
The Rewrite Engines Competitions:

A RECtrospective

Francisco Durán1 and Hubert Garavel2

1 Universidad de Málaga, Málaga, Spain
2 Univ. Grenoble Alpes, Inria, Cnrs, Grenoble Inp, Lig, F-38000 Grenoble, France

E-mail: duran@lcc.uma.es, hubert.garavel@inria.fr

Abstract

Term rewriting is a simple, yet expressive model of computation, which
finds direct applications in specification and programming languages (many of
which embody rewrite rules, pattern matching, and abstract data types), but
also indirect applications, e.g., to express the semantics of data types or concur-
rent processes, to specify program transformations, to perform computer-aided
verification, etc. The Rewrite Engines Competition (REC) was created under
the aegis of the Workshop on Rewriting Logic and its Applications (WRLA)
to serve three main goals: (i) being a forum in which tool developers and
potential users of term rewrite engines can share experience; (ii) bringing to-
gether the various language features and implementation techniques used for
term rewriting; and (iii) comparing the available term rewriting languages and
tools in their common features. The present article provides a retrospective
overview of the four editions of the Rewrite Engines Competition (2006, 2008,
2010, and 2018) and traces their evolution over time.

Keywords: Abstract data type, algebraic specification, compiler,
functional programming, interpreter, object-oriented programming, pro-
gramming language, specification language, term rewrite engine, term
rewrite system

1 Introduction

When searching Google for “rewrite engine”, most of the references are about
Apache web servers and rewrite engines for URLs. Such engines perform string
rewriting, which is a particular case of term rewriting [1, 3], a very general
model of computation based on the repeated application of simplification rules.
Despite its simplicity, term rewriting has shown itself a suitable paradigm for
expressing fundamental concepts of logics, mathematics, and computer science
(e.g., concurrency, communication, interaction, etc.).

1



F. Durán and H. Garavel The Rewrite Engines Competitions: A RECtrospective

Beyond such theoretical aspects, the ideas of term rewriting influenced the de-
sign of specification and programming languages, many of which incorporate
algebraic terms and rewrite rules. Software implementations of term rewrit-
ing have been developed including, of course, rewrite engines, but also a large
variety of tools for compiler construction, program transformation, and formal
verification by theorem proving or model checking.

In order to evaluate and compare the various rewrite engines available, a soft-
ware competition named REC (Rewrite Engines Competition) was created in
2006. Organized together with WRLA (Workshop on Rewriting Logic and its
Applications), REC provides a forum for sharing experiences among tool devel-
opers and potential users. Four editions of this competition have taken place so
far: REC1 (2006), REC2 (2008), REC3 (2010), and REC4 (2018).

The present article, which is part of the TOOLympics project to celebrate the
25th anniversary of the TACAS conference by gathering numerous software com-
petitions at ETAPS, provides a retrospective overview of past editions of the
REC competition. Sect. 2 summarizes the developments of the competition;
Sect 3 lists all tools that have been assessed, and Sect. 4 presents the collection
of benchmarks accumulated during the successive editions; finally, Sect. 5 draws
perspectives for future editions of the REC competition.

2 Evolution of REC Competitions

In the mid-2000’s, it became manifest that the term-rewriting community was
lacking a comparative study of the different rewrite engines available. The fol-
lowing excerpt, quoted from [9], articulates the motivation for such a study:

“The idea of organizing a rewrite competition arose from noticing vari-
ous applications of rewriting in different areas and by different categories
of researchers, many of them manifesting a genuine and explicit interest
in term rewriting. We believe that many of us can benefit from such
rewrite engine competitions, provided that they are fair and explicitly
state what was tested in each case. For example, users of rewrite engine
can more informatively select the right rewrite engine for their particu-
lar application. On the other hand, for rewrite engine developers, such
events give them ideas on how to improve their tools and what to prior-
itize, as well as a clearer idea of how their engine compares to others.”

It was not clear, however, how to conduct such a study. The abstract and gen-
eral nature of term rewriting has given birth to a great diversity in software
implementations. General-purpose rewrite engines differ in the various forms of
rewriting they support (conditional, nondeterministic, context-sensitive, etc.).
Many other rewrite engines are specialized for particular problems and embed-
ded into programming languages, theorem provers, environments for compiler
construction and program transformation, etc. (see Sect. 3 for examples).

2



F. Durán and H. Garavel The Rewrite Engines Competitions: A RECtrospective

• REC1 [9] faced such doubts about the right approach to follow and decided
to focus on efficiency, measured in terms of CPU time and memory use. Only
two tools participated in this first edition of the competition, organized to-
gether with WRLA 2006. A collection of benchmarks, namely term rewrite
systems sorted in four categories (see Sect. 4), was produced. Each bench-
mark was translated by hand into the input language of each participating
tool, and revised by tool developers to make sure this code was optimal for
their tools.

• REC2 [13] expanded on the ideas of REC1, with a double goal: (i) broaden
the comparison by assessing the efficiency of a larger number of rewrite
engines — indeed, five tools participated in REC2; and (ii) being a showcase
for the term-rewriting community, with a dedicated session at WRLA 2008,
where all participating tools were presented by their developers, who exposed
the features and strengths of each tool and discussed the outcomes of the
competition. Tool developers actively participated in the whole process of
REC2, not merely for adapting competition benchmarks to the tools, but
also for exchanging views on how to organize the competition and present its
results. As a result of fruitful discussions, several changes were implemented,
such as the design of a common language for expressing the benchmarks (see
Sect. 4 below).

• REC3 [12] followed the same approach as REC2, with a greater emphasis
on automation and a larger set of term-rewriting benchmarks — including
problems related to program transformation, a key application area of term
rewriting. The developers of all the participating tools were involved in this
competition, organized together with WRLA 2010. The reported results
indicate the computation time spent by each tool on each benchmark.

• REC4 [15] was the result of a long-term effort undertaken in 2015 and pre-
sented at WRLA 2018. The competition’s scope was broadened away from
traditional rewrite engines to include functional and object-oriented lan-
guages. As a consequence, REC4 did not consider particular features imple-
mented only in some tools, but focused instead on basic features common to
all tools, namely term rewrite systems that are confluent and terminating,
with free constructors and conditional rules. Tool execution and comparison
of results was fully automated, making it unnecessary to include tool devel-
opers directly in the competition — although they were contacted by email,
in case of problems, before the presentation of the results. A Top-5 podium
was produced to indicate which tools can tackle the most problems within a
given amount of time and memory.

3 Tools Assessed

So far, not fewer than 18 tools have been assessed during the REC competitions,
as shown by Table 1. This table lists which tools participated in which editions of

3



F. Durán and H. Garavel The Rewrite Engines Competitions: A RECtrospective

the competition. Not all tools have been assessed in all editions, as it happened,
e.g., for prominent tools such as ELAN [4] and ASF+SDF [26], the development
of which halted before or just after REC1.

language (tool) web site rec1 rec2 rec3 rec4

ASF+SDF [26] http://www.meta-environment.org × × ×
CafeOBJ [10] http://cafeobj.org ×
Clean [24] http://clean.cs.ru.nl ×
Haskell (GHC) [20] http://www.haskell.org ×
LNT (CADP) [6, 14] http://cadp.inria.fr ×
LOTOS (CADP) [17, 14] http://cadp.inria.fr ×
Maude [7] http://maude.cs.illinois.edu × × × ×
mCRL2 [16] http://www.mcrl2.org ×
OCaml [19] http://www.ocaml.org ×
Opal (OCS) [23] http://github.com/TU-Berlin/opal ×
Rascal [25] http://www.rascal-mpl.org ×
Scala [22] http://www.scala-lang.org ×
SML (MLton) [21] http://www.mlton.org ×
SML (SML/NJ) [21] http://www.smlnj.org ×
Stratego/XT [5] http://www.metaborg.org × × ×
TermWare [11] http://gradsoft.ua/index_eng.html ×
Tom [2] http://tom.loria.fr × × ×
TXL [8] http://txl.ca ×

Table 1: Languages and tools considered in the Rewrite Engines Competitions

It is worth pointing out the versatility of term rewriting and the diversity of its
implementations. It is used in both specification and programming languages.
These languages can be algebraic (e.g., CafeOBJ, LOTOS, Maude, mCRL2,
Stratego/XT, etc.), functional (e.g., Clean, Haskell, LNT, OCaml, SML, etc.),
or object-oriented (e.g., Rascal, Scala, Tom, etc.), and certain languages com-
bine several of these traits, such as Opal, which is both algebraic and functional,
or OCaml, which is both functional and object-oriented. Some languages also
support higher-order programming (e.g., Haskell, OCaml), while others have
built-in support for concurrency (e.g., LOTOS, LNT, Maude, mCRL2, etc.).
Implementations encompass compilers and interpreters, certain languages (e.g.,
OCaml or Rascal) offering both, while other approaches (e.g., Tom) enable term
rewrite systems to be embedded in general-purpose languages such as C or Java.
Finally, some implementations (ASF/SDF, Stratego/XT, etc.) provide rich en-
vironments for language design, including support for lexical/syntactic analysis,
construction and traversal of abstract syntax trees, as well as program transfor-
mations.

4

http://www.meta-environment.org
http://cafeobj.org
http://clean.cs.ru.nl
http://www.haskell.org
http://cadp.inria.fr
http://cadp.inria.fr
http://maude.cs.illinois.edu
http://www.mcrl2.org
http://www.ocaml.org
http://github.com/TU-Berlin/opal
http://www.rascal-mpl.org
http://www.scala-lang.org
http://www.mlton.org
http://www.smlnj.org
http://www.metaborg.org
http://gradsoft.ua/index_eng.html
http://tom.loria.fr
http://txl.ca


F. Durán and H. Garavel The Rewrite Engines Competitions: A RECtrospective

4 REC Benchmarks

As a byproduct of the efforts made in organizing the four REC competitions, a
collection of benchmarks has been progressively accumulated1:

• REC1 [9] set up the foundations of this collection, by gathering 41 term
rewrite systems, split into four distinct categories: unconditional term
rewrite systems (in which no rewrite rule has Boolean premises), conditional
term rewrite systems (in which some rewrite rules have Boolean premises),
rewriting modulo equations (in which rewriting relies on certain axioms, such
as commutativity and/or associativity), and rewriting modulo strategies (in
which rewriting is context sensitive, guided by local strategies).

Several REC1 benchmarks were derived from generic benchmarks parame-
terized by variables (e.g., the parameter of function computing the facto-
rial of a natural number, the length of a list to be sorted, etc.) by giv-
ing particular values to these variables. Following the terminology used
for the Model Checking Contest [18], we distinguish between models, which
are generic benchmarks, and instances, which are benchmarks derived from
generic benchmarks by giving actual values to parameters; the remaining
benchmarks, which are not parameterized, are counted both as models and
instances.

• REC2 [13] brought a significant evolution: in REC1, each benchmark was
specified in the input language of each tool, which was only feasible as the
number of tools was small. REC2 introduced, to express its benchmarks, a
common language, which we name REC-2008 and which was inspired by the
TPDB language used at that time by the Termination Competition (the Con-
fluence Competition uses a similar language). Several tools were adapted to
accept this new language REC-2008 as input; for the other tools, translation
was done manually.

• REC3 [12] pursued in the same vein as REC2, while increasing the number
of instances. REC3 also tried to expand the scope of the competition by
introducing a separate collection of benchmarks meant for program trans-
formation and expressed in an imperative language named TIL; however,
this initiative was left with no follow-through.

• REC4 [15], in order to address a larger set of specification and program-
ming languages, introduced a new language REC-2017 derived from REC-
2008 with additional restrictions ensuring that benchmarks are deterministic
(hence, confluent), terminating, and free from equations between construc-
tors. Consequently, the 3rd and 4th categories (rewriting modulo equations
and rewriting modulo strategies) were removed, and the 1st and 2nd cate-
gories (unconditional and conditional rewriting) were merged into a single

1 These are available from http://rec.gforge.inria.fr.

5

http://rec.gforge.inria.fr


F. Durán and H. Garavel The Rewrite Engines Competitions: A RECtrospective

one, as most languages do not make such a distinction. The remaining REC-
2008 benchmarks were upgraded to the REC-2017 language, and many new,
significantly complex benchmarks were added to the collection. To provide
for an objective comparison, scripts were developed to translate REC-2017
specifications to the input languages of all tools under assessment.

Table 2 gives a quantitative overview of the evolution of the REC benchmark
collection; each cells having the form “(m) n” denotes m models and n instances.

category rec1 rec2 rec3 rec4

source language tool-specific rec-2008 rec-2008 rec-2017
unconditional term rewrite systems (5) 7 (5) 12 (7) 26 (19) 43
conditional term rewrite systems (9) 25 (8) 18 (6) 17 (24) 42
rewriting modulo equations (4) 9 (4) 6 (4) 6 (0) 0
rewriting modulo strategies (0) 0 (1) 1 (1) 3 (0) 0
total (18) 41 (18) 37 (18) 52 (43) 85

Table 2: Benchmarks considered in the Rewrite Engines Competitions

5 Conclusion

Term rewriting is a fundamental topic with many applications, as illustrated by
the multiplicity of term-rewriting implementations in compilers and interpreters.

The Rewrite Engines Competitions (REC), the evolutions of which have been
reviewed in the present article, stimulate the research interest in this field. One
main lesson to be retained from these competitions is that performance of term
rewriting significantly differs across implementations: there is room for enhance-
ments and, following the latest REC competition (2018), three developer teams
already reported plans to improve their tools to take into account the REC
results.

Future REC competitions should address at least two points: (i) more languages
should be assessed, inviting recent tools in the competition and keeping in mind
that some tools may disappear if they are no longer maintained; (ii) more bench-
marks should be considered, which will require dedicated effort to develop new
benchmarks, given the lack of large, computationally intensive term rewriting
systems freely available on the Web, and the subtle semantic differences that
exist between the various flavours of term rewrite systems.

6



F. Durán and H. Garavel The Rewrite Engines Competitions: A RECtrospective

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[2] Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and
Antoine Reilles. Tom: Piggybacking Rewriting on Java. In Franz Baader,
editor, Proceedings of the 18th International Conference on Term Rewriting
and Applications (RTA’07), Paris, France, volume 4533 of Lecture Notes in
Computer Science, pages 36–47. Springer, June 2007.

[3] Marc Bezem, Jan Willem Klop, Roel de Vrijer, and Terese (group), editors.
Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

[4] Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne
Moreau, and Christophe Ringeissen. An overview of ELAN. Electronic
Notes in Theoretical Computer Science, 15:55–70, 1998.

[5] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser.
Stratego/XT 0.17 – A Language and Toolset for Program Transformation.
Science of Computer Programming, 72(1–2):52–70, 2008.

[6] David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Christine
McKinty, Vincent Powazny, Frédéric Lang, Wendelin Serwe, and Gideon
Smeding. Reference Manual of the LNT to LOTOS Translator (Version
6.6). INRIA, Grenoble, France, February 2017.

[7] Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar, Patrick
Lincoln, Narciso Mart́ı-Oliet, José Meseguer, and Carolyn L. Talcott.
Maude Manual (Version 2.7.1), July 2016.

[8] James R. Cordy. The TXL Source Transformation Language. Science of
Computer Programming, 61(3):190–210, 2006.

[9] Grit Denker, Carolyn L. Talcott, Grigore Rosu, Mark van den Brand, Steven
Eker, and Traian-Florin Serbanuta. Rewriting Logic Systems. Electronic
Notes in Theoretical Computer Science, 176(4):233–247, 2007.

[10] Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report – The Lan-
guage, Proof Techniques, and Methodologies for Object-Oriented Algebraic
Specification, volume 6 of AMAST Series in Computing. World Scientific,
1998.

[11] Anatoly E. Doroshenko and Ruslan Shevchenko. A Rewriting Framework
for Rule-Based Programming Dynamic Applications. Fundamenta Infor-
maticae, 72(1–3):95–108, 2006.

7



F. Durán and H. Garavel The Rewrite Engines Competitions: A RECtrospective

[12] Francisco Durán, Manuel Roldán, Jean-Christophe Bach, Emilie Balland,
Mark van den Brand, James R. Cordy, Steven Eker, Luc Engelen, Maartje
de Jonge, Karl Trygve Kalleberg, Lennart C. L. Kats, Pierre-Etienne
Moreau, and Eelco Visser. The Third Rewrite Engines Competition. In Pe-
ter Csaba Ölveczky, editor, Proceedings of the 8th International Workshop
on Rewriting Logic and Its Applications (WRLA’10), Paphos, Cyprus, vol-
ume 6381 of Lecture Notes in Computer Science, pages 243–261. Springer,
2010.

[13] Francisco Durán, Manuel Roldán, Emilie Balland, Mark van den Brand,
Steven Eker, Karl Trygve Kalleberg, Lennart C. L. Kats, Pierre-Etienne
Moreau, Ruslan Schevchenko, and Eelco Visser. The Second Rewrite En-
gines Competition. Electronic Notes in Theoretical Computer Science,
238(3):281–291, 2009.

[14] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
CADP 2011: A Toolbox for the Construction and Analysis of Distributed
Processes. Springer International Journal on Software Tools for Technology
Transfer (STTT), 15(2):89–107, April 2013.

[15] Hubert Garavel, Mohammad-Ali Tabikh, and Imad-Seddik Arrada. Bench-
marking Implementations of Term Rewriting and Pattern Matching in Al-
gebraic, Functional, and Object-Oriented Languages – The 4th Rewrite
Engines Competition. In Vlad Rusu, editor, Proceedings of the 12th Inter-
national Workshop on Rewriting Logic and its Applications (WRLA’18),
Thessaloniki, Greece, volume 11152 of Lecture Notes in Computer Science,
pages 1–25. Springer, April 2018.

[16] Jan Friso Groote and Mohammad Reza Mousavi. Modeling and Analysis of
Communicating Systems. The MIT Press, 2014.

[17] ISO/IEC. LOTOS – A Formal Description Technique Based on the Tem-
poral Ordering of Observational Behaviour. International Standard 8807,
International Organization for Standardization – Information Processing
Systems – Open Systems Interconnection, Geneva, September 1989.

[18] Fabrice Kordon, Hubert Garavel, Lom Messan Hillah, Emmanuel Paviot-
Adet, Löıg Jezequel, César Rodŕıguez, and Francis Hulin-Hubard.
MCC’2015 – The Fifth Model Checking Contest. Transactions on Petri
Nets and Other Models of Concurrency, XI:262–273, 2016.

[19] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The OCaml System Release 4.04 – Documentation
and User’s Manual. INRIA, Paris, France, March 2016.

[20] Simon Marlow, editor. Haskell 2010 Language Report, April 2010.

[21] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. Defini-
tion of Standard ML (Revised). MIT Press, May 1997.

8



F. Durán and H. Garavel The Rewrite Engines Competitions: A RECtrospective

[22] Martin Odersky, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Bu-
rak Emir, Philipp Haller, Stéphane Micheloud, Nikolay Mihaylov, Adriaan
Moors, Lukas Rytz, Michel Schinz, Erik Stenman, and Matthias Zenger.
The Scala Language Specification – Version 2.11. Programming Methods
Laboratory, EPFL, Switzerland, March 2016.

[23] Peter Pepper and Florian Lorenzen, editors. The Programming Language
Opal – 6th Corrected Edition. Department of Software Engineering and The-
oretical Computer Science, Technische Universität Berlin, Germany, Octo-
ber 2012.

[24] Rinus Plasmeijer, Marko van Eekelen, and John van Groningen. Clean Ver-
sion 2.2 Language Report. Department of Software Technology, University
of Nijmegen, The Netherlands, December 2011.

[25] Jeroen van den Bos, Mark Hills, Paul Klint, Tijs van der Storm, and Jur-
gen J. Vinju. Rascal: From Algebraic Specification to Meta-Programming.
In Francisco Durán and Vlad Rusu, editors, Proceedings of the 2nd Interna-
tional Workshop on Algebraic Methods in Model-based Software Engineering
(AMMSE’11), Zurich, Switzerland, volume 56 of Electronic Proceedings in
Theoretical Computer Science, pages 15–32, June 2011.

[26] Mark van den Brand, Jan Heering, Paul Klint, and Pieter A. Olivier. Com-
piling Language Definitions: The ASF+SDF Compiler. ACM Transactions
on Programming Languages and Systems, 24(4):334–368, 2002.

9


	Introduction
	Evolution of REC Competitions
	Tools Assessed
	REC Benchmarks
	Conclusion

