Local Model-Checking of Modal Mu-Calculus on Acyclic Labeled Transition Systems

Radu Mateescu INRIA Rhône-Alpes / VASY 655, avenue de l'Europe F-38330 Montbonnot Saint Martin, France

Outline

- Introduction
- \bullet Modal $\mu\text{-calculus}$ and acyclic LTSs
- Local model-checking on acyclic LTSs
- Implementation and applications
- Conclusion

Model-checking

Verify that a finite-state concurrent system satisfies a set of desired correctness properties

Labeled Transition Systems

LTS representations:

- explicit (« predecessor » function)
 - iterative computations using sets of states
 - BCG (Binary Coded Graphs) environment [Garavel-92]
- implicit (« successor » function)
 - on-the-fly exploration of the transition relation
 - Open / Caesar environment [Garavel-98]

Verification of sequential systems

Analysis of single trace LTSs using model-checking:

- Intrusion detection
 - Check security properties of log files
 - USTAT rule-based expert system [Ilgun-et-al-95]
- Program debugging
 - Check correctness queries on execution traces
 - OPIUM analysis system for Prolog [Ducassé-99]
- Run-time monitoring
 - Check temporal properties of event traces
 - MOTEL monitoring system [Dietrich-et-al-98]

Context of the work

- Goal: enhance the performance (speed, memory) of model-checking for *acyclic* LTSs (ALTSs)
- Temporal logic adopted:
 - Modal µ-calculus [Kozen-83,Stirling-01]
 - « Assembly language » for temporal logics
- Simplification of $\mu\text{-calculus}$ on ALTSs:
 - Syntactic reduction (valid on all LTSs)

full μ -calculus \rightarrow guarded μ -calculus

- Semantic reduction (valid on ALTSs)

guarded μ -calculus \rightarrow alternation-free μ -calculus

• Optimization of model-checking algorithms on ALTS

Modal mu-calculus

Let $M = (S, A, T, s_0)$ be an LTS. Syntax of the modal μ -calculus:

Action formulas $\alpha ::= a \mid \neg \alpha \mid \alpha_1 \lor \alpha_2$ State formulas $\phi ::= F \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \langle \alpha \rangle \phi \mid X \mid \mu X . \phi$

Action formulas

Let $M = (S, A, T, s_0)$. Semantics $[[\alpha]] \subseteq A$:

- [[*a*]] = { *a* }
- $[[\neg \alpha]] = A \setminus [[\alpha]]$
- [[$\alpha_1 \lor \alpha_2$]] = [[α_1]] \cup [[α_2]]

Derived operators:

- T = *a* ∨ ¬*a*
- F = ¬T
- $\alpha_1 \wedge \alpha_2 = \neg(\neg \alpha_1 \vee \neg \alpha_2)$
- $\alpha_1 \Rightarrow \alpha_2 = \neg \alpha_1 \lor \alpha_2$
- $\alpha_1 \Leftrightarrow \alpha_2 = (\alpha_1 \Rightarrow \alpha_2) \land (\alpha_2 \Rightarrow \alpha_1)$

State formulas

Let $M = (S, A, T, s_0)$ and $\rho : Y \rightarrow 2^s$ a context mapping variables to state sets. Semantics [[ϕ]] $\rho \subseteq S$:

- [[F]] $\rho = \emptyset$ [[$\neg \phi$]] $\rho = S \setminus [[\phi]]\rho$
- [[$\phi_1 \lor \phi_2$]] ρ = [[ϕ_1]] $\rho \cup$ [[ϕ_2]] ρ
- $[[\langle \alpha \rangle \phi]] \rho = \{ s \in S \mid \exists (s, a, s') \in T . a \in [[\alpha]] \land s' \in [[\phi]] \rho \}$
- [[Y]] $\rho = \rho$ (Y) [[μ Y . φ]] $\rho = \bigcup_{k \ge 0} \Phi_{\rho}^{k}$ (Ø) where $\Phi_{\rho} : 2^{\varsigma} \rightarrow 2^{\varsigma}$, $\Phi_{\rho} (U) = [[\varphi]]\rho[U/Y]$

Derived operators:

•
$$[\alpha] \phi = \neg \langle \alpha \rangle \neg \phi$$
 •

•
$$\nu Y \cdot \phi = \neg \mu Y \cdot \neg \phi [\neg Y / Y]$$

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002)

Guarded mu-calculus

 φ is guarded (weakly guarded) wrt X if all (except those at top-level) free occurrences of X in φ fall in the scope of a () or [] modality

 $\varphi = X \land [a] Z \land \mu Y . \langle b \rangle X \lor \langle c \rangle Y$

is guarded wrt Z, weakly guarded wrt X

• φ is *guarded* if for all subformulas $\sigma X.\varphi_1$ of φ $(\sigma \in \{\mu, \nu\}), \varphi_1$ is guarded wrt X

CTL operators yield guarded formulas:

$$\mathsf{E} \ [\phi_1 \ \mathsf{U} \ \phi_2] = \mu X \cdot \phi_2 \lor (\phi_1 \land \langle \mathsf{T} \rangle X)$$

A [$\phi_1 \cup \phi_2$] = $\mu X \cdot \phi_2 \lor (\phi_1 \land \langle \top \rangle \top \land [\top] X)$

Translation to guarded mu-calculus

$$\varphi_1 = \langle (a \mid b^*)^* . c \rangle \mathsf{T} \\ = \mu X . \langle c \rangle \mathsf{T} \lor \langle a \rangle X \lor \mu Y . X \lor \langle b \rangle Y$$

Translation to weakly guarded form (*unfolding*): $\varphi_2 = \mu X \cdot \langle c \rangle T \vee \langle a \rangle X \vee (X \vee \langle b \rangle \mu Y \cdot X \vee \langle b \rangle Y)$

Translation to guarded form (*flattening*): $\varphi_3 = \mu X \cdot \langle c \rangle T \vee \langle a \rangle X \vee (F \vee \langle b \rangle \mu Y \cdot X \vee \langle b \rangle Y)$ $= \mu X \cdot \langle c \rangle T \vee \langle a \rangle X \vee \langle b \rangle \mu Y \cdot X \vee \langle b \rangle Y$ $= \langle (a \mid b^+)^* \cdot c \rangle T = \varphi_1$

Unfolding (direct)

Overall size: $|\phi|^{2|\phi|}$

 $|\phi_n|^2$

Flattening (with conversion in DNF)

- Eliminate all top-level unguarded occurrences of X in $\sigma X.\phi$ [Kozen-83,Walukiewicz-95]:
- Convert φ in DNF $\sigma X. \varphi = \sigma X. (X \land P(X)) \lor Q(X)$
- Apply the identities $\mu X.(X \land P(X)) \lor Q(X) = \mu X.Q(X)$ $\nu X.(X \land P(X)) \lor Q(X) = \nu X.P(X) \lor Q(X)$

Problem:

quadratic blow-up for each fixed
 point subformula ⇒
exponential blow-up for the
 whole formula

Flattening (direct)

Replace all top-level unguarded occurrences of X in $\sigma X.\phi$ by F if $\sigma = \mu$ and by T if $\sigma = \nu$:

- Apply the absorption property $X \land \phi[T/X] \Rightarrow \phi \Rightarrow X \lor \phi[F/X]$
- Obtain equivalent formulas $\mu X.\phi \Rightarrow \mu X.X \lor \phi[F/X] = \mu X.\phi[F/X] \Rightarrow \mu X.\phi$ $\nu X.\phi \Rightarrow \nu X.\phi[T/X] = \nu X.X \land \phi[T/X] \Rightarrow \nu X.\phi$ Keep the size of the formula unchanged

Translation to guarded form (unfolding + flattening) \Rightarrow quadratic blow-up of the formulas

Simplification of guarded formulas

Let $M = (S, A, T, s_0)$ be an ALTS and φ guarded wrt X. **Theorem:** [[$\mu X.\varphi$]] $\rho = [[<math>\nu X.\varphi$]] ρ for any context ρ .

Summary

- \bullet Translation from full to guarded $\mu\text{-calculus}$
 - Unfolding (with factorization) and flattening (direct)
 - Quadratic blow-up of the formulas
- Reduction of guarded $\mu\text{-calculus}$ on ALTSs
 - Equivalence between minimal and maximal fixed points \Rightarrow Reduction to alternation-free $\mu\text{-calculus}$
- \bullet Model-checking of full $\mu\text{-calculus}$ on ALTSs
 - Reduction to alternation-free mu-calculus
 - Linear local model-checking algorithms

 $\Rightarrow O(|\phi|^2 \cdot (|S| + |T|))$ time and space complexity

Local model-checking

- Let $M = (S, A, T, s_0)$ an ALTS, φ guarded alt-free. Model-checking method:
 - Translation of $\boldsymbol{\phi}$ to HML with recursion
 - Encoding of the verification problem $s_0 \mid = \varphi$ as a boolean equation system (BES)
 - Local resolution of the BES by DFS traversal of its dependency graph
- \bullet M acyclic and ϕ guarded
 - \Rightarrow BES with acyclic dependency graph
 - \Rightarrow vertices stabilized when popped from the DFS stack
 - \Rightarrow no need to store edges for back-propagation
 - $\Rightarrow O(|\phi| \cdot |S|)$ space complexity

Distributed summing protocol

Model and property

ALTS of the protocol:

Property: result eventually delivered $\mu X \cdot \langle T \rangle T \wedge [\neg "R \ 10"] X$

Translation in HMLR: $\begin{cases}
X_0 = X_1 \land X_2 \\
X_1 = \langle T \rangle T \\
X_2 = [\neg "R \ 10"] X_0
\end{cases}$

Handling unguarded alternation-free formulas

- Let M = (S, A, T, s₀) an ALTS and φ alternation-free. Space complexity of model-checking:
 O(|φ|·(|S|+|T|)) time, O(|φ|·|S|) space if φ guarded
 - $O(|\phi|^2 \cdot (|S|+|T|))$ time, $O(|\phi|^2 \cdot |S|)$ space if ϕ unguarded
- \bullet Model-checking of unguarded alternation-free ϕ :
 - Translation of the problem $s_0 \mid = \varphi$ into a BES
 - Identification of the SCCs in the BES dependency graph
 - Local resolution by DFS of the dependency graph
 - \Rightarrow stabilize SCCs when their root is popped
 - \Rightarrow no need to store edges for back-propagation
 - $\Rightarrow O(|\phi| \cdot |S|)$ space complexity

Implementation (within the CADP toolbox)

Evaluator 3.5 on-the-fly model-checker developed using the Open/Caesar generic environment [Garavel-98] of CADP

Applications

Industrial project BULL-INRIA:

- Verification of multiprocessor architectures (cache coherency protocols)
- Off-line analysis of execution traces (100,000 events) obtained by intensive testing
- Several hundreds PDL temporal formulas

 [R₁] (R₂) T
- Reduction of the formulas (conversion $\nu \to \mu)$
- Application of the improved DFS algorithms \Rightarrow gains in speed (less LTS traversals) and memory (no transitions stored)

Conclusion

Already done:

- Reduction results for μ -calculus on acyclic LTSs (applicable for other logics, e.g. CTL)
- Memory-efficient local model-checking algorithms
- Implementation in CADP (Evaluator 3.5)
- Industrial applications (hardware verification)

Ongoing work:

- Apply the solving algorithms to preorder checking
- Devise single-scan algorithms for traces

http://www.inrialpes.fr/vasy/cadp

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002)