
IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
43

40
--

F
R ap por t

de r ech er ch e

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Parallel State Space Construction
for Model-Checking

Hubert Garavel — Radu Mateescu — Irina Smarandache

N° 4341

Mars 2001 (révisé en décembre 2001)

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38330 Montbonnot-St-Martin (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Parallel State Space Construction

for Model-Checking

Hubert Garavel∗ , Radu Mateescu† , Irina Smarandache‡

Thème 1 — Réseaux et systèmes

Projet VASY

Rapport de recherche n
�

4341 — Mars 2001 (révisé en décembre 2001) — 18 pages

Abstract: The verification of concurrent finite-state systems by model-checking often requires
to generate (a large part of) the state space of the system under analysis. Because of the state
explosion problem, this may be a resource-consuming operation, both in terms of memory and Cpu
time. In this report, we aim at improving the performances of state space construction by using
parallelization techniques. We present parallel algorithms for constructing state spaces (or Labeled
Transition Systems) on a network or a cluster of workstations. Each node in the network builds a
part of the state space, all parts being merged to form the whole state space upon termination of the
parallel computation. These algorithms have been implemented within the Cadp verification tool set
and experimented on various concurrent applications specified in Lotos. The results obtained show
linear speedups and a good load balancing between network nodes.

Key-words: distributed algorithm, labeled transition system, Lotos, model-checking, state space
construction, verification

This research report is a revised version of an article published as “Parallel State Space Construction for Model-
Checking,” in Moshe Y. Vardi and Matthew B. Dwyer, editors, Proceedings of the 8th International SPIN Workshop
on Model Checking of Software SPIN’2001 (Toronto, Canada), May 19-20, 2001.

∗ Hubert.Garavel@inria.fr
† Radu.Mateescu@inria.fr
‡ Irina.Sturm@st.com

Construction parallèle des espaces d’états

pour la vérification basée sur les modèles

Résumé : La vérification énumérative des systèmes distribués à nombre fini d’états nécessite
souvent la génération (d’une large partie) de l’espace d’états du système à vérifier. A cause du
problème de l’explosion d’états, cette opération peut être coûteuse en mémoire et en temps de calcul.
Ce rapport propose d’optimiser les performances de la construction des espaces d’états au moyen de
techniques de parallélisation. Nous présentons des algorithmes parallèles pour construire les espaces
d’états (ou les systèmes de transitions etiquetées) sur un réseau ou une grappe de stations de travail.
Chaque noeud du réseau construit une partie de l’espace d’états, toutes les parties étant rassemblées
pour former l’espace d’états complet après terminaison du calcul parallèle. Ces algorithmes ont été
implémentés dans la bôıte à outils Cadp et expérimentés sur différentes applications distribuées
spécifiées en Lotos. Les résultats obtenus mettent en évidence des gains en vitesse linéaires et un
bon équilibrage de charge entre les noeuds du réseau.

Mots-clés : algorithme distribué, construction d’espace d’états, Lotos, model-checking, système
de transitions étiquetées, vérification

Parallel State Space Construction for Model-Checking 3

1 Introduction

As formal verification becomes increasingly used in the industry as a part of the design process, there
is a constant need for efficient tool support to deal with real-size applications. Model-checking [Hol91,
CGP00] is a successful verification method based on reachability analysis (state space exploration)
and allows an automatic detection of early design errors in finite-state systems. Model-checking works
by constructing a model (state space) of the system under design, on which the desired correctness
properties are verified.

There are essentially two approaches to model-checking: symbolic verification [CCGR00, CGP00]
represents the state space in comprehension, by using various encoding techniques (e.g., Bdds), and
enumerative verification [RS97, Dil96, FGK+96, Hol97] represents the state space in extension, by
enumerating all reachable states. Enumerative model-checking techniques can be further divided in
global techniques, which require to entirely construct the state space before performing the verifica-
tion, and local (or on-the-fly) techniques, which allow to construct the state space simultaneously
with the verification.

In this report, we focus on enumerative model-checking, which is well-adapted to asynchronous, non-
deterministic systems containing complex data types (records, sets, lists, trees, etc.). More precisely,
we consider the problem of constructing a Labeled Transition System (Lts), which is the natural model
for high-level, action-based specification languages, especially process algebras such as Ccs [Mil89],
Csp [Hoa85], Acp [BK84], or Lotos [ISO88]. An Lts is constructed by exploring the transition
relation starting from the initial state (forward reachability). During this operation, all explored
states must be kept in memory in order to avoid multiple exploration of a same state. Once the Lts is
constructed, it can be used as input for various verification procedures, such as bisimulation/preorder
checking and temporal logic model-checking. Moreover, when the verification requires to explore the
entire Lts (e.g., when verifying invariant temporal properties or checking bisimulation), since the
state contents is abstracted away in a constructed Lts, the memory consumed is generally much
smaller than for on-the-fly verification on the initial specification.

State space construction may be very consuming both in terms of memory and execution time: this is
the so-called state explosion problem. During the last decade, different techniques for handling state
explosion have been proposed, among which partial orders and symmetries; however, for industrial-
scale systems, these optimizations are not always sufficient. Moreover, most of the currently available
verification tools work on sequential machines, which limits the amount of memory (between 0.5 and
2 GBytes on usual configurations), and therefore the use of clusters or networks of workstations is
desirable.

In this report, we investigate an approach to parallelize state space construction on several machines,
in order to benefit from all the local memories and Cpu resources of each machine. This allows to
reduce both the amount of memory needed on each machine and the overall execution time. We pro-
pose algorithms for parallel construction of Ltss, developed using the generic environments Bcg and
Open/Cæsar [Gar98] for Lts manipulation provided by the Cadp verification tool set [FGK+96].
Since these environments are language independent, our algorithms can be directly used not only
for Lotos, but also for every language connected to the Open/Cæsar application programming
interface, such as Uml [JHGP99].

The implementation is based on standard sockets, available everywhere, and was experimented on
two different configurations: a typical network of workstations (Sparc workstations running Solaris
and Pcs running Linux, connected using 100 Mb/s Ethernet), and a cluster of Pcs (with 450 MHz
processor and 512 MBytes main memory) connected using Sci (Scalable Coherent Interface). Each
machine in the network is responsible for constructing a part of the Lts, this part being determined

RR n
�

4341

4 H. Garavel, R. Mateescu, I. Smarandache

using a static partition function. Upon termination of the parallel computation, which is detected by
means of a virtual ring-based distributed algorithm, all parts are merged to form the complete Lts.

We experimented with our algorithms on three non-trivial protocols specified in Lotos: the home
audio-video (Havi) protocol of Philips [Rom99], the TokenRing leader election protocol [GM97],
and the Scsi-2 bus arbitration protocol [ANS94].

Related work Distributed state space construction has been studied in various contexts, mostly for
the analysis of low-level models such as Petri nets, stochastic Petri nets, discrete-time and continuous-
time Markov chains [CCBF94, CCM95, AKH97, ADK97, CGN98, NC97, MCC97, HBB99, KH99].

All these approaches share a common idea: each machine in the network explores a subset of the
state space. However, they differ on a number of design principles and implementation choices such
as: the choice between a shared memory architecture and a message-passing one, the use of hash
tables or B-trees to store states on each machine, the way of partitioning the state space using either
static hash functions or dynamic ones that allow dynamic load balancing, etc.

As regards high-level languages for asynchronous concurrency, a distributed state space exploration
algorithm [LS99] derived from the Spin model-checker [Hol97] has been implemented for the Promela
language. The algorithm performs well on homogeneous networks of machines, but it does not
outperform the standard, sequential implementation of Spin, except for problems that do not fit into
the main memory of a single machine. Several Spin-specific partition functions are experimented, the
most advantageous one being a function that takes into account only a fraction of the state vector.

Another distributed state enumeration algorithm has been implemented in the Murϕ verifier [SD97].
The speedups obtained are close to linear and the hash function used for state space partition provides
a good load balancing. However, experimental data reported concerns relatively small state spaces
(approximatively 1.5 M states) on a 32-node UltraSparc Myrinet network of workstations.

There also exist approaches, such as [KMHK98], in which parallelization is applied to “partial”
verification, i.e., state enumeration in which some states can be omitted with a low probability. In
the present report, we only address exact, exhaustive verification issues.

For completeness, we can also mention an alternative approach [HGGS00] in which symbolic reach-
ability analysis is distributed over a network of workstations: this approach does not handle states
individually, but sets of states encoded using Bdds.

Report outline Section 2 gives some preliminary definitions and specifies the context of our work.
Section 3 describes the proposed algorithms for parallel construction of Ltss. Section 4 discusses
implementation issues and presents various experimental results. Finally, Section 5 gives some con-
cluding remarks and directions for future work.

2 Definitions

A (monolithic) Labeled Transition System (Lts) is a tuple M = (S, A, T, s0), where S is the set of
states, A is the set of actions, T ⊆ S ×A×S is the transition relation, and s0 ∈ S is the initial state.
A transition (s, a, s′) ∈ T indicates that the system can move from state s to state s′ by performing
action a. All states in S are assumed to be reachable from s0 via (sequences of) transitions in T .

In the model-checking approach by state enumeration, there are essentially two ways to represent an
Lts:

INRIA

Parallel State Space Construction for Model-Checking 5

explicitly, by enumerating all its states and transitions. In this case, the contents of states becomes
irrelevant, since the essential information is given by actions (transition labels). Therefore,
when storing an Lts as a computer file, it is sufficient to encode states as natural numbers. An
explicit representation of Ltss is provided by the Bcg (Binary Coded Graph) file format of the
Cadp verification tool set [FGK+96]. The Bcg format is based upon specialized compression
algorithms, allowing compact encodings of Ltss.

implicitly, by giving its initial state s0 and its successor function succ : S → 2T defined by succ(s) =
{(s, a, s′) | (s, a, s′) ∈ T }. An implicit representation of Ltss is provided by the generic, language
independent environment Open/Cæsar [Gar98] of Cadp. Open/Cæsar offers primitives for
accessing the initial state of an Lts and for enumerating the successors of a given state, as well
as various data structures (state tables, stacks, etc.), allowing straightforward implementations
of on-the-fly verification algorithms.

Our objective is to translate Ltss from an implicit to an explicit representation by using parallelization
techniques.

In order to represent a monolithic Lts M = (S, A, T, s0) on N machines (numbered from 0 to N −1),
we introduce the notion of partitioned Lts (B0, . . . , BN−1, s0), where each Bi is a triple (Si, Ai, Ti)
such that:

� S = ∪N−1
i=0 Si and Si ∩ Sj = ∅ for all 0 ≤ i, j < N (the state set is split1 into N parts Si, one

part per machine),

� A = ∪N−1
i=0 Ai (the sets Ai being not necessarily pairwise disjoint),

� T = ∪N−1
i=0 Ti and Ti ⊆ S × Ai × Si for all 0 ≤ i < N (consequently, the sets Ti are pairwise

disjoint and each Ti contains all transitions (s, a, s′) of T whose target state s′ belongs to Si),

� s0 ∈ Si for some 0 ≤ i < N .

B0, ..., BN−1 are called the components (or component Ltss) of M , although each Bi is not (strictly
speaking) an Lts, because Ti 6⊆ Si × Ai × Si and because the notion of initial state is irrelevant for
all Bi but the one containing s0. Yet, a partitioned Lts can be represented as a collection of Bcg
files encoding its components.

3 Parallel generation of LTSs

In this section we present two complementary algorithms allowing to convert an implicit Lts (defined
using the Open/Cæsar interface) to an explicit one (represented as a Bcg file) using N machines
connected by a network. These algorithms operate in two steps:

� Construction of a partitioned Lts represented as a collection of Bcg files. This is done by using
an algorithm called Distributor, which is executed on every machine in order to generate a
Bcg file encoding a component of the partitioned Lts.

� Conversion to a monolithic Lts represented as a single Bcg file. This is done using an algorithm
called Bcg Merge, which is executed on a sequential machine in order to generate a single
Bcg file containing all the states and transitions of the partitioned Lts.

1Strictly speaking, this is not a partition of S because some Si may be empty.

RR n
�

4341

6 H. Garavel, R. Mateescu, I. Smarandache

Once the Bcg file encoding the initial Lts has been constructed, it can be used as input for other
Cadp verification tools, such as the Evaluator 3.0 model-checker [MS00], which allows linear-time
verification of temporal formulas expressed in regular alternation-free µ-calculus.

3.1 Construction of partitioned LTSs

We consider a network of N machines numbered from 0 to N − 1 and an Lts M = (S, A, T, s0) given
implicitly by its initial state s0 and its successor function succ. Each machine executes an instance
of the parallel generation algorithm Distributor shown on Figure 1, which does a (partial) forward
exploration of M and produces a component Lts Bi = (Si, Ai, Ti) stored as a Bcg file. The state set
Si constructed by machine i is determined using a static partition function h : S → [0, N − 1]. This
set is defined as Si = {s ∈ S | h(s) = i}, which also determines the sets Ti and Ai according to the
above definitions.

Machine i keeps in its local memory the states of Si, whilst the transitions of Ti are written (after
being kept temporarily in a work list Li) to the Bcg file Bi stored on the local disk of the machine.
The states visited and explored by machine i are stored in two disjoint sets Vi (“visited”) and Ei

(“explored”), which are implemented using the state table library provided by the Open/Cæsar
environment.

Machine i can send a message m to machine j by invoking a primitive named Send (j, m) and can
receive a message by invoking another primitive Receive (m). There are four kinds of messages:
Arc, Rec, Snd, and Trm, the first one being used for sending Lts transitions and the others being
related to termination detection. Send and Receive are assumed to be non-blocking. Receive
returns a boolean answer indicating whether a message has been received or not.

The computation is started by the machine called initiator, having the index h(s0), which explores
the initial state of the Lts. The Distributor algorithm consists of a main loop, which performs
various actions, among which:

(a) A state s ∈ Vi is explored by enumerating all its successor transitions (s, a, s′) ∈ succ(s). If a
target state s′ belongs to machine i (i.e., h(s′) = i), the corresponding transition is kept in
the list Li and will be processed later. Otherwise, the transition is sent to machine h(s′) as a
message Arc(ni(s), a, s′), where ni(s) is the number associated by machine i to s; note that only
the number ni(s) is sent, but not the contents of state s itself. Machine h(s′) will be responsible
for exploring state s′ and for writing the transition to its local Bcg file, which will contain all
Lts transitions whose target states are explored by this machine.

(b) A transition is taken from Li and is written to the Bcg file Bi after computing an appropriate
number for its target state. In order to obtain a bijective numbering of Lts states across
the N Bcg files, each state s explored by machine i is assigned a number ni(s) such that
ni(s) mod N = i. This is done using a counter ci, which is initialized to i and incremented by
N every time a new state is visited.

(c) An attempt is made to receive a message m from another machine. If m has the form Arc(n, a, s),
it denotes a transition (s′, a, s), where n is the source state number nj(s

′) assigned by the sender
machine of index j = n mod N . In this case, the contents of m is stored in the list Li; otherwise,
m is related to termination detection (see below).

In order to detect the termination of the parallel Lts generation, we use a virtual ring-based algorithm
inspired by [Mat87]. According to the general definition, (global) termination is reached when all local
computations are finished (i.e., each machine i has neither remaining states to explore, nor transitions

INRIA

Parallel State Space Construction for Model-Checking 7

procedure Distributor (in i, s0, succ, h, N ; out Si, Ai, Ti) is
initiator i := (h(s0) = i); Li := ∅; Ei := ∅; Ai := ∅; Ti := ∅; ci := i;
if initiator i then

ni(s0) := ci; Vi := {s0}; Si := {ni(s0)}
else

Vi := ∅; Si := ∅
endif;
terminating i := false; terminated i := false; nbsent i := 0; nbrecd i := 0;
while ¬terminated i do

(a) if Vi 6= ∅ then
choose s ∈ Vi; Vi := Vi \ {s}; Ei := Ei ∪ {s};
forall (s, a, s′) ∈ succ(s) do

if h(s′) = i then
Li := Li ∪ {(ni(s), a, s′)}

else
Send (h(s′), Arc(ni(s), a, s′)); nbsent i := nbsent i + 1

endif
endfor

(b) elsif Li 6= ∅ then
choose (n, a, s) ∈ Li; Li := Li \ {(n, a, s)};
if s 6∈ Ei ∪ Vi then

ci := ci + N ; ni(s) := ci; Vi := Vi ∪ {s}; Si := Si ∪ {ni(s)};
endif;
Ai := Ai ∪ {a}; Ti := Ti ∪ {(n, a, ni(s))}

(c) elsif Receive (m) then
case m is

Arc(n, a, s) → Li := Li ∪ {(n, a, s)}; nbrecd i := nbrecd i + 1
Rec(k) → if ¬initiator i then

Send ((i + 1) mod N , Rec(k + nbrecd i))
else

totalrecd i := k; Send ((i + 1) mod N , Snd(nbsent i))
endif

Snd(k) → if ¬initiator i then
Send ((i + 1) mod N , Snd(k + nbsent i))

elsif totalrecd i = k then
Send ((i + 1) mod N , Trm)

else
terminating i := false

endif
Trm → if ¬initiator i then

Send ((i + 1) mod N , Trm)
endif;
terminated i := true

endcase
elsif initiator i ∧ ¬terminating i then

terminating i := true; Send ((i + 1) mod N , Rec(nbrecd i))
endif

endwhile
end

Figure 1: Parallel generation of an Lts as a collection of Bcg files

RR n
�

4341

8 H. Garavel, R. Mateescu, I. Smarandache

to write in its Bcg file Bi) and all communication channels are empty (i.e., all sent transitions have
been received).

The principle of the termination detection algorithm used in Distributor is the following. All
machines are supposed to be on an unidirectional virtual ring that connects every machine i to its
successor machine (i + 1) mod N . Every time the initiator machine finishes its local computations,
it checks whether global termination has been reached by generating two successive “waves” [Mat87]
of Rec and Snd messages on the virtual ring to collect the number of messages received and sent by
all machines, respectively. A message Rec(k) (resp. Snd(k)) received by machine i indicates that k
messages have been received (resp. sent) by the machines located on the ring between the initiator
and the machine numbered (i − 1) mod N . Each machine i counts the messages it has received
and sent using two integer variables nbrecd i and nbsent i, and adds their values to the numbers
carried by Rec and Snd messages. Upon receipt of the Snd(k) message ending the second wave, the
initiator machine checks whether the total number k of messages sent is equal to the total number
totalrecd i of messages received (the result of the Rec wave). If this is the case, it will inform the other
machines that termination has been reached by sending a Trm message on the ring. Otherwise, the
initiator concludes that termination has not been reached yet and will generate a new termination
detection wave later. The boolean variables terminating i and terminated i respectively indicate that
a termination detection wave has started (terminating i can only be true for the initiator) and that
global termination has been detected.

In our algorithm, each machine propagates the current wave only when its local computations are
finished. Experimental results show that this approach strongly reduces the overhead caused by unsuc-
cessful termination waves. This distributed termination detection scheme seems to use less messages
than the centralized termination detection schemes used in the parallel versions of Spin [LS99] and
Murϕ [SD97], which in all cases require several broadcast message exchanges between a coordinator
machine and all other machines.

3.2 Merging of partitioned LTSs into monolithic LTSs

The Distributor algorithm allows to generate, from an implicit Lts M = (S, A, T, s0), a partitioned
Lts (B0, ..., BN−1, s0) represented as a collection of Bcg files. The next step is to merge these Bcg
files into a unique Bcg file that can be processed using the verification tools of Cadp (e.g., those
tools based on bisimulations or modal µ-calculus).

In the formal definition of partitioned Ltss given in Section 2, each component Bi has the form
(Si, Ai, Ti). However, when implemented as a Bcg file, states of Si are represented by their numbers
rather than their semantic contents. This is possible because Distributor assigns a unique number
to each state across all the machines. For this reason, each Bi is represented as a Bcg file encoding
an Lts (Qi ∪ Q∗

i , Ai, Ri, qi), where:

� Qi ⊆ IN contains the numbers of all states of Si (note that q ∈ Qi implies q mod N = i).

� Q∗

i ⊆
⋃N−1

j=0 Qj contains the numbers of all states s of S for which there exists an outgoing
transition (s, a, s′) in Ti (note that s′ belongs to Si, and that Qi and Q∗

i are not necessarily
disjoint).

� Ri ⊆ Q∗

i × A × Qi is the transition relation derived from Ti by replacing each state by its
number.

� qi ∈ Qi is the number assigned by Distributor to the initial state s0: if i = h(s0) (i.e., if i
is the index of the initiator machine) then qi = h(s0) as s0 is the first state processed by the
initiator; for other values of i, qi is undefined.

INRIA

Parallel State Space Construction for Model-Checking 9

Merging the N Bcg files Bi into a single one could be done simply by taking the union of all states
sets Qi and the union of all transition relations Ri. However, since the partition function h is not
perfect, this simple approach might result in a Bcg file with an initial state number different from
0 (when h(s0) 6= 0) and with “holes” in the numbering of states (when |Qi| 6= |Qj| for two Bcg
files Bi and Bj). For example, given an Lts with 7 states and N = 2, Distributor could produce
Q0 = {0, 2, 4, 6, 8}, Q1 = {1, 3}, and h(s0) = 1; taking the union of state sets would lead to a “sparse”
state set Q = {0, 1, 2, 3, 4, 6, 8}, whereas one would normally expect Q = {0, 1, 2, 3, 4, 5, 6}. Moreover,
a contiguous numbering of states is suitable to achieve a better compaction of the final Bcg file.

The conversion algorithm Bcg Merge that we propose (see Figure 2) takes as inputs a partitioned
Lts (B0, . . . , BN−1, s0), where each Bi is represented as a Bcg file (Qi∪Q∗

i , Ai, Ri, qi), and constructs
a corresponding Bcg file B = (Q, A, R, qinit) such that qinit = 0 and Q = {0, . . . , |Q| − 1}.

procedure Bcg Merge (in B0, ..., BN−1, s0; out Q, A, R, qinit) is
i0 := h(s0);
c := 0;
for k = 0 to N − 1 do

i := (i0 + k) mod N ;
ci := c;
c := c + |Qi|

end;
Q := {0, ..., c − 1};
A := ∅;
R := ∅;
qinit := 0;
forall i ∈ {0, . . . , N − 1} do

forall (q, a, q′) ∈ Ri do
A := A ∪ {a};
R := R ∪ {(cq mod N + (q div N), a, cq′ mod N + (q′ div N))}

end
end

end

Figure 2: Merging of a collection of Bcg files into a single one

Informally, Bcg Merge assigns to each Bcg file Bi a contiguous range of state numbers [ci, ci +
|Qi| − 1] such that ch(s0) = 0 and c(i+1) mod N = ci + |Qi|. The values of c0, . . . , cN−1 induce a state
renumbering function mapping each state number q to a new number r(q) = cq mod N + (q div N),
where div denotes integer division. As regards the initial state s0, its former number associated
by Distributor was h(s0) (where h(s0) < N) and its new number will be: qinit = r(h(s0)) =
ch(s0) mod N + (h(s0) div N) = ch(s0) = 0. The set of transitions R of the resulting Bcg file is then
obtained by taking all the transitions (q, a, q′) of R0 ∪ . . . ∪ RN−1 in which q and q′ are replaced by
r(q) and r(q′), respectively.

It is worth noticing that the Bcg Merge algorithm processes only one Bcg file Bi at a time and
does not require to load in memory the transition relation Ri of Bi. State renumbering is performed
on-the-fly, resulting in a low memory cost, which is independent from the sizes of B0, . . . , BN−1.

RR n
�

4341

10 H. Garavel, R. Mateescu, I. Smarandache

4 Experimental results

We implemented the Distributor and Bcg Merge algorithms within the Cadp verification tool
set [FGK+96] by using the Open/Cæsar [Gar98] and Bcg environments. To ensure maximal porta-
bility, the communication primitives of Distributor are built on top of Tcp/Ip using standard
Unix sockets. An alternative implementation using the Mpi (Message Passing Interface) stan-
dard [GHLL+98] would have been possible; we chose sockets because they are built-in in most
operating systems and because the Distributor algorithm was simple enough not to require the
higher-level functionalities provided by Mpi.

We experimented Distributor and Bcg Merge on three industrial-sized protocols specified in
Lotos:

(a) The Havi protocol [Rom99], standardized by several companies, among which Philips, in order
to solve interoperability problems for home audio-video networks. Havi provides a distributed
platform for developing applications on top of home networks containing heterogeneous elec-
tronic devices and allowing dynamic plug-and-play changes in the network configuration. We
considered a configuration of the Havi protocol with 2 device control managers (1,039,017 states
and 3,371,039 transitions, state size of 80 bytes).

(b) The correct TokenRing leader election protocol [GM97] for unidirectional ring networks,
which is an enhanced version of the protocols proposed by Le Lann [Lan77] and by Chang
& Roberts [CR79]. This TokenRing protocol corrects an error in Le Lann’s and Chang &
Roberts’ protocols, by allowing to designate a unique leader station in presence of various faults
of the system, such as message losses and station crashes. We considered a configuration of the
TokenRing protocol with 3 stations (12,362,489 states and 45,291,166 transitions, state size
of 6 bytes).

(c) The arbitration protocol for the Scsi-2 bus [ANS94], which is designed to provide an efficient
peer-to-peer I/O bus for interconnecting computers and peripheral devices (magnetic and optical
disks, tapes, printers, etc.). We considered Scsi-2 configurations consisting of a controller device
and several disks that accept data transfer requests from the controller. Two versions of the
specification have been used: v1, with 5 disks (961,546 states and 5,997,701 transitions, state
size of 13 bytes) and v2, with 6 disks (1,202,208 states and 13,817,802 transitions, state size of
15 bytes).

The experiments have been performed on a cluster of 450 MHz, 512 MBytes Pcs connected via Sci
(the Distributor and Bcg Merge have been developed and debugged on an Ethernet network
of three Sun workstations; however, using a dedicated Sci network with more machines was more
appropriate for performance measurement). Our performance measurements concern three aspects:
speedup, partition function, and use of communication buffers.

4.1 Speedup

Figure 3 shows the speedups obtained by generating the Ltss of the aforementioned Lotos speci-
fications in parallel on a cluster with up to 10 Pcs. For the TokenRing and Havi protocols, the
speedups observed on N machines are given approximately by the formulas SN = t1/tN = 0.4N and
SN = 0.3N (tk being the execution time on k machines). For the v1 and v2 versions of the Scsi-2
protocol, the speedups obtained are close to ideal.

INRIA

Parallel State Space Construction for Model-Checking 11

0

2

4

6

8

10

12

3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Ideal speedup
SCSI v1
SCSI v2

TOKEN-RING
HAVi

Figure 3: Speedup measurements for the Havi, TokenRing, and Scsi-2 protocols

These results can be explained by examining the implementation of the Distributor algorithm.
The state sets explored by each machine in the network are stored locally using generic hash ta-
bles provided by the Open/Cæsar library. Since these hash tables use open hashing (with a fixed
number of hash entries), the number of states contained in each table is not bounded (except by
the amount of available memory on each machine) and the search time in the hash table grows
linearly with the number of states already inserted in the table. Therefore, splitting the state set
among N machines is likely to reduce by N the overall search time. Also, parallelization becomes
efficient when the time spent in generating state successors is important, which happens for Lotos
specifications having many parallel processes and complex synchronization patterns. This explains
why the speedup obtained for the Scsi-2 is better than for the TokenRing: the Scsi-2 example
involves complex data computations (handling of disk buffers and of device status kept by the con-
troller) and synchronizations (multiple rendezvous between 6 or 7 devices to gain bus access), whereas
the TokenRing example has very simple computations and only binary synchronizations between
stations and communication links.

The speedups obtained show a good overlapping between computations and communications during
the execution of Distributor. This is partly due to a buffered communication scheme with well-
chosen dimensions of transmission buffers (see Section 4.3).

4.2 Choosing a good partition function

In order to increase the performance of the parallel generation algorithm, it is essential to achieve a
good load balancing between the N machines, meaning that the N parts of the distributed Lts should
contain (nearly) the same number of states. As indicated in Section 3.1, we adopted a static partition
scheme, which avoids the potential communication overhead occurring in dynamic load balancing
schemes. Then, the problem is to choose an appropriate partition function h : S → [0, N − 1]
associating to each state a machine index.

Because we target at language independent state space construction, we cannot assume that state
contents exhibit structural properties (e.g., constant fields, repeated patterns, etc.) particular to a
given language. However, assuming that state contents are uniformly distributed bit strings might
not be true in practice: for instance, if the last field of the state vector is a pointer to a value of type

RR n
�

4341

12 H. Garavel, R. Mateescu, I. Smarandache

t, it is likely that, for each reachable state s ∈ S, the integer value of s (computed by interpreting s
as an arbitrarily long integer number) will be a multiple of some constant (e.g., the alignment factor
of t).

To address this problem, we chose a partition function of the form h(s) = f(s, P) mod N , where P
is a prime number and f(s, P) is the hash function that computes the remainder modulo P of the
integer value of state s2.

The value of P must be carefully chosen for h to distribute states among the N machines uniformly.
An appropriate value for P would be N , which is only suitable if N is prime (and different from 2
because of the above alignment problem). If N is not prime, we choose for P a large value such that
P mod N = 1: if state contents are uniformly distributed, the condition P mod N = 1 assigns to all
machines the same number of states, except for machine 0, which is assigned more states than the
other machines. Choosing P sufficiently big reduces the number of exceeding states (approximately
|S| div P) assigned to machine 0. For the experiments presented in this report, we chose P around
1,600,000.

Figures 4 and 5 show the distribution of the states on 10 machines for the three protocols described
above. In order to evaluate the quality of the distribution, we calculated the standard deviation

σ =
√

(
∑N−1

i=0 (|Si| − |S|/N)2)/N between the sizes |Si| of the state sets explored by each machine i

in the network. For all examples considered, the values obtained for σ are very small (less than 1%
of the mean value |S|/N), which indicates a good performance of the partition function h.

96000

96050

96100

96150

96200

96250

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 s

ta
te

s

Indexes of the processors

SCSI v1
MEAN

119300

120100

120900

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 s

ta
te

s

Indexes of the processors

SCSI v2
MEAN

Figure 4: State distributions for the Scsi-2 protocol on 10 machines

The quality of a partition function could also be estimated according to the number of “cross-border”
transitions of the partitioned Lts (i.e., transitions having the source state in a component and the
target state in another component). This number should be as small as possible, since it is equal to
the number of Arc messages sent over the network during the execution of Distributor. However, in
practice, reducing the number of cross-border transitions would require additional information about
the structure of the program, and therefore must be language dependent. Since Distributor is
built using the language independent Open/Cæsar environment, we did not focused on developing
language dependent (e.g., Lotos-specific) partition functions. This might be done in the future, by
extending the Open/Cæsar application programming interface to provide more information about
the internal structure of program states.

2Function f is implemented by function CAESAR STATE 3 HASH() of the Open/Cæsar library.

INRIA

Parallel State Space Construction for Model-Checking 13

1.234e+06

1.2345e+06

1.235e+06

1.2355e+06

1.236e+06

1.2365e+06

1.237e+06

1.2375e+06

1.238e+06

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 s

ta
te

s

Indexes of the processors

TOKEN-RING
MEAN

100000

101000

102000

103000

104000

105000

106000

107000

108000

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 s

ta
te

s

Indexes of the processors

HAVi
MEAN

Figure 5: State distribution for the TokenRing and Havi protocols on 10 machines

4.3 Using communication buffers

To reduce the overhead of message transmission and to increase the overlapping between communi-
cations and computations, we chose an asynchronous, non-blocking implementation of the Send and
Receive primitives used in the Distributor algorithm. Also, to reduce communication latency,
these primitives actually perform a buffering of messages (Lts transitions) instead of sending them
one by one as indicated in Figure 1.

The implementation is based on Tcp/Ip and standard Unix communication primitives (sockets). In
practice, for each machine 0 ≤ i ≤ N −1, there is a virtual channel (i, j) to every other machine j 6= i
with a corresponding logical buffer of size L used for storing messages transmitted on the channel.
The N − 1 virtual channels associated with each machine share the same physical channel (socket),
which has an associated buffer of size Lp. For a given size d of messages (which depends on the
application), we observed that the optimal length Lopt of the logical transmission buffer is given by
the formula Lopt = Lp/d(N − 1). Experiments show that for Lopt , all transitions accumulated in
the logical transmission buffers can be sent at the physical level by the next call to Send. Figure 6
illustrates the effect of buffering on Distributor’s speedup for the Scsi-2 and the TokenRing
protocols. A uniform increase of speedup is observed between the variants L = 1 (no buffering) and
L = Lopt . The difference in speedup is greater for the TokenRing protocol because the percentage
of communication time w.r.t. computation time is more important than for the Scsi-2 protocol.
Therefore, the value Lopt seems a good choice for ensuring a maximal overlapping of communications
and computations.

5 Conclusion and future work

We presented a solution for constructing an Lts in parallel using N machines connected by a net-
work. Each machine constructs a part of the Lts using the Distributor algorithm, all resulting
parts being combined using the Bcg Merge algorithm to form the complete Lts. These algo-
rithms have been implemented within the Cadp tool set [FGK+96] using the generic environments
Open/Cæsar [Gar98] and Bcg for implicit and explicit manipulation of Ltss.

Being independent from any specification language is a difference between our approach and other
related work. To our knowledge, all published algorithms but [CGN98] are dedicated to a specific low-

RR n
�

4341

14 H. Garavel, R. Mateescu, I. Smarandache

0

2

4

6

8

10

3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Ideal speedup
SCSI v1

SCSI v1 (1)

0

2

4

6

8

10

3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Ideal speedup
SCSI v2

SCSI v2 (1)

0

2

4

6

8

10

3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Ideal speedup
TOKEN-RING

TOKEN-RING (1)

Figure 6: Speedup measurements for the Scsi-2 and TokenRing protocols for transmission buffers
of size 1 and Lopt

INRIA

Parallel State Space Construction for Model-Checking 15

level model (Petri nets, Markov chains, etc.) or high-level language (Murϕ, Promela, etc.). On the
contrary, as the Open/Cæsar and Bcg environments are language independent, the Distributor
and Bcg Merge tools can be used not only for Lotos, but also for every language having a con-
nection to the Open/Cæsar interface, such as the Umlaut compiler for Uml [JHGP99].

Another distinctive feature of our approach relies in the scheme used by Distributor and
Bcg Merge to assign unique numbers to states. Although the Distributor algorithm is similar
to the ExploreDistributed algorithm of [CGN98], we manage to represent states with mere integers,
whereas [CGN98] uses pairs of the form 〈processor number , local state number〉.

We experimented our approach on several real-size Lotos specifications, for which we generated
large Ltss (up to 12 million states and 45 million transitions). Compared to the data reported for
other high-level languages such as Murϕ [SD97] and Promela [LS99], respectively, we were able to
generate larger (11 times and 4.2 times, respectively) state spaces.

We believe that the memory overhead required by distribution (i.e., hash table auxiliary data struc-
tures, communication buffers, etc.) is negligible. Moreover, our experimental results show that paral-
lel construction of Ltss provides linear speedups. This is due both to the good quality of the partition
function used to distribute the state space among different machines, and to well-dimensioned commu-
nication buffers. The speedups obtained are more important for the specifications involving complex
data computations and synchronizations, because in this case the traversal of Lts transitions becomes
time expensive and can be distributed profitably across different machines.

In this report, we focused on the problem of constructing Ltss in parallel, with a special emphasis on
resource management issues such as state storage in distributed memories and transition storage in
distributed filesystems. For a proper separation of concerns, we deliberately avoided to mix parallel
state space constructions with other issues such as on-the-fly verification. Obviously, it would be
straightforward to enhance the parallel algorithms with on-the-fly verification capabilities such as
deadlock detection, invariant checking, or more complex properties. However, this was not suitable
to obtain meaningful experimental results (especially, the sizes of the largest state spaces that can be
constructed using the parallel approach), because on-the-fly verification may either terminate early
without exploring the entire state space, or explore a larger state space when relying on automata
product techniques.

This work can be continued in several directions. Firstly, we plan to pursue our experiments on new
examples and assess the scalability of the approach using a more powerful parallel machine, a cluster
of 200 Pcs that is currently under construction at Inria Rhône-Alpes.

Secondly, we plan to extend the Distributor tool in order to handle specifications containing dy-
namic data structures, such as linked lists, trees, etc. This will require the transmission of variable
length, typed data values over a network, contrary to the current implementation of Distributor,
which uses messages of fixed length.

Finally, we will seek to determine at which point the sequential verification algorithms available
in Cadp (for model-checking of temporal logic formulas on Ltss, comparison and minimization of
Ltss according to equivalence/preorder relations) will give up. As the sizes of Ltss constructed by
Distributor will increase, it will be necessary to parallelize the verification algorithms themselves.
Two approaches can be foreseen: parallel algorithms operating on-the-fly during the exploration of
the Lts, or sequential algorithms working on (already constructed) partitioned Ltss.

RR n
�

4341

16 H. Garavel, R. Mateescu, I. Smarandache

Acknowledgements

We are grateful to Xavier Rousset de Pina and to Emmanuel Cecchet for interesting discussions and
for providing valuable assistance in using the Pc cluster of the Sirac project of Inria Rhône-Alpes.
We also thank Adrian Curic, Frédéric Lang, and particularly Christophe Joubert for their careful
reading and comments on this report.

References

[ADK97] S. Allmaier, S. Dalibor, and D. Kreische. Parallel Graph Generation Algorithms for
Shared and Distributed Memory Machines. In E. H. D’Hollander, G. R. Joubert, F. J.
Peters, and U. Trottenberg, editors, Parallel Computing: Fundamentals, Applications
and New Directions, Proceedings of the Conference ParCo’97 (Bonn, Germany), vol-
ume 12, pages 581–588. Elsevier, North-Holland, 1997.

[AKH97] S. Allmaier, M. Kowarschik, and G. Horton. State Space Construction and Steady-State
Solution of GSPNs on a Shared-Memory Multiprocessor. In Proceedings of the 7th IEEE
International Workshop on Petri Nets and Performance Models PNPM’97 (Saint Malo,
France), pages 112–121. IEEE Computer Society Press, 1997.

[ANS94] ANSI. Small Computer System Interface-2. Standard X3.131-1994, American National
Standards Institute, January 1994.

[BK84] J. A. Bergstra and J. W. Klop. Process Algebra for Synchronous Communication. In-
formation and Computation, 60:109–137, 1984.

[CCBF94] S. Caselli, G. Conte, F. Bonardi, and M. Fontanesi. Experiences on SIMD Massively
Parallel GSPN Analysis. In G. Haring and G. Kotsis, editors, Computer Performance
Evaluation: Modelling Techniques and Tools, volume 794 of Lecture Notes in Computer
Science, pages 266–283. Springer Verlag, 1994.

[CCGR00] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a New Symbolic Model
Checker. Springer International Journal on Software Tools for Technology Transfer
(STTT), 2(4):410–425, April 2000.

[CCM95] S. Caselli, G. Conte, and P. Marenzoni. Parallel State Space Exploration for GSPN
Models. In G. De Michelis and M. Diaz, editors, Applications and Theory of Petri Nets
1995, volume 935 of Lecture Notes in Computer Science, pages 181–200. Springer Verlag,
1995.

[CGN98] G. Ciardo, J. Gluckman, and D. Nicol. Distributed State Space Generation of Discrete-
State Stochastic Models. INFORMS Journal on Computing, 10(1):82–93, 1998.

[CGP00] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[CR79] Ernest Chang and Rosemary Roberts. An Improved Algorithm for Decentralized
Extrema-Finding in Circular Configurations of Processes. Communications of the ACM,
22(5):281–283, may 1979.

[Dil96] D. Dill. The Murϕ Verification System. In R. Alur and T. Henzinger, editors, Proceedings
of the 8th International Conference on Computer-Aided Verification CAV’96, volume
1102 of Lecture Notes in Computer Science, pages 390–393. Springer Verlag, July 1996.

INRIA

Parallel State Space Construction for Model-Checking 17

[FGK+96] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Laurent
Mounier, and Mihaela Sighireanu. CADP (CÆSAR/ALDEBARAN Development Pack-
age): A Protocol Validation and Verification Toolbox. In Rajeev Alur and Thomas A.
Henzinger, editors, Proceedings of the 8th Conference on Computer-Aided Verification
(New Brunswick, New Jersey, USA), volume 1102 of Lecture Notes in Computer Sci-
ence, pages 437–440. Springer Verlag, August 1996.

[Gar98] Hubert Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification, Sim-
ulation, and Testing. In Bernhard Steffen, editor, Proceedings of the First Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
TACAS’98 (Lisbon, Portugal), volume 1384 of Lecture Notes in Computer Science, pages
68–84, Berlin, March 1998. Springer Verlag. Full version available as INRIA Research
Report RR-3352.

[GHLL+98] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and
M. Snir. MPI: The Complete Reference, Vol. 2 — The MPI-2 Extensions. MIT Press,
1998.

[GM97] Hubert Garavel and Laurent Mounier. Specification and Verification of Various Dis-
tributed Leader Election Algorithms for Unidirectional Ring Networks. Science of Com-
puter Programming, 29(1–2):171–197, July 1997. Special issue on Industrially Relevant
Applications of Formal Analysis Techniques. Full version available as INRIA Research
Report RR-2986.

[HBB99] B. R. Haverkort, A. Bell, and H.C. Bohnenkamp. On the Efficient Sequential and Dis-
tributed Generation of Very Large Markov Chains from Stochastic Petri Nets. In Proceed-
ings of the 8th International Workshop on Petri Nets and Performance Models PNPM’99
(Zaragoza, Spain), pages 12–21. IEEE Computer Society Press, 1999.

[HGGS00] T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving Scalability in Paral-
lel Reachability Analysis of Very Large Circuits. In E. A. Emerson and A. P. Sistla,
editors, Proceedings of the 12th International Conference on Computer-Aided Verifica-
tion CAV’2000 (Chicago, IL, USA), volume 1855 of Lecture Notes in Computer Science,
pages 20–35. Springer Verlag, July 2000.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols. Software Series.
Prentice Hall, 1991.

[Hol97] G. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, May 1997.

[ISO88] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. International Standard 8807, International Organization for
Standardization — Information Processing Systems — Open Systems Interconnection,
Genève, September 1988.

[JHGP99] J-M. Jézéquel, W.M. Ho, A. Le Guennec, and F. Pennaneac’h. UMLAUT: an Extendible
UML Transformation Framework. In R.J. Hall and E. Tyugu, editors, Proceedings of
the 14th IEEE International Conference on Automated Software Engineering ASE’99.
IEEE, 1999. Also available as INRIA Technical Report RR-3775.

RR n
�

4341

18 H. Garavel, R. Mateescu, I. Smarandache

[KH99] W. J. Knottenbelt and P. G. Harrison. Distributed Disk-Based Solution Techniques for
Large Markov Models. In B. Plateau, W. J. Stewart, and M. Silva, editors, Proceedings
of the 3rd International Meeting on the Numerical Solution of Markov Chains NSMC’99
(Zaragoza, Spain), pages 58–75. University of Zaragoza, September 1999.

[KMHK98] W. J. Knottenbelt, M. A. Mestern, P. G. Harrison, and P. Kritzinger. Probability, Par-
allelism and the State Space Exploration Problem. In R. Puigjaner, N. N. Savino, and
B. Serra, editors, Proceedings of the 10th International Conference on Computer Per-
formance Evaluation - Modelling, Techniques and Tools TOOLS’98 (Palma de Mallorca,
Spain), volume 1469 of Lecture Notes in Computer Science, pages 165–179. Springer
Verlag, September 1998.

[Lan77] Gérard Le Lann. Distributed Systems — Towards a Formal Approach. In B. Gilchrist,
editor, Information Processing 77, pages 155–160. IFIP, North-Holland, 1977.

[LS99] F. Lerda and R. Sista. Distributed-Memory Model Checking with SPIN. In D. Dams,
R. Gerth, S. Leue, and M. Massink, editors, Proceedings of the 5th and 6th International
SPIN Workshops on Theoretical and Practical Aspects of SPIN Model Checking SPIN’99,
volume 1680 of Lecture Notes in Computer Science, pages 22–39. Springer Verlag, July
1999.

[Mat87] F. Mattern. Algorithms for Distributed Termination Detection. Distributed Computing,
2:161–175, 1987.

[MCC97] P. Marenzoni, S. Caselli, and G. Conte. Analysis of Large GSPN Models: a Distributed
Solution Tool. In Proceedings of the 7th IEEE International Workshop on Petri Nets and
Performance Models PNPM’97 (Saint Malo, France), pages 122–131. IEEE Computer
Society Press, 1997.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MS00] Radu Mateescu and Mihaela Sighireanu. Efficient On-the-Fly Model-Checking for Reg-
ular Alternation-Free Mu-Calculus. In Stefania Gnesi, Ina Schieferdecker, and Axel
Rennoch, editors, Proceedings of the 5th International Workshop on Formal Methods
for Industrial Critical Systems FMICS’2000 (Berlin, Germany), GMD Report 91, pages
65–86, Berlin, April 2000. Also available as INRIA Research Report RR-3899.

[NC97] D. Nicol and G. Ciardo. Automated Parallelization of Discrete State-Space Generation.
Journal of Parallel and Distributed Computing, 47(2):153–167, 1997.

[Rom99] Judi Romijn. Model Checking the HAVi Leader Election Protocol. Technical Report
SEN-R9915, CWI, Amsterdam, The Netherlands, June 1999. submitted to Formal Meth-
ods in System Design.

[RS97] Y.S. Ramakrishna and S.A. Smolka. Partial-Order Reduction in the Weak Modal Mu-
Calculus. In A. Mazurkiewicz and J. Winkowski, editors, Proceedings of the 8th Interna-
tional Conference on Concurrency Theory CONCUR’97, volume 1243 of Lecture Notes
in Computer Science, pages 5–24. Springer Verlag, 1997.

[SD97] U. Stern and D. Dill. Parallelizing the Murϕ Verifier. In O. Grumberg, editor, Proceedings
of the 9th International Conference on Computer-Aided Verification CAV’97 (Haifa,
Israel), volume 1254 of Lecture Notes in Computer Science, pages 256–267. Springer
Verlag, June 1997.

INRIA

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route desLucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

