
IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
56

72
--

F
R

+
E

N
G

ap por t
de r ech er ch e

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Exp.Open 2.0: A Flexible Tool Integrating Partial
Order, Compositional, and On-the-fly Verification

Methods

Frédéric Lang

N° 5673

Septembre 2005

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Exp.Open 2.0: A Flexible Tool Integrating Partial
Order, Compositional, and On-the-fly Verification

Methods

Frédéric Lang∗

Thème COM — Systèmes communicants

Projet VASY

Rapport de recherche n
�

5673 — Septembre 2005 — 21 pages

Abstract: It is desirable to integrate formal verification techniques applicable to different
languages. We present Exp.Open 2.0, a new tool of the Cadp verification toolbox which
combines several features. First, Exp.Open 2.0 allows to describe concurrent systems as a
composition of finite state machines, using either synchronization vectors, or parallel compo-
sition, hiding, renaming, and cut operators from several process algebras (Ccs, Csp, Lotos,
E-Lotos, µCrl). Second, together with other tools of Cadp, Exp.Open 2.0 allows state
space generation and on-the-fly exploration. Third, Exp.Open 2.0 implements on-the-fly
partial order reductions to avoid the generation of irrelevant interleavings of independent
transitions. Fourth, Exp.Open 2.0 allows to export models towards other tools using inter-
change formats such as automata networks and Petri nets. Finally, we show some practical
applications and measure the efficiency of Exp.Open 2.0 on several benchmarks.

Key-words: Concurrent system, compositional verification, enumerative verification,
explicit state verification, labelled transition system, model checking, on-the-fly verification,
parallel composition, partial order reduction, process algebra, synchronization vector

A short version of this report is available as “Exp.Open 2.0: A Flexible Tool Integrating Partial Order,

Compositional, and On-the-fly Verification Methods”, in J. van de Pol, J. Romijn, and G. Smith, editors,
Proceedings of the 5th International Conference on Integrated Formal Methods IFM’2005 (Eindhoven, The
Netherlands), November 29-December 2, 2005.

∗ Frederic.Lang@inria.fr

Exp.Open 2.0 : un outil flexible intégrant réductions

d’ordres partiels, vérification compositionnelle et
vérification à la volée

Résumé : Il est souhaitable d’intégrer les techniques de vérification formelle appli-
cables à différents langages. Nous présentons Exp.Open 2.0, un nouvel outil de la bôıte à
outils Cadp, qui combine plusieurs fonctionnalités. Premièrement, Exp.Open 2.0 per-
met de décrire des systèmes concurrents comme des compositions de machines à états
finis, en utilisant des vecteurs de synchronisation et des opérateurs de composition pa-
rallèle, de masquage, de renommage et de coupure tirés de plusieurs algèbres de proces-
sus (Ccs, Csp, Lotos, E-Lotos, µCrl). Deuxièmement, avec d’autres outils de Cadp,
Exp.Open 2.0 permet de générer et d’explorer à la volée les espaces d’états des systèmes
décrits. Troisièmement, Exp.Open 2.0 met en œuvre des réductions d’ordre partiel à la
volée afin d’éviter la génération d’entrelacements inutiles de transitions indépendantes. Qua-
trièmement, Exp.Open 2.0 permet d’exporter les modèles vers d’autres outils par le biais
de formats d’échange, tels que des réseaux d’automates et des réseaux de Petri. Fina-
lement, nous présentons quelques applications pratiques et nous mesurons l’efficacité de
Exp.Open 2.0 sur plusieurs cas d’étude.

Mots-clés : algèbre de processus, composition parallèle, model checking, réduction
d’ordre partiel, système concurrent, système de transitions étiquetées, vecteur de syn-
chronisation, vérification à la volée, vérification compositionnelle, vérification de modèle,
vérification énumérative

Exp.Open 2.0: A Flexible Tool Integrating Verification Methods 3

1 Introduction

Enumerative (or explicit state) verification is a method to check the proper behaviour of
safety-critical finite-state systems. It consists in generating the state space systematically
(if possible, exhaustively), and in verifying properties by model checking, visual checking,
or equivalence checking. For systems involving asynchronous concurrency, the state space is
often represented as a Labelled Transition System (Lts for short) [47].

A well-known problem with enumerative verification is the combinatorial state explosion,
which often occurs as the number of concurrent processes increases. To fight state explosion,
several effective techniques have been proposed:

� Partial order reductions (e.g., [26, 58, 50, 32, 53, 30, 48]) try to avoid the generation
of irrelevant interleavings of independent transitions.

� On-the-fly verification (e.g., [16, 15, 38, 33, 46, 45]) consists in performing Lts gener-
ation and verification at the same time. This avoids to generate the entire Lts when
the verification only requires a part of it.

� Compositional verification (e.g., [14, 44, 56, 28, 57, 61, 63, 10, 27, 42, 55, 25, 18])
consists in generating the Lts of each concurrent process first (possibly restricted using
constraints derived from its environment [28, 10, 63, 27, 42, 25, 18]), then simplifying
these Ltss using abstraction criteria (for instance, label hiding and reductions modulo
bisimulations) that preserve the properties under verification, and finally recomposing
the reduced Ltss to generate the Lts corresponding to the whole system.

In practice, many software tools have been developed to implement these ideas. Nevertheless,
these tools often suffer from several limitations:

� Most tools are often dedicated to one specific input formalism, e.g., Petri nets, com-
municating automata, or a particular process algebra. On the opposite, a unified tool
accepting several input formalisms would be more flexible by combining the expressive-
ness of different input languages and by having its verification algorithms accessible
by a wider community of users.

� Although there exist tools combining two among the three aforementioned verification
techniques, such as Spin [37] (partial order and on-the-fly verification) and Ara [60]
(partial order and compositional verification), to our knowledge, combining the three
techniques has never been done.

In this report, we present Exp.Open 2.0, a new tool that addresses these issues.
Exp.Open 2.0 is part of Cadp [19] (Construction and Analysis of Distributed Processes)1,
a toolbox for protocol engineering that offers functionalities ranging from mere interactive
simulation up to the most recent verification techniques. Exp.Open 2.0 builds upon the
existing software components of Cadp, especially for handling Ltss.

Earlier versions of Cadp contained a tool named Exp.Open 1.0, developed in 1995 by
L. Mounier (Université Joseph Fourier, Grenoble, France), that combined on-the-fly verifi-
cation and compositional verification for Lotos [39]. To develop Exp.Open 2.0, we deeply
revisited the principles of Exp.Open 1.0 and rewrote the tool entirely from scratch to extend
its input language, to provide new functionalities, and to support partial order reductions.

1http://www.inrialpes.fr/vasy/cadp

RR n
�

5673

4 F. Lang

This report is organized as follows. Section 2 describes inputs of Exp.Open 2.0. Section 3
presents its functionalities. Section 4 presents practical applications and gives experimental
results for several applications. Section 5 finally concludes the report.

2 The Exp.Open 2.0 language

2.1 Labelled Transition Systems and composition expressions

The basic concept used by Exp.Open 2.0 is the standard Lts model [47], which consists of
a set of states, an initial state, and a set of transitions between states, each transition being
labelled by an event of the system. A particular label written τ represents an invisible (or
internal) event. The contents of states are not observable.

In practice, a label is represented by a character string. Exp.Open 2.0 does not impose a
particular syntax and thus accepts labels from different source languages, such as Ccs [47],
Csp [55], Lotos [39], E-Lotos [40], and µCrl [31].

As regards the semantic structure of labels, most languages assume that a label consists
of a gate (i.e., a port name, a channel name) and a (possibly empty) list of typed values,
here called offers. For instance, if G is a gate, both labels “G !1 !2” (Lotos notation) and
“G(1, 2)” (µCrl notation) are accepted by Exp.Open 2.0. Labels obtained from Ccs may
also start with a co-action symbol, generally written ’.

Ltss are stored in computer files, using one of the four formats available in Cadp: Bcg
(Binary Coded Graph), Aldébaran (textual), sequential Fc2, and Seq for transition se-
quences [20]. Other file formats can be converted into Bcg using the Bcg Io tool of Cadp.

The input language of Exp.Open 2.0 allows to define compositions of Ltss, named com-
position expressions. Figure 1 presents an extended Bnf describing the abstract syntax
of composition expressions. The concrete syntax can be found in [43]. The symbols in
italic are the non-terminal and generic terminal symbols. Subscripts are used for the sake
of readability, e.g., B0, B1, . . . are occurrences of the same non-terminal B. The symbols
“::=”, “|”, “[”, “]”, “(”, “)”, and “. . . ” are meta-symbols: “::=” introduces the definition
of a non-terminal symbol, “|” separates alternative clauses, “[]” delimit optional clauses,
“()” are used for bracketing as usual, and the infix “. . . ” meta-symbol denotes repetition,
e.g., “L1 , . . . , Ln” denotes the repetition of n ≥ 0 symbols separated by commas and “B1

||. . . || Bn” denotes the repetition of n ≥ 0 symbols separated by ||. All remaining symbols
are the terminal symbols, i.e., the keywords (written in bold font, such as gate, all) and
key symbols (written in teletype font, such as “{”, “ � ”). In particular, “[”, “]”, and “|”
are terminal symbols distinct from the meta-symbols “[”, “]”, and “|”.

The generic terminal symbols L, L′, L0, L1, . . . represent arbitrary character strings,
n, n1, n2, . . . represent arbitrary natural numbers, S, S0, S1, . . . represent Ltss, and
P, P0, P1, . . . represent patterns (which will be defined below). The non-terminal symbols
B, B0, B1, . . . represent composition expressions, op represents binary infix parallel compo-
sition operators, and V, V0, V1, . . . represent synchronization vectors.

The semantics of a composition expression is itself an Lts that we define in the following
sections.

INRIA

Exp.Open 2.0: A Flexible Tool Integrating Verification Methods 5

B ::= S0 (1)

| [gate | total | single | multiple] rename

(L1 � L′

1, . . . , Ln � L′

n | using P0) in B0 end rename (2)

| [gate | total | partial] hide

([all but] L1, . . . , Ln | using P0) in B0 end hide (3)

| [gate | total | partial] cut

([all but] L1, . . . , Ln | using P0) in B0 end cut (4)

| [gate | label] par (all | L1 [#n1], . . ., Lm [#nm]) in

[L1
1, . . . , Lp1

1 �] B1 || . . .|| [L1
n, . . . , Lpn

n �] Bn end par (5)

| [gate | label] par V1, . . . , Vm in B1 || . . . || Bn end par (6)

| B1 op B2 (7)

| B0 / { L1, . . . , Ln } (8)

| B0 [L1 / L′

1, . . . , Ln / L′

n] (9)

| B0 [[L1
� L′

1, . . . , Ln
� L′

n]] (10)

op ::= | | || | ||| | |[L1, . . . , Ln]|

| [| L1, . . ., Ln |] | [L1, . . . , Ln || L′

1, . . . , L′

n]

V ::= (L1 |) * . . . * (Ln |) � L0

Figure 1: Abstract syntax of the Exp.Open 2.0 input language.

2.2 Renaming, hiding, and cut operators

Renaming (replacing occurrences of a visible label), hiding (renaming a visible label into τ),
and cut2 (eliminating all transitions with a particular visible label, possibly at the expense
of creating unreachable states), are classical notions in process algebras.

For convenience, Exp.Open 2.0 supports the usual notations for these operators found in
Ccs and Csp (Rules 8, 9, and 10). Rule 8 represents either Ccs restriction or Csp hiding,
which have same syntax but different semantics. Rules 9 and 10 represent Ccs and Csp
renaming, respectively. In these three rules, L1, L

′

1, . . . , Ln, L′

n are simple gates.

Exp.Open 2.0 also supports more expressive operators for renaming, hiding, and cut
(Rules 2, 3, and 4), which generalize classical operators in several ways:

� The labels to rename, hide, or cut can be specified either as a list (L1 , . . . , Ln), or as
a pattern (“using P0”), which consists of a reusable list of labels or renaming rules,
stored in a separate file for convenience. The latter allows to factor rules used several
times, or to isolate complex rules.

� For hiding and cut, the “all but L1, . . . , Ln” construct allows to define a set con-
taining all labels but L1 , . . . , Ln .

� L1 , . . . , Ln can be strings, or regular expressions (following the syntax of the Posix
“regexp” library) that labels may match using three different semantics: gate means
that a label matches only if its gate matches a regular expression; total means that

2Cut is also called restriction in Ccs and encapsulation in µCrl.

RR n
�

5673

6 F. Lang

a label matches if it matches a regular expression entirely; and partial means that a
label matches if it contains a substring that matches a regular expression. As regards
renaming, partial matching is refined into two sub-cases: single means that only
the first occurrence of a substring matching a regular expression is replaced, whereas
multiple means that all such occurrences are replaced. The gate matching is the
default, as it corresponds to the semantics found in classical process algebras.

Example 1 The expression “hide G in B0 end hide” hides in B0 every label whose
gate is G, such as “G !1 !2” or “G(1, 2)”. The expression “single rename "\(.*\)

!\(.*\) !\(.*\)" � "\1 !\3 !\2" in B0 end rename” permutes two offers in labels,
e.g., “G !A !B !C” is renamed into “G !B !A !C”3.

2.3 Parallel composition operators

Exp.Open 2.0 contains various parallel composition operators, which can be mixed in the
same expression:

� Rule 7 represents the usual binary parallel composition operators of Ccs (“|”), Csp
(“[| L1,. . . , Ln |]” and “[L1, . . . , Ln || L′

1, . . .L′

n]”), µCrl4 (“||”), and Lotos
(“||”, “|||”, and “|[L1, . . . , Ln]|”).

� Rule 5 represents the n-ary “graphical” parallel composition operator of E-Lotos [40,
23]. To our knowledge, the Exp.Open 2.0 tool provides the first implementation of
this operator in a software tool.

� Rule 6 represents parallel composition using synchronization vectors, inspired from
Mec [2] and Fc2 networks [8].

We do not recall in details the semantics of these operators, which are given elsewhere.
However, we present an overview of the semantics of the operators of Rules 5 and 6, which
are the most general and least known of the Exp.Open 2.0 parallel composition operators.

For these par operators, unlike renaming, hiding, and cut, the Li’s and Lj
i ’s cannot be reg-

ular expressions. Nevertheless, Exp.Open 2.0 also extends these operators with a matching
mode, as follows: gate means that the Li ’s denote gates and that a label A matches Li if
and only if Li is the gate of A; label means that the Li ’s denote full labels and that a label
A matches Li if and only if A equals Li (both gate and offers). The gate matching is the
default, as it corresponds to the semantics found in classical process algebras.

A global state (i.e., a state of the resulting Lts) is a tuple (s1, . . . , sn), where si (i ∈ 1..n) is a
local state of the corresponding Bi. A global transition is obtained either by synchronization

of several local transitions {si
Ai→ ti | i ∈ I ⊆ 1..n}, or by asynchronous execution of a single

local transition si
Ai→ ti, where i ∈ 1..n. The destination state of the global transition is

obtained by replacing every si involved in a local transition by the corresponding ti, whereas
the other local states are not modified.

3The symbols “\(” and “\)” are used to delimit sub-expressions. In the right-hand side, the symbol “\n”,
where n is a number (\1, \2, . . .), is substituted by the string matched by the nth delimited sub-expression
of the left-hand side.

4
µCrl parallel composition depends on user-given synchronization rules, whose scope is the whole com-

position expression. For simplicity, we do not reproduce here the syntax of these rules.

INRIA

Exp.Open 2.0: A Flexible Tool Integrating Verification Methods 7

As regards Rule 5, we briefly recall the main features of the “graphical” parallel composition
operator (see [23] for a formal description and examples):

� The simplest form, “par L1 , . . ., Lm in B1 || . . . || Bn end par”, is a generalization to
n operators of the classical binary parallel composition operators of Csp and Lotos
with forced synchronization on L1 , . . ., Lm . Either one single component evolves
asynchronously by executing a transition whose label A does not match any Li (in such
a case, the other components remain in their current state), or all components evolve
synchronously by executing transitions whose label A (the same for all components)
matches some Li. In both cases, the resulting global transition is also labelled A. The
all keyword denotes the set of all gates or labels (depending on the matching mode)
but the invisible label τ .

� If some Li is followed by “#ni” (2 ≤ ni ≤ n), then only ni (instead of n) of the compo-
nents have to synchronize on Li. This implements a relaxed form of synchronization
named “m among n” synchronization, which is useful to express communication be-
tween a subgroup of components, as will be illustrated later.

� If some Bi is preceded by a list, as in “L1
i , . . . , Lpi

i � Bi”, then Bi must synchronize

on labels matching one of the Lj
i ’s with all other components also preceded by a list

containing Lj
i . This is another form of relaxed synchronization.

Example 2 In “par in G13 ,G12 � B1 || G12 ,G23 � B2 || G23 ,G13 � B3 end par”,
components Bi and Bj (1 ≤ i < j ≤ 3) communicate on gate Gij . In “par G0#2 in B1 ||

B2 || B3 end par”, components communicate pairwise on gate G0 .

Rule 6 implements parallel composition using synchronization vectors of the form “(L1 |
) * . . . * (Ln |) � L0”, whose elements at positions 1..n may be either an Li (i.e., a gate
or a label, depending on the matching mode) or the symbol “ ”. We define the application
of a synchronization vector to the current global state as follows: All components Bi such
that the ith element in the vector is an Li must execute synchronously transitions, such that
the label of each transition matches the corresponding Li (the labels of all transitions must
also have the same offers in gate matching); the label of the resulting global transition is
L0 (followed by the offers of the synchronizing transitions in gate matching). τ -transitions
execute asynchronously.

Example 3 In the expression “gate par Snd ∗ Rcv � Com in B1 || B2 end par”, transi-
tions of B1 whose gate is Snd synchronize with transitions of B2 whose gate is Rcv, provided
those transitions have the same offers. The label of the resulting transition consists of the
Com gate followed by these offers. In label matching instead of gate, transitions of B1

whose label is Snd (gate without offers) would synchronize with transitions of B2 whose
label is Rcv. The label of the resulting transition would be Com, without offers.

In principle, Exp.Open 2.0 allows to freely combine operators originating from different
languages, except in case of overloaded symbols that may have different semantics, such as
“ /” (Ccs restriction or Csp hiding) and “||” (Lotos or µCrl parallel composition). In
such cases, a command-line option (“-ccs”, “-csp”, etc.) or a specific keyword is needed
to indicate to Exp.Open 2.0 which language is considered. Command-line options also
allow to change syntactic conventions, such as the concrete notation of the invisible label τ

RR n
�

5673

8 F. Lang

(e.g., tau, i, t) or case-sensitivity (whether or not labels in lower and upper cases are to be
considered equal).

The static semantics of Exp.Open 2.0 ensure that synchronization vectors have appro-
priate length. They also forbid synchronizing, renaming, and cutting τ -transitions, which
ensures that bisimulation equivalences (strong, observational, branching, tau*.a, etc.) are
congruences for all Exp.Open 2.0 operators [52]. Thus, arbitrary composition expressions
of Exp.Open 2.0 can be verified compositionally, for instance by reducing component Ltss
separately.

3 State space exploration using Exp.Open 2.0

3.1 Translation into a flat network model

To allow an homogeneous treatment of composition expressions, Exp.Open 2.0 first trans-
lates them into a general model, which we call flat network of Ltss (or simply, flat network).

Flat networks are similar to the par operator with synchronization vectors presented in
Rule 6 of Figure 1. A flat network is a couple ((S1, . . . , Sn),Sync) consisting of a vector
(S1, . . . , Sn) of Ltss, and a set Sync of synchronization vectors whose left-hand side (the
part to the left of the arrow) have size n. The differences between flat networks and the par

operator are that synchronization vectors contain “full” labels (instead of gates), including
τ , and that flat networks have no nested subterms except Ltss.

Our flat network model is more general than the model used in Exp.Open 1.0, in which
synchronization was represented only by vectors of gates (instead of labels), and a global
predicate indicating whether a given gate was visible or hidden. This former model allowed
to model composition expressions in which a gate was either visible everywhere or hidden
everywhere, but not partially visible and partially hidden at the same time, such as in “B
|| (hide G in B)” (B containing an occurrence of G), which is legal Lotos code. This
problem imposed that hide operators occur at the top-level of expressions only. On the
opposite, the whole Exp.Open 2.0 input language can be translated into flat networks
without limitations.

A composition expression B is translated into a flat network (s (B), v (B)), where s (B)
is the vector of all Ltss used in B, in the order of their occurrence (thus Ltss occurring
several times in the composition expression also occur several time in the vector), and v (B)
is defined recursively as follows:

� For an Lts S (Rule 1 of Figure 1), v (S) = {A → A | A ∈ labels (S)}.

� For rename, hide, and cut (Rules 2, 3, 4, 8, 9, 10), v (B0) is computed first. Then,
v (B) is obtained by transforming each synchronization vector whose right-hand side
matches a renaming, hiding, or cut rule, as follows: For renaming (respectively hiding),
the right-hand side of the rule is renamed (respectively hidden) accordingly. For cut,
the rule is removed.

� For parallel composition of n sub-expressions B1, . . . , Bn (Rules 5, 6, 7), the sets
v (B1), . . . , v (Bn) are generated first. Their rules are then joined (i.e., their left-hand
sides are concatenated and/or extended with an appropriate number of “ ” symbols)
whenever their respective right-hand sides are synchronizing labels.

INRIA

Exp.Open 2.0: A Flexible Tool Integrating Verification Methods 9

Note that the complexity for computing v (B) depends on the number of labels in each of the
Ltss in s (B), but not on their number of states and transitions. Therefore, the translation
from composition expressions into flat networks is not subject to state explosion.

Example 4 For the Lotos composition expression “B = (S1 ||| S2) |[G]| S3”, where
S1 , S2 , and S3 are Ltss and G a list of gates, s (B) = (S1, S2, S3) and

v (B) = { A * * → A | A ∈ labels (S1), gate (A) /∈ G} ∪
{ * A * → A | A ∈ labels (S2), gate (A) /∈ G} ∪
{ * * A → A | A ∈ labels (S3), gate (A) /∈ G} ∪
{ A * * A → A | A ∈ labels (S1) ∩ labels (S3), gate (A) ∈ G} ∪
{ * A * A → A | A ∈ labels (S2) ∩ labels (S3), gate (A) ∈ G}

Exp.Open 2.0 allows to export flat networks into models suitable for various verification
tools:

� Petri nets in the “low-level” Pep format, which can be verified using the Pep tool [6]
and exported to other Petri net formats.

� Networks of communicating automata in the Fc2 format, which can be verified using
Fc2Tools [8] and Jack [1].

3.2 Integration within the OPEN/CAESAR environment

Cadp devotes a great importance to modular programming, using well-thought intermediate
formats and programming interfaces. Exp.Open 2.0 is connected to Open/Cæsar [17], a
modular environment for developing on-the-fly exploration algorithms on Ltss.

The Open/Cæsar architecture (see Figure 2) is based on a central language-independent
Api (Application Programming Interface), which allows to explore the states and transitions
of an Lts on-the-fly. It describes types that represent labels and states, a function that
computes the initial state of the system, and an Iterate State() function that enumerates
the successor transitions of a given state.

This architecture allows an orthogonal separation between the language-dependent compil-
ers (front-ends) that translate a particular formalism into a C program implementing the
Open/Cæsar Api, and the language-independent verification tools (back-ends) that oper-
ate on the representation of an Lts using the Api. Each fromt-end can be combined with
any back-end.

Cadp includes four front-ends, namely Exp.Open 2.0, Bcg Open for Ltss in the Bcg
(Binary Coded Graphs) format, Cæsar [22] for Lotos [39], and Seq.Open for traces [20].
It also includes several back-ends that provide various functionalities, such as Lts generation,
possibly distributed to use the Cpu and memory of a set of computers [21], on-the-fly model-
checking of regular alternation-free µ-calculus [46], interactive simulation with X-window
interface, generation of conformance test suites based on verification technology [41], on-the-
fly behavioural comparison of systems modulo various equivalence and preorder relations [5],
random execution, deadlock detection, reachability analysis, sequence searching, abstraction
of an Lts w.r.t. an interface [42], etc.

Exp.Open 2.0 first translates the composition expression given as input into a flat network,
and then generates a C program implementing the Open/Cæsar Api, which computes the

RR n
�

5673

10 F. Lang

Interactive simulation

Execution

...

Back−ends

Front−ends

libraries

...

Test generation

On−the−fly verification

Random simulation

Networks of

Distributed Lts generation

Lts generation

Open/Cæsar Api

Seq.Open

traces

Cadp

Open/Cæsar

Ltss

Exp.Open

Lts

Bcg Open

Lotos

Cæsar

Sdl

If.Open Umlaut

Uml/Rt

Figure 2: Architecture of Open/Cæsar.

reachable states and transitions of the composition expression. The translation performs
careful analysis to reduce the number of bits allocated to represent states, and to optimize
speed for the transition function.

3.3 Partial order reductions

Partial order reductions aim at avoiding transition interleavings that are irrelevant for a
given class of properties. Exp.Open 2.0 implements three partial order reductions, pre-
serving respectively the existence or absence of deadlocks, branching bisimulation [62], and
stochastic branching bisimulation [36].

Partial order reduction preserving stochastic branching bisimulation operates on Ltss con-
taining special transitions, called stochastic, of the form “rate λ”, where λ is a positive real.
The stochastic transitions express an internal delay in the source state, while the other tran-
sitions are immediate if their environment allows their execution. Exp.Open 2.0 implements
the technique proposed by H. Hermanns [35], which consists in eliminating the stochastic
transitions in choice with τ -transitions, the latter being always executable without delay.

To present deadlock and branching preserving partial order reductions, we define the fol-
lowing standard notions derived from the theory of persistent sets [26] (of which stubborn
sets [58] and ample sets [50] are variations, see [51] for a survey on persistent set based
partial order reductions), and applied to our context:

� A synchronization vector V is enabled in a state s if s has a successor obtained by
application of V . It is deterministic in s if s has exactly one such successor.

INRIA

Exp.Open 2.0: A Flexible Tool Integrating Verification Methods 11

� Two synchronization vectors V1 and V2 enabled in a state s are commutative if the
set of states reachable by applying first V1 then V2 is the same as that obtained by
applying first V2 then V1.

� Two synchronization vectors V1 and V2 are independent in a given state s if 1) V1 and
V2 are commutative if they are both enabled in s and 2) V1 (respectively V2) is enabled
in a successor state of s obtained by applying V2 (respectively V1) if and only if V1

(respectively V2) is enabled in s.

� A set Sync of synchronization vectors enabled in a state s is persistent in s if, in every
state reachable from s by applying only synchronization vectors that do not belong
to Sync, every synchronization vector that is enabled and does not belong to Sync is
independent of the synchronization vectors that belong to Sync.

Persistent set computation is done by a careful analysis of the synchronization vectors, which
we do not detail in this paper. Partial order reduction preserving the presence or absence of
deadlocks is done in each reachable state of the system, by applying only the synchronization
vectors that belong to the persistent set computed in the current state.

For branching bisimulation, the results of [59, 49, 24] state that, applied to our context, the
persistent sets preserving branching bisimulation are those consisting of a single, determin-
istic synchronization vector, whose right-hand side is the label τ . In the algorithm below,
we will only consider persistent sets that have this particular form. Unfortunately, finding
such a persistent set is not enough to preserve branching bisimulation — and even weaker
relations such as trace equivalence — because one may enter a circuit that prevents enabled
synchronization vectors from ever being executed. This problem is known as the ignoring
problem [51].

Most tools implementing partial order reductions (e.g., Spin [37], Ara [60], etc.) solve the ig-
noring problem by detecting circuits in the back-end. A distinctive feature of Exp.Open 2.0
is to solve the ignoring problem in the front-end, thus avoiding any modification of verifica-
tion back-ends, which can thus benefit from partial order reduction for free, independently
of the strategy that they use to explore the Lts.

More precisely, the ignoring problem is dealt with in the Iterate State() function of
the Open/Cæsar Api. When the Iterate State() function is called to enumerate the
successors of a state s, a persistent set (which contains a single synchronization vector) is
searched for. If it exists, this synchronization vector is executed, leading to a new state
s′. The algorithm is then repeated, starting in s′ instead of s, until reaching a state s′′

that either does not have a persistent set or was already visited. In the former case, a single
τ -transition from s to s′′ is generated. In the latter case, the explored circuit of τ -transitions
starting in s′′ is just discarded (indeed, all states in a circuit of τ -transitions are branching
equivalent) and the algorithm is continued by searching another persistent set in s′′.

Note that the intermediate states reachable from s following persistent sets are only stored
in memory temporarily by the front-end and never visible by the back-end. They are re-
moved once Iterate State() returns, to optimize memory consumption. These states may
possibly be revisited during subsequent calls to Iterate State(), but such revisits are not
penalizing in practice, mostly due to the fact that persistent set computation is fast in
the case of branching bisimulation. This confirms known results [4] about the fine tuning
between storing or revisiting states, which were made on the basis of various storage heuris-
tics leading to the conclusion that better verification performance can often be obtained by
storing only a little amount of states.

RR n
�

5673

12 F. Lang

There exist alternative partial order methods preserving branching bisimulation, which are
based on τ -confluence reduction [32, 7, 48]. Persistent set methods operate a less general
form of τ -confluence reduction than the algorithms presented in [32, 7, 48], but are cheaper in
time and memory. In [48], persistent set methods and τ -confluence reduction are combined
to reduce Ltss compositionally modulo branching bisimulation, using Exp.Open 2.0.

3.4 Refined interface constraints generation

A potential limitation of compositional verification is that, given a system of concurrent
processes, generating the Lts of each process separately may lead to state explosion, even
though the Lts of the whole system has a tractable size. Indeed, generating the Lts of
a process out of its context (i.e., separately from the neighbour processes with which it
synchronizes) may lead to explore states that would be unreachable in the global system.

To address this problem, refined compositional verification approaches have been pro-
posed [28, 10, 63, 11, 12, 27, 42, 9, 25], which allow to generate the Lts of a process by taking
into account interface constraints (also known as environment constraints or context con-
straints). These constraints express the behavioural restrictions imposed on each process by
the synchronization with its neighbour processes, thus avoiding globally unreachable states
and transitions. As regards the choice of appropriate interface constraints, two approaches
are possible.

In the first approach, the articles [28, 42] propose that interface constraints may be provided
by the user (personal insight of the context). The risk is that these constraints are wrong
and thus eliminate states and transitions that would be reachable in the global system.
Exp.Open 2.0 (together with Projector 2.0) supports this approach. It checks automat-
ically during the recomposition of the constrained Lts with its environment whether the
eliminated states and transitions are indeed unreachable. Otherwise, it reports an error so
that the user relaxes its constraints.

The second approach [10, 42] consists in building constraints automatically from the com-
position expression, for instance by considering a particular Lts in the environment and
computing its interactions with the process to restrict. Exp.Open 2.0 also implements this
approach. Given a flat network, in which are identified an Lts S whose labels are those of
a process P to restrict and a set of Ltss S1, . . . , Sn corresponding to processes in the envi-
ronment of P , Exp.Open 2.0 computes refined interface constraints consisting of both an
Lts S′ and a set of labels L representing the potential interactions between S1, . . . , Sn and
P . S′ and L are then used to restrict the Lts corresponding to P using the Projector 2.0
tool of Cadp.

The precise algorithm used by Exp.Open 2.0 to generate interface constraints automatically
will be detailed in another paper. However, we can briefly indicate the advantages of the
proposed approach:

� By operating on flat networks obtained after translation of composition expressions,
it can be applied to any of the languages supported by Exp.Open 2.0. By constrast,
other methods are specific to one single language (e.g., Lotos [42] or Csp [10]).

� It makes possible to build interface constraints obtained from several processes in the
environment of S, even if these processes are distant in the composition expression,
because flattening reduces the distance between algebraic terms. Other methods allow
to build interface constraints only obtained from one single process.

INRIA

Exp.Open 2.0: A Flexible Tool Integrating Verification Methods 13

� In the particular (but frequent) case of nondeterministic synchronization (which is a
characteristic of client-server communications), it produces more accurate interface
constraints, leading to better state space reductions. For instance, in the Lotos ex-
pression “(B1 ||| B2) |[G]| B3”, a G-transition of B3 can synchronize either with a
G-transition of B1 or with a G-transition of B2. The same also applies for more com-
plex situations, such as non-deterministic multiway synchronization involving more
than two processes, and “m among n” synchronization. Other techniques either for-
bid such situations using an input language that does not allow nondeterministic syn-
chronization [10] or under-approximate the interactions between B1 and B3, and B2

and B3, by ignoring the possible synchronizations on G [42]. Instead, Exp.Open 2.0
generates interfaces in which every G-transition is duplicated by a τ -transition with
same source and target states, which models nondeterministic synchronization.

4 Practical applications and experimental results

As part of Cadp, Exp.Open 2.0 is widely disseminated and has already been used for
significant applications. We can mention for instance a few ones:

� At Eindhoven University of Technology, J. Romijn and S. Vorstenboch used it to verify
the Net Update Protocol of the draft standard Ieee P1394.1. By combining the com-
positional techniques of Exp.Open 2.0 and the distributed state space construction
tool of Cadp [21], they managed to generate models of tractable size (up to 28 million
states and 487 million transitions).

� At Saarland University, H. Hermanns and S. Johr used the Exp.Open 2.0 tool to
analyze the performance of a distributed mutual exclusion algorithm. By combining
Exp.Open 2.0 with the distributed state space construction tool of Cadp, they gen-
erated a stochastic model with 224 million states and 1, 300 million transitions, which
was unfortunately too big to fit on a standard 32-bit file system. Using the partial
order reduction that preserves stochastic branching reduction, the state space was re-
duced to 44 million states and 80 million transitions and could be stored in a file on a
single machine.

� At Inria Sophia-Antipolis, E. Madelaine, T. Barros, and L. Henrio used Exp.Open 2.0
to compute large synchronization products corresponding to compositions of hierar-
chical object components [3]. Their work covers dynamic component updates, such as
the dynamic replacement of a sub-component.

At least four additional examples of Exp.Open 2.0 are available as part of Cadp:

� A distributed summation algorithm5 inspired from [29]: The use of “m among
n” synchronization allows a nice modeling of the interprocess communications, based
on topological constraints encoded using data structures.

� The ODP trader6 inspired from [23]: The use of “m among n” synchronization allows
to model communications between arbitrary service providers and service users, which
obtain their respective addresses using a separate process, called trader.

5http://www.inrialpes.fr/vasy/cadp/demos/demo 35
6http://www.inrialpes.fr/vasy/cadp/demos/demo 37

RR n
�

5673

14 F. Lang

� The classical distributed Erathostenes sieve7: It consists of a pipeline of units,
each unit blocking every input number that is a multiple of a given number. Table 3
shows experimental data for Lts generation using Exp.Open 2.0 from 1 to 20 units,
and confirms the effectiveness of partial order reductions.

� The HAVi leader election protocol for home audio-video networks8 [54]:
Exp.Open 2.0 is used to generate interface constraints automatically. Compared
to [54], the Lts corresponding to the largest process was reduced from 400, 000 states
and 3 million transitions downto 700 states and 2, 000 transitions; the memory needed
for the whole verification was reduced from 56 MB downto 8.5 MB; the verification
time was divided by 10 (from 100 s downto 10 s).

units without partial order reduction with partial order reduction
states trans. time (s) mem. (MB) states trans. time (s) mem. (MB)

1 43 59 3.7 2.4 10 9 4.0 2.4
2 159 291 5.1 2.5 10 9 4.9 2.5
3 542 1 233 6.1 2.6 10 9 6.7 2.6
4 1 151 2 909 7.6 2.7 10 9 7.5 2.7
5 3 368 9 831 10.1 2.9 10 9 8.9 2.8
6 12 451 42 423 16.0 3.4 10 9 10.8 3.1
10 166 743 685 951 249.0 11.5 10 9 20.0 5.3
15 — — >2h >113.0 10 9 46.5 17.3
20 — — — — 10 9 99.5 45.8

Figure 3: Generation of configurations of the Erathostenes sieve with and without partial
order reduction.

At last, Figure 4 shows that Exp.Open 2.0 runs from 2 to 10 times faster and uses 2 times
less memory than Exp.Open 1.0 on a benchmark consisting of the case studies available in
the Cadp verification toolbox9.

Figure 4: Performance comparisons between Exp.Open 1.0 and Exp.Open 2.0

7http://www.inrialpes.fr/vasy/cadp/demos/demo 36
8http://www.inrialpes.fr/vasy/cadp/demos/demo 27
9http://www.inrialpes.fr/vasy/cadp/demos

INRIA

Exp.Open 2.0: A Flexible Tool Integrating Verification Methods 15

5 Conclusion

In this report, we presented the new Exp.Open 2.0 tool, which has been available in Cadp
since August 2004.

While other tools allowing to compute synchronization products are either specific to one
language (e.g., Ara-Lotos [60] or Exp.Open 1.0) or implement a single low-level parallel
composition operator (e.g., Mec synchronization vectors [2], Fc2 networks [8], Tvt [34],
modular Petri nets [13]), Exp.Open 2.0 combines both synchronization vectors [2, 8] and
operators taken from several languages, namely Ccs [47], Csp [55], Lotos [39], µCrl [31],
and E-Lotos [40]. To our knowledge, Exp.Open 2.0 provides the first implementation of
the “graphical” parallel composition operator [23] of E-Lotos, which supports “m among
n” synchronization in particular.

Exp.Open 2.0 combines several verification techniques in order to fight combinatorial state
explosion effectively. Together with other tools of Cadp, Exp.Open 2.0 allows to generate
(possibly using the memory and Cpu of several computers) and explore on-the-fly (for
interactive simulation, verification of temporal logics, behavioural equivalence checking, etc.)
the Lts of a composition expression. Generation and exploration can be combined with
several partial order reductions preserving deadlocks, branching bisimulation, or stochastic
branching bisimulation. In addition, Exp.Open 2.0 implements an algorithm to generate
interface constraints for compositional verification automatically.

Exp.Open 2.0 has been used for various applications with Lotos and Cadp, which al-
lowed to show its effectiveness. As regards future work, Exp.Open 2.0 could be combined
with other languages and tools. Experiments with the µCrl toolset are under way in the
framework of the Senva collaboration between Inria and Cwi.

Acknowledgements

The author thanks J. van de Pol for his constructive feedback about the Exp.Open 2.0
tool, for the time he took to proof read the manual page [43], and for helping us to correct
minor errors about the handling of µCrl labels. The author is also grateful to H. Garavel
for many advices during the development of Exp.Open 2.0 and for his constructive remarks
on this report.

References

[1] A bird’s eye view of JACK (Just Another Concurrency Kit). Available online at
http://fmt.isti.cnr.it/jack/OLD JACK PAGES/JACK/structure.html.

[2] André Arnold. MEC: A System for Constructing and Analysing Transition Systems.
In Joseph Sifakis, editor, Proceedings of the 1st Workshop on Automatic Verification
Methods for Finite State Systems (Grenoble, France), volume 407 of Lecture Notes in
Computer Science, pages 117–132. Springer Verlag, June 1989.

[3] T. Barros, L. Henrio, and E. Madelaine. Behavioural Models for Hierarchical Compo-
nents, 2005. Submitted to the 12th International SPIN Workshop on Model Checking
of Software.

RR n
�

5673

16 F. Lang

[4] G. Behrmann, K.G. Larsen, and R. Pelánek. To Store or Not to Store. In Proceedings of
the 15th International Conference on Computer Aided Verification CAV’2003 (Boulder,
Colorado, USA), volume 2275 of Lecture Notes in Computer Science, 2003.

[5] Damien Bergamini, Nicolas Descoubes, Christophe Joubert, and Radu Mateescu.
BISIMULATOR: A Modular Tool for On-the-Fly Equivalence Checking. In Nicolas
Halbwachs and Lenore Zuck, editors, Proceedings of the 11th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems TACAS’2005
(Edinburgh, Scotland, UK), volume 3440 of Lecture Notes in Computer Science, pages
581–585. Springer Verlag, April 2005.

[6] E. Best, J. Esparza, B. Grahlmann, S. Melzer, S. Römer, and F. Wallner. The PEP
verification system. In Proceedings of FEmSys’97, 1997.

[7] Stefan Blom and Jaco van de Pol. State Space Reduction by Proving Confluence. In
Computer Aided Verification 2002, volume 2404 of Lecture Notes in Computer Science,
2002.

[8] Amar Bouali, Annie Ressouche, Valérie Roy, and Robert de Simone. The Fc2Tools set:
a Toolset for the Verification of Concurrent Systems. In Rajeev Alur and Thomas A.
Henzinger, editors, Proceedings of the 8th Conference on Computer-Aided Verification
(New Brunswick, New Jersey, USA), volume 1102 of Lecture Notes in Computer Sci-
ence. Springer Verlag, August 1996.

[9] K. H. Cheung. Compositional Analysis of Complex Distributed Systems. PhD thesis,
Department of Computer Science, Hong Kong University of Science and Technology,
Hong Kong, 1998.

[10] S. C. Cheung and J. Kramer. Enhancing Compositional Reachability Analysis with
Context Constraints. In Proceedings of the 1st ACM SIGSOFT International Sym-
posium on the Foundations of Software Engineering (Los Angeles, CA, USA), pages
115–125. ACM Press, December 1993.

[11] S. C. Cheung and J. Kramer. Compositional Reachability Analysis of Finite-State Dis-
tributed Systems with User-Specified Constraints. In Proceedings of the 3rd ACM SIG-
SOFT International Symposium on the Foundations of Software Engineering (Wash-
ington, DC, USA), pages 140–150. ACM Press, October 1995.

[12] S. C. Cheung and J. Kramer. Context Constraints for Compositional Reachability.
ACM Transactions on Software Engineering Methodology TOSEM, 5(4):334–377, Oc-
tober 1996.

[13] S. Christensen and L. Petrucci. Modular State Space Analysis of Coloured Petri Nets. In
G. de. Michelis and M. Diaz, editors, Proceedings of the 16th International Conference
on Application and Theory of Petri Nets, volume 935 of Lecture Notes in Computer
Science, 1995.

[14] Jean-Claude Fernandez. ALDEBARAN : un système de vérification par réduction de
processus communicants. Thèse de Doctorat, Université Joseph Fourier (Grenoble),
May 1988.

[15] Jean-CLaude Fernandez, Claude Jard, Thierry Jéron, and Laurent Mounier. “On the
Fly” Verification of Finite Transition Systems. Formal Methods in System Design, 1992.

INRIA

Exp.Open 2.0: A Flexible Tool Integrating Verification Methods 17

[16] Jean-Claude Fernandez and Laurent Mounier. Verifying Bisimulations “On the Fly”. In
Juan Quemada, José Manas, and Enrique Vázquez, editors, Proceedings of the 3rd In-
ternational Conference on Formal Description Techniques FORTE’90 (Madrid, Spain).
North-Holland, November 1990.

[17] Hubert Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification,
Simulation, and Testing. In Bernhard Steffen, editor, Proceedings of the First Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems TACAS’98 (Lisbon, Portugal), volume 1384 of Lecture Notes in Computer Sci-
ence, pages 68–84, Berlin, March 1998. Springer Verlag. Full version available as INRIA
Research Report RR-3352.

[18] Hubert Garavel and Frédéric Lang. SVL: a Scripting Language for Compositional
Verification. In Myungchul Kim, Byoungmoon Chin, Sungwon Kang, and Danhyung
Lee, editors, Proceedings of the 21st IFIP WG 6.1 International Conference on Formal
Techniques for Networked and Distributed Systems FORTE’2001 (Cheju Island, Korea),
pages 377–392. IFIP, Kluwer Academic Publishers, August 2001. Full version available
as INRIA Research Report RR-4223.

[19] Hubert Garavel, Frédéric Lang, and Radu Mateescu. An Overview of CADP 2001.
European Association for Software Science and Technology (EASST) Newsletter, 4:13–
24, August 2002. Also available as INRIA Technical Report RT-0254 (December 2001).

[20] Hubert Garavel and Radu Mateescu. SEQ.OPEN: A Tool for Efficient Trace-Based
Verification. In Susanne Graf and Laurent Mounier, editors, Proceedings of the 11th
International SPIN Workshop on Model Checking of Software SPIN’2004 (Barcelona,
Spain), volume 2989 of Lecture Notes in Computer Science, pages 150–155. Springer
Verlag, April 2004.

[21] Hubert Garavel, Radu Mateescu, and Irina Smarandache. Parallel State Space Con-
struction for Model-Checking. In Matthew B. Dwyer, editor, Proceedings of the 8th
International SPIN Workshop on Model Checking of Software SPIN’2001 (Toronto,
Canada), volume 2057 of Lecture Notes in Computer Science, pages 217–234, Berlin,
May 2001. Springer Verlag. Revised version available as INRIA Research Report RR-
4341 (December 2001).

[22] Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS Specifi-
cations. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the 10th
International Symposium on Protocol Specification, Testing and Verification (Ottawa,
Canada), pages 379–394. IFIP, North-Holland, June 1990.

[23] Hubert Garavel and Mihaela Sighireanu. A Graphical Parallel Composition Operator
for Process Algebras. In Jianping Wu, Qiang Gao, and Samuel T. Chanson, editors, Pro-
ceedings of the Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols, and Protocol Specification, Test-
ing, and Verification FORTE/PSTV’99 (Beijing, China), pages 185–202. IFIP, Kluwer
Academic Publishers, October 1999.

[24] R. Gerth, R. Kuiper, W. Penczek, and D. Peled. A Partial Order Approach to Branching
Time Logic Model Checking. Information and Computation, 150(2):132–152, 1999. A
short version of this paper was previously published at the Third Israel Symposium on
Theory of Computing and Systems ISTCS 1995.

RR n
�

5673

18 F. Lang

[25] D. Giannakopoulou. Model Checking for Concurrent Software Architectures. PhD the-
sis, Imperial College of Science, Technology and Medicine — University of London —
Department of Computer Science, January 1999.

[26] Patrice Godefroid. Using Partial Orders to Improve Automatic Verification Methods.
In R. P. Kurshan and E. M. Clarke, editors, Proceedings of the 2nd Workshop on
Computer-Aided Verification (Rutgers, New Jersey, USA), volume 3 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, pages 321–340. AMS-ACM,
June 1990.

[27] S. Graf, B. Steffen, and G. Lüttgen. Compositional Minimisation of Finite State Systems
using Interface Specifications. Formal Aspects of Computation, 8(5):607–616, September
1996.

[28] Susanne Graf and Bernhard Steffen. Compositional Minimization of Finite State Sys-
tems. In R. P. Kurshan and E. M. Clarke, editors, Proceedings of the 2nd Workshop
on Computer-Aided Verification (Rutgers, New Jersey, USA), volume 531 of Lecture
Notes in Computer Science, pages 186–196. Springer Verlag, June 1990.

[29] J.F. Groote, F. Monin, and J. Springintveld. A Computer Checked Algebraic Verifi-
cation of a Distributed Summation Algorithm. Computer Science Report 97/14, De-
partment of Mathematics and Computer Science, Eindhoven University of Technology,
1997.

[30] J.F. Groote and J. van de Pol. State Space Reduction using Partial τ -Confluence. In Mo-
gens Nielsen and Branislav Rovan, editors, Proceedings of the 25th International Sym-
posium on Mathematical Foundations of Computer Science MFCS’2000 (Bratislava,
Slovakia), volume 1893 of Lecture Notes in Computer Science, pages 383–393, Berlin,
August 2000. Springer Verlag. Also available as CWI Technical Report SEN-R0008,
Amsterdam, March 2000.

[31] J.F. Groote and A. Ponse. Syntax and semantics of µ-CRL. In A. Ponse, C. Verhoef,
and S.F.M. van Vlijmen, editors, Algebra of Communicating Processes, Workshops in
Computing, pages 26–62, 1995.

[32] J.F. Groote and M.P.A. Sellink. Confluence for process verification. Theoretical Com-
puter Science, 170(1–2):47–81, December 1996.

[33] H. Hansen, W. Penczek, and A. Valmari. Stuttering-Insensitive Automata for On-the-
fly Detection of Livelock Properties. In 7th International ERCIM Workshop in Formal
Methods for Industrial Critical Systems, volume 66 of Electronic Notes in Theoretical
Computer Science, 2002.

[34] Henri Hansen, Heikki Virtanen, and Antti Valmari. Merging State-Based and Action-
Based Verification. In Proceedings of the Third International Conference on Application
of Concurrency to System Design. IEEE Computer Society, 2003.

[35] Holger Hermanns. Interactive Markov Chains and the Quest for Quantified Quality,
volume 2428 of LNCS. Springer Verlag, 2002.

[36] Holger Hermanns and Markus Siegle. Bisimulation Algorithms for Stochastic Process
Algebras and their BDD-based Implementation. In Joost-Pieter Katoen, editor, Pro-
ceedings of the 5th International AMAST Workshop ARTS’99 (Bamberg, Germany),
volume 1601 of Lecture Notes in Computer Science, pages 244–265. Springer Verlag,
May 1999.

INRIA

Exp.Open 2.0: A Flexible Tool Integrating Verification Methods 19

[37] G. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, May 1997.

[38] G.J. Holzmann. On-The-Fly Model Checking. ACM Computing Surveys, 28(4), 1996.

[39] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. International Standard 8807, International Organization
for Standardization — Information Processing Systems — Open Systems Interconnec-
tion, Genève, September 1989.

[40] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001,
International Organization for Standardization — Information Technology, Genève,
September 2001.

[41] T. Jéron and P. Morel. Test generation derived from model-checking. In N. Halbwachs
and D. Peled, editors, Proceedings of the Conference on Computer-Aided Verification
CAV’99 (Trento, Italy), volume 1633 of Lecture Notes in Computer Science, pages
108–122. Springer Verlag, July 1999.

[42] Jean-Pierre Krimm and Laurent Mounier. Compositional State Space Generation from
LOTOS Programs. In Ed Brinksma, editor, Proceedings of TACAS’97 Tools and Algo-
rithms for the Construction and Analysis of Systems (University of Twente, Enschede,
The Netherlands), volume 1217 of Lecture Notes in Computer Science, Berlin, April
1997. Springer Verlag. Extended version with proofs available as Research Report
VERIMAG RR97-01.

[43] Frédéric Lang. The Exp.Open 2.0 manual page, 2004. Available online at
http://www.inrialpes.fr/vasy/cadp/man/exp.open.html.

[44] J. Malhotra, S. A. Smolka, A. Giacalone, and R. Shapiro. A Tool for Hierarchical Design
and Simulation of Concurrent Systems. In Proceedings of the BCS-FACS Workshop on
Specification and Verification of Concurrent Systems (Stirling, Scotland), pages 140–
152, Swinton, UK, July 1988. British Computer Society.

[45] Radu Mateescu. A Generic On-the-Fly Solver for Alternation-Free Boolean Equation
Systems. In Hubert Garavel and John Hatcliff, editors, Proceedings of the 9th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis of
Systems TACAS’2003 (Warsaw, Poland), volume 2619 of Lecture Notes in Computer
Science, pages 81–96. Springer Verlag, April 2003. Full version available as INRIA
Research Report RR-4711.

[46] Radu Mateescu and Mihaela Sighireanu. Efficient On-the-Fly Model-Checking for Reg-
ular Alternation-Free Mu-Calculus. Science of Computer Programming, 46(3):255–281,
March 2003.

[47] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[48] Gordon Pace, Frédéric Lang, and Radu Mateescu. Calculating τ -Confluence Composi-
tionally. In Jr Warren A. Hunt and Fabio Somenzi, editors, Proceedings of the 15th In-
ternational Conference on Computer Aided Verification CAV’2003 (Boulder, Colorado,
USA), volume 2725 of Lecture Notes in Computer Science, pages 446–459. Springer
Verlag, July 2003. Full version available as INRIA Research Report RR-4918.

RR n
�

5673

20 F. Lang

[49] D. Peled. Partial Order Reduction: Linear and Branching Temporal Logics and Process
Algebras. In Peled et al. [51].

[50] D.A. Peled. Combining partial order reduction with on-the-fly model-checking. In
Computer Aided Verification 1994, volume 818 of Lecture Notes in Computer Science.
Springer-Verlag, 1994.

[51] D.A. Peled, V.R. Pratt, and G.J. Holzmann, editors. Proceedings of the Workshop on
Partial Order Methods in Verification, volume 29 of Dimacs Series in Discrete Mathe-
matics, 1997.

[52] Jaco van de Pol. Proof using the PVS theorem prover that bisimulations are congruences
for synchronization vectors that do not rename, cut, nor synchronize τ -transitions, 2003.
Personal communication.

[53] Y.S. Ramakrishna and S.A. Smolka. Partial-Order Reduction in the Weak Modal Mu-
Calculus. In A. Mazurkiewicz and J. Winkowski, editors, Proceedings of the 8th In-
ternational Conference on Concurrency Theory CONCUR’97, volume 1243 of Lecture
Notes in Computer Science, pages 5–24. Springer Verlag, 1997.

[54] Judi Romijn. Model Checking the HAVi Leader Election Protocol. Technical Report
SEN-R9915, CWI, Amsterdam, The Netherlands, June 1999. submitted to Formal
Methods in System Design.

[55] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

[56] K. K. Sabnani, A. M. Lapone, and M. U. Uyar. An Algorithmic Procedure for Checking
Safety Properties of Protocols. IEEE Transactions on Communications, 37(9):940–948,
September 1989.

[57] K. C. Tai and V. Koppol. Hierarchy-Based Incremental Reachability Analysis of Com-
munication Protocols. In Proceedings of the IEEE International Conference on Network
Protocols (San Francisco, CA), pages 318–325, Piscataway, NJ, October 1993. IEEE
Press.

[58] A. Valmari. A Stubborn Attack on State Explosion. In R. P. Kurshan and E. M. Clarke,
editors, Proceedings of the 2nd Workshop on Computer-Aided Verification (Rutgers,
New Jersey, USA), volume 3 of DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science, pages 25–42. AMS-ACM, June 1990.

[59] A. Valmari. Stubborn Set Methods for Process Algebras. In Peled et al. [51].

[60] A. Valmari, J. Kemppainen, M. Clegg, and M. Levanto. Putting Advanced Reachability
Analysis Techniques Together: the “ARA” Tool. In Proceedings of the First Interna-
tional Symposium of Formal Methods Europe FME ’93, volume 670 of Lecture Notes in
Computer Science, pages 597–616. Springer-Verlag, 1993.

[61] Antti Valmari. Compositional State Space Generation. In Proceedings of Advances in
Petri Nets, volume 674 of Lecture Notes in Computer Science, pages 427–457. Springer
Verlag, 1993.

[62] R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in Bisimula-
tion Semantics (extended abstract). CS R8911, Centrum voor Wiskunde en Informatica,
Amsterdam, 1989. Also in proc. IFIP 11th World Computer Congress, San Francisco,
1989.

INRIA

Exp.Open 2.0: A Flexible Tool Integrating Verification Methods 21

[63] W. J. Yeh. Controlling State Explosion in Reachability Analysis. PhD thesis, Software
Engineering Research Center (SERC) Laboratory, Purdue University, December 1993.
Technical Report SERC-TR-147-P.

RR n
�

5673

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

