the absorption property $X \wedge \phi[\mathsf{T}/X] \Rightarrow \phi \Rightarrow X \vee \phi[\mathsf{F}/X]$

• Obtain equivalent formulas $\mu X.\varphi \Rightarrow \mu X.X \vee \varphi$ [F / X] = $\mu X.\varphi$ [F / X] $\Rightarrow \mu X.\varphi$ $\text{v}X.\text{\textsf{\textsf{\textsf{\textsf{Q}}}}} \Rightarrow \text{v}X.\text{\textsf{\textsf{\textsf{\textsf{Q}}}}[T/X] = \text{v}X.X \land \text{\textsf{\textsf{\textsf{Q}}}}[T/X] \Rightarrow \text{v}X.\text{\textsf{\textsf{\textsf{Q}}}}$ Keep the size of the formula unchanged

Translation to guarded form (unfolding *⁺*flattening) \Rightarrow quadratic blow-up of the formulas

Simplification of guarded formulas

Let *M* = (*S*, *A*, *T*, *s* 0) be an ALTS and ϕ guarded wrt *X*. **Theorem:** [[μ *X*. ϕ]] ρ = [[ν *X*. ϕ]] ρ for any context ρ .

Summary

- •• Translation from full to guarded µ-calculus
	- Unfolding (with factorization) and flattening (direct)
	- Quadratic blow-up of the formulas
- •• Reduction of guarded µ-calculus on ALTSs
	- Equivalence between minimal and maximal fixed points \Rightarrow Reduction to alternation-free μ -calculus
- •• Model-checking of full µ-calculus on ALTSs
	- Reduction to alternation-free mu-calculus
	- –Linear local model-checking algorithms

 \Rightarrow 0 ($|\phi|^2 \cdot (|S| + |T|)$) time and space complexity

Local model-checking

- Let $M = (S, A, T, s_0)$ an ALTS, φ guarded alt-free.
Model-checking method:
	- Translation of ϕ to HML with recursion
	- –Encoding of the verification problem s_0 |= as a boolean equation system (BES)
	- – Local resolution of the BES by DFS traversal of its dependency graph
- •• M acyclic and φ guarded
	- \Rightarrow BES with acyclic dependency graph
	- \Rightarrow vertices stabilized when popped from the DFS stack
	- \Rightarrow no need to store edges for back-propagation
	- ⇒ *O* (| ϕ| · | *S*|) space complexity

Distributed summing protocol

Model and property

ALTS of theprotocol:

Property: result eventually delivered µ*X* . 〈 T 〉 T ∧[¬"R 10"] *X*

Translation in HMLR:

$$
X_0 = X_1 \wedge X_2
$$

\n
$$
X_1 = \langle T \rangle T
$$

\n
$$
X_2 = [\neg "R 10"] X_0
$$

Handling unguarded alternation-free formulas

- Let $M = (S, A, T, s_0)$ an ALTS and φ alternation-free. Space complexity of model-checking: *O* (| ϕ|·(| *S*|+| *T*|)) time, *O* (| ϕ|·| *S*|) space if ϕ guarded *O* (|φ|²⋅(|S|+|*T*|)) time, *O* (|φ|²⋅|S|) space if φ unguarded
- •• Model-checking of unguarded alternation-free φ:
	- –Translation of the problem s_0 $=$ φ into a BES
	- –Identification of the SCCs in the BES dependency graph
	- – Local resolution by DFS of the dependency graph
		- \Rightarrow stabilize SCCs when their root is popped
		- \Rightarrow no need to store edges for back-propagation
		- \Rightarrow 0 (|φ|·|S|) space complexity

Implementation (within the CADP toolbox)

Evaluator 3.5 on-the-fly model-checker developed using the **Open/Caesar** generic environment [Garavel-98] of CADP

Applications

Industrial project BULL-INRIA:

- • Verification of multiprocessor architectures (cache coherency protocols)
- • Off-line analysis of execution traces (100,000 events) obtained by intensive testing
- •• Several hundreds PDL temporal formulas $[$ R_{1} $]$ \langle R_{2} \rangle \top
- •• Reduction of the formulas (conversion $v \to \mu$)
- •• Application of the improved DFS algorithms \Rightarrow gains in speed (less LTS traversals) and memory (no transitions stored)

Conclusion

Already done:

- Reduction results for ^µ-calculus on acyclic LTSs (applicable for other logics, e.g. CTL)
- •• Memory-efficient local model-checking algorithms
- •• Implementation in CADP (Evaluator 3.5)
- •• Industrial applications (hardware verification)

Ongoing work:

- •• Apply the solving algorithms to preorder checking
- •Devise single-scan algorithms for traces

http://www.inrialpes.fr/vasy/cadp

