
Verification of GALS Systems by
Combining Synchronous Languages and

Process Calculi

Hubert Garavel

and

Damien Thivolle

INRIA Rhône-Alpes / VASY

http://www.inrialpes.fr/vasy

http://www.inrialpes.fr/vasy

Outline
•

Motivations

•

TFTP case-study

and

method

•

Formal

verification

•

Simulation

Topic of this talk
•

How to perform model checking

of GALS?

•

GALS (Globally Asynchronous, Locally Synchronous)

synchronous islands in
a sea of asynchrony

Model checking GALS
•

Why?
–

Avionics

companies

use synchronous

languages:

ESTEREL, SCADE, etc.

–

More and

more, synchronous

components interact
 with

an asynchronous

environment:

X-BY-WIRE, Modular Avionics, etc.

•

Our approach:
–

Encode

synchronous

components as process

 algebras

functions
–

Write

wrappers

around

the

functions

for

asynchronous

communications

The CADP toolbox
•

A toolbox

for designing asynchronous systems:

–

compilers
–

model checkers

–

equivalence checkers
–

simulation, rapid prototyping, test case generation…

–

performance evaluation

•

Developed by the VASY team of INRIA Grenoble
•

43 tools, 18 libraries, 100+ case studies

•

8

supported architectures (32-

and 64-

bits)
•

Important user community (forum…)

•

Licensed to several big companies

VASY 6

The TFTP case study

The TFTP case study
•

A real example provided to us by Airbus

•

Communications between plane and ground
•

A three layer protocol stack
–

ARINC

protocol

–

TFTP

(Trivial File Transfer Protocol)
–

UDP

(datagrams

over IP)

•

Very "light" specification:
–

SAM automaton

(7 states, 39 transitions)

–

two TFTP entities

connected head-to-tail via UDP

What is SAM?
•

A graphical language defined/used by Airbus

•

Inspired from F. Maraninchi's

Argos language
•

A synchronous language:
–

boxes connected by arrows (synchronous parallel,
no causality loops)

–

each box is a synchronous automaton
–

boolean

inputs/outputs

–

determinism (priority between transitions)

•

Reference manual written by VASY:
http://gforge.enseeiht.fr/docman/view.php/33/2745/SAM.pdf

http://gforge.enseeiht.fr/docman/view.php/33/2745/SAM.pdf

SAM limitations as seen on the TFTP

SAM not expressive enough
to describe non-boolean

 computations
-

message contents

- timeout values

TFTP
entity 1

TFTP
entity 2

UDP medium 1

UDP medium 2

UDP is nondeterministic
- messages can be lost
- message order is not preserved

asynchronous
concurrency

Chosen methodology
•

SAM only models a fragment of the problem

•

To model and analyze the complete TFTP, we
need an asynchronous language

•

Several attempts made (FIACRE, LOTOS…)
•

Best solution chosen: LOTOS NT
–

a subset of the ISO standard E-LOTOS

–

funded and used by Bull

Tool chain
Sildex

SAM

LOTOS NT
(~ISO 15437)

LOTOS
(ISO 8807)

C
(ISO 9899)

TNI-Valiosys
editor

Topcased
editor

"Sildex

→

SAM" Topcased

plugin

(ATL)

automated translation
+ hand-written processes (e.g., UDP)

Lnt2Lotos translator (VASY)

CADP compilers (VASY)

model checking + performance evaluation

From SAM to LOTOS NT functions
•

Synchronous parallelism in SAM ≠

 Asynchronous parallelism in FIACRE, LOTOS…

•

Each SAM automaton is translated to a
sequential Mealy function

 f (current_state, inputs) →

(next_state, outputs)

• Synchronous composition of SAM automata is
implemented by a composition of the
corresponding sequential functions
(in the TFTP, only one SAM automaton)

function

transition (in

current:state,
in

receive_ACK:bool,
in

receive_ERROR:bool,
…
in

timeout:bool,
in

max_retries_reached:bool,
out next:state,

out send_DATA:bool,
out send_WRQ:bool,
…
out arm_timer:bool,
out stop_timer:bool) is

(* Init, out variables := false *)
…

if current == STATE_6 then

if timeout and not (max_retries_reached) then
send_WRQ

:= true;
arm_timer

:= true;
next := current

elsif

receive_ERROR

then
stop_timer

:= true;
next := STATE_1

elsif

timeout and max_retries_reached

then
stop_timer

:= true;
next := STATE_1

elsif

receive_ACK

then
arm_timer

:= true;
send_DATA

:= true;
next := STATE_2

From SAM to LOTOS NT functions

VASY 14

SAM:
7 states

39 transitions

LOTOS NT:
215 lines
of code

Wrapping functions into LOTOS NT processes

Mealy functions encapsulated into processes:
•

converting boolean

variables into I/O events

–

Transforms a Mealy function into an LTS

•

adding non-boolean

code not described in SAM

Global view

SAM
automaton
for TFTP

LOTOS NT
function
for TFTP

LOTOS NT
wrapper
process

UDP
process environment

LOTOS NT parallel composition

verification
performance evaluation

Verification
of the "basic" TFTP

Encapsulation of the SAM automaton

•

This function is encapsulated into a wrapper
LOTOS NT process

•

This wrapper is very simple (193 lines):
messages do not carry data

VASY 18

LOTOS NT
TFTP

function

receive_DATA

receive_OLD_DAT

A …

send_ACK

resend_ACK

…
send_ERRORreceive_ERROR

LOTOS NT
TFTP

function
SEND OUTPUT

wrapper LOTOS NT process

RECEIVE INPUT

receive_DATA

receive_ACK
…

current_state,
max_retries,

timeout…

send_DATA

send_ACK
…

next_state,
stop_timer,
arm_timer…

The whole TFTP protocol

•

UDP entities are modelled

in LOTOS NT too:
–

bounded FIFOs

(messages lost)

–

bounded BAGs

(messages lost or re-ordered)

•

The 4 processes execute asynchronously
•

LOTOS NT parallel composition is used for this

TFTP
process 1

SEND1

RECEIVE1

TFTP
process 2

SEND2

RECEIVE2UDP process 1

UDP process 2

State space generation
•

Successive steps: LOTOS NT →

LOTOS →

LTS

•

Direct

state space generation not efficient
•

Compositional

generation used instead:

–

each sequential process is minimized
–

minimized processes are recombined

Example with two UDP FIFOs

of size 2:
–

846,888 states

–

3.7 million transitions
–

compositional generation: 15 s

VASY 20

Model checking verification

•

12 properties expressed with Evaluator
•

8 problems detected:
–

timer does not stop

after a transfer is finished

–

after loss of final ACK, resent DATA is ignored
–

new transfer impossible right after final ACK

–

invalid packets and invalid acknowledgements are
simply ignored

whereas they should abort

the

transfer
–

…

VASY 21

Generation of diagnostics
•

Property "absence of error loop" not satisfied

•

Diagnostic generated by breadth-first

search
(in 0.53

s):

VASY 22

0

0

0

0

0 0

0

0

0
0

i
SEND1 !RRQ

RECEIVE0 !RRQ
TIMEOUT1

MAX_RETRIES1
i

SEND1 !ERROR

RECEIVE0 !ERROR

SEND0 !ERROR

RECEIVE1 !ERROR

Verification
of the "accurate" TFTP

Limitations of the "basic" verification
•

The SAM model of the TFTP does not express
certain important details:
–

only Boolean variables

–

not represented: counters, number of retries,
packet contents, fragment numbers, list of files
to be sent or received, etc.

•

There are properties that cannot be
expressed
–

Example:

 ACK (x) cannot

be received before ACK (x–1)

VASY 24

•

The SAM automaton (encoded as a LOTOS NT
function) is kept unchanged (215 lines)

•

But it is encapsulated in a more elaborate
"wrapper" written manually (418 lines) based

 upon

knowledge

of the TFTP standard

"Accurate" TFTP modeling

VASY 25

LOTOS NT
TFTP

function

wrapper LOTOS NT process

receive_DATA

receive_ACK
…

send_ACK

resend_ACK

arm_timer, stop _timer…

…

ACK(n

+ 1)

ACK(n)

send_ERROR
…
ERROR

DATA(n, data, last)

ACK(n)
…

ERROR receive_ERROR

timeout, eof,
internal_error…

receive_OLD_DATA

State space generation

•

CADP

tools

used to generates the space state
for various configurations

•

Example:
–

TFTP entity 1 has one file to write

–

TFTP entity 2 has one file to read
–

two UDP FIFOs

of size 2

–

44 million states, 221 million transitions
–

compositional generation = 24 mn

22'

•

Verified up to size 3 for the UDP FIFOs

and BAGs

VASY 26

Results
•

12 formulas of “basic”

specification

+ 17 new formulas
•

8 new problems detected:
–

any old DATA received is not acknowledged

–

when initiating a write, receipt of an invalid packet is
ignored

–

when initiating a read, receipt of an invalid packet is
ignored

–

if both processes send RRQ or WRQ at the same time, their
requests will not be answered

–

INTERNAL_ERROR is ignored in several cases
–

etc .

VASY 27

Performance evaluation

Performance issues
•

Do problems in TFTP specification affect
runtime performance?

•

If so, how much?

•

Example: problem 08 (infinite error loop)
–

in many cases, one may exit this error by
reinitializing the TFTP entities after a timeout

–

but timeout reinitialization

causes performance
degradation

–

can we quantify this degradation?

A simulation-based approach
•

Instrument the Executor tool

of CADP

•

Generate random execution traces
•

Measure TFTP transfer speed

on these traces

•

Different scenarios:
–

scenario 1:

one TFTP entity does read/write

–

scenario 2:

both TFTP entities do read/write

•

Chosen TFTP parameters:
–

10,000

files written or read in each scenario

–

packet size: 32 kB
–

medium speed: 1 MB/s

–

medium latency: 8 ms
–

medium losses: 1%

VASY 30

Performance impact of problems
 (scenario 1)

VASY 31

only one TFTP
entity does
read/write
actions

Performance impact of problems
(scenario 2)

VASY 32

both TFTP entities
can do read/write

actions

Conclusion

Summary of TFTP results
•

Verification of the "basic" TFTP:
–

12 properties checked

–

8 errors detected

•

Verification of the "accurate" TFTP:
–

29 properties checked

–

19 errors detected

•

Performance evaluation:
–

confirms quantitative issues

–

done by simulation, but other approaches exist in
CADP (tools for Markov chains)

Conclusion
•

Model checking of GALS
–

reuse synchronous

processes (written in Sildex/SAM)

 composed asynchronously

(in LOTOS NT/LOTOS)
–

verification and performance evaluation

with CADP

–

a sound solution for validating GALS
–

mostly automated

•

Positive feedback from Airbus
–

apreciated

flow combining Topcased, ATL, and CADP

based on formal transformations
5 languages: Sildex → SAM → LOTOS NT → LOTOS → C
(+ MCL)

–

ongoing collaboration on a new avionics application

VASY 35

	Verification of GALS Systems by Combining Synchronous Languages and Process Calculi
	Outline
	Topic of this talk
	Model checking GALS
	The CADP toolbox
	The TFTP case study
	The TFTP case study
	What is SAM?
	SAM limitations as seen on the TFTP
	Chosen methodology
	Tool chain
	From SAM to LOTOS NT functions
	From SAM to LOTOS NT functions
	Wrapping functions into LOTOS NT processes
	Global view
	Verification �of the "basic" TFTP
	Encapsulation of the SAM automaton
	The whole TFTP protocol
	State space generation
	Model checking verification
	Generation of diagnostics
	Verification �of the "accurate" TFTP
	Limitations of the "basic" verification
	"Accurate" TFTP modeling
	State space generation
	Results
	Performance evaluation
	Performance issues
	A simulation-based approach
	Performance impact of problems�(scenario 1)
	Performance impact of problems (scenario 2)
	Conclusion
	Summary of TFTP results
	Conclusion

