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Thème COM — Systèmes communicants

Projet VASY

Rapport de recherche n° 7078 — Octobre 2009 — 28 pages

Abstract: Explicit state methods have proven useful in verifying safety-critical
systems containing concurrent processes that run asynchronously and commu-
nicate. Such methods consist of inspecting the states and transitions of a graph
representation of the system. Their main limitation is state explosion, which
happens when the graph is too large to be stored in the available computer
memory. Several techniques can be used to palliate state explosion, such as
on-the-fly verification, compositional verification, and partial order reductions.
In this paper, we propose a new technique of partial order reductions based
on compositional confluence detection (Ccd), which can be combined with the
techniques mentioned above. Ccd is based upon a generalization of the notion
of confluence defined by Milner and exploits the fact that synchronizing transi-
tions that are confluent in the individual processes yield a confluent transition
in the system graph. It thus consists of analysing the transitions of the individ-
ual process graphs and the synchronization structure to identify such confluent
transitions compositionally. Under some additional conditions, the confluent
transitions can be given priority over the other transitions, thus enabling graph
reductions. We propose two such additional conditions: one ensuring that the
generated graph is equivalent to the original system graph modulo branching
bisimulation, and one ensuring that the generated graph contains the same
deadlock states as the original system graph. We also describe how Ccd-based
reductions were implemented in the Cadp toolbox, and present examples and
a case study in which adding Ccd improves reductions with respect to compo-
sitional verification and other partial order reductions.

A short version of this report is also available as “Partial Order Reductions using Com-

positional Confluence Detection”, in Jos Baeten, Ana Cavalcanti, and Dennis Dams, editors,
Proceedings of the 16th International Symposium on Formal Methods FM’2009 (Eindhoven,
The Netherlands), November 4–6, 2009.
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Réductions d’ordres partiels

avec détection compositionnelle de confluence

Résumé : Les méthodes d’états explicites se sont révélées utiles pour vérifier
des systèmes critiques constitués de processus parallèles s’exécutant de manière
asynchrone et communicant. De telles méthodes consistent à inspecter les états
et les transitions d’une représentation du système sous forme de graphe. Leur
principale limitation est l’explosion d’états, qui se produit lorsque le graphe est
trop grand pour être stocké dans la mémoire disponible de l’ordinateur. Plu-
sieurs techniques peuvent être utilisées pour pallier l’explosion d’états, telles
que la vérification à la volée, la vérification compositionnelle, et les réductions
d’ordres partiels. Dans cet article, nous proposons une nouvelle technique de
réduction d’ordres partiels basée sur la détection compositionnelle de confluence
(compositional confluence detection, Ccd), qui peut être combinée avec les tech-
niques citées ci-dessus. Ccd se base sur une généralisation de la notion de
confluence définie par Milner et exploite le fait que la synchronisation de transi-
tions confluentes dans les processus individuels produit une transition confluente
dans le graphe du system complet. Il suffit donc d’analyser les transitions des
graphes des processus individuels ainsi que la structure de synchronisation pour
identifier de telles transitions confluentes de manière compositionnelle. En ajou-
tant des conditions supplémentaires, les transitions confluentes peuvent être
rendues prioritaires par rapport aux autres transitions, permettant ainsi des
réductions du graphe. Nous proposons deux telles conditions supplémentaires :
l’une garantit que le graphe généré est équivalent au graphe d’origine modulo la
bisimulation de branchement, et l’autre garantit que le graphe généré contient
les mêmes états d’interblocage que le le graphe d’origine. Nous décrivons aussi
comment les réductions basées sur Ccd ont été mises en application dans la
bôıte à outils Cadp, et nous présentons des exemples et une étude de cas dans
lesquels l’utilisation de Ccd améliore les réductions par rapport à la vérification
compositionnelle et d’autres réductions d’ordres partiels.

Mots-clés : Bisimulation de branchement, explosion d’états, interblo-
cage, méthode formelle, model-checking, parallélisme asynchrone, réduction de
graphe, réseau d’automates communicants, vérification
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1 Introduction

This paper deals with systems, hereafter called asynchronous systems, which
can be modeled by a composition of individual processes that execute in par-
allel at independent speeds and communicate. Asynchronous systems can be
found in many application domains, such as communication protocols, embed-
ded software, hardware architectures, distributed systems, etc.

Industrial asynchronous systems are often subject to strong constraints in terms
of development cost and/or reliability. A way to address these constraints is
to use methods allowing the identification of bugs as early as possible in the
development cycle. Explicit state verification is such a method, and consists of
verifying properties by systematic exploration of the states and transitions of
an abstract model of the system.

Although appropriate for verifying asynchronous systems, explicit state verifi-
cation may be limited by the combinatorial explosion of the number of states
and transitions (called state explosion). Among the numerous techniques that
have been proposed to palliate state explosion, the following have proved to be
effective:� On-the-fly verification (see e.g., [9, 8, 20, 29, 27]) consists of enumerating

the states and transitions in an order determined by a property of interest,
thus enabling one to find property violations before the whole system
graph has been generated.� Compositional verification (see e.g., [7, 26, 38, 41, 43, 6, 36, 16, 23, 37,
14, 11]) consists of replacing individual processes by property-preserving
abstractions of limited size.� Partial order reductions (see e.g., [15, 39, 33, 19, 40, 34, 35, 18, 31, 3, 32])
consist of choosing not to explore interleavings of actions that are not
relevant with respect to either the properties or the graph equivalence of
interest.

Regarding partial order reductions, two lines of work coexist. The first addresses
the identification of a subset called persistent [15] (or ample [33], or stubborn [39],
see [34] for a survey1) of the operations that define the transitions of the system,
such that all operations outside this subset are independent of all operations
inside this subset. This allows the operations outside the persistent subset to
be ignored in the current state. Depending on additional conditions, persistent
subsets may preserve various classes of properties (e.g., deadlocks, Ltl-X, Ctl-
X, etc.) and/or graph equivalence relations (e.g., branching equivalence [42],
weak trace equivalence [5], etc). Other methods based on the identification of
independent transitions, such as sleep sets [15], can be combined with persistent
sets to obtain more reductions.

1In this paper, the term persistent will refer equally to persistent, ample, or stubborn.

INRIA
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The second line of work addresses the detection of particular non-observable
transitions (non-observable transitions are also called τ -transitions) that satisfy
the property of confluence [30, 19, 18, 44, 2, 3, 32], using either symbolic or
explicit-state techniques. Such transitions can be given priority over the rest
of the transitions of the system, thus avoiding exploration of useless states and
transitions while preserving branching (and observational) equivalence. Among
the symbolic detection techniques, the proof-theoretic technique of [3] statically
generates a formula encoding the confluence condition from a µCrl program,
and then solves it using a separate theorem prover. Among the explicit-state
techniques, the global technique of [18] computes the maximal set of strongly
confluent τ -transitions and reduces the graph with respect to this set. A local
technique was proposed in [2], which computes on-the-fly a representation map
associating a single state to each connected subgraph of confluent τ -transitions.
Another technique was proposed in [32], which reformulates the detection as
the resolution of a Bes (Boolean Equation System) and prioritizes confluent
τ -transitions in the individual processes before composing them, using the fact
that branching equivalence is a congruence for the parallel composition of pro-
cesses. Compared to persistent subset methods, whose practical effectiveness
depends on the accuracy of identifying independent operations (by analyzing
the system description), confluence detection methods are able to detect all
confluent transitions (by exploring the system graph), potentially leading to
better reductions.

In this paper, we present a new compositional partial order reduction method
for systems described as networks of communicating automata. This method,
named Ccd (Compositional Confluence Detection), exploits the confluence of
individual process transitions that are not necessarily labeled by τ and thus
cannot be prioritized in the individual processes. Ccd relies on the fact that
synchronizing such transitions always yields a confluent transition in the graph
of the composition. As an immediate consequence, if the latter transition is la-
beled by τ (i.e., hidden after synchronization), then giving it priority preserves
branching equivalence. We also describe conditions to ensure that even tran-
sitions that are not labeled by τ can be prioritized, while still preserving the
deadlocks of the system.

The aim of Ccd is to use compositionality to detect confluence more efficiently
than explicit-state techniques applied directly to the graph of the composition,
the counterpart being that not all confluent transitions are necessarily detected
(as in persistent subset methods). Nevertheless, Ccd and persistent subset
methods are orthogonal, meaning that neither method applied individually per-
forms better than both methods applied together. Thus, Ccd can be freely
added in order to improve the reductions achieved by persistent subset methods.
Moreover, the definition of confluent transitions is language-independent (i.e.,
it does not rely upon the description language — in our case Exp.Open 2.0 [24]
— but only upon the system graph), making Ccd suitable for networks of com-
municating automata produced from any description language equipped with
interleaving semantics.

RR n° 7078
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Ccd was implemented in the Cadp toolbox [12] and more particularly in the ex-
isting Exp.Open 2.0 tool for compositional verification, which provides on-the-
fly verification of compositions of processes. A new procedure was developed,
which searches and annotates the confluent (or strictly confluent) transitions
of a graph, using a Bes to encode the confluence property. This procedure is
invoked on the individual processes so that Exp.Open 2.0 can then generate
a reduced graph for the composition, possibly combined with already available
persistent subset methods.

Experimental results show that adding Ccd may improve reductions with re-
spect to compositional verification and persistent subset methods.

Paper outline. Section 2 gives preliminary definitions and theorems. Section 3
formally presents the semantic model that we use to represent asynchronous
systems. Section 4 presents the main result of the paper. Section 5 describes
how the Ccd technique is implemented in the Cadp toolbox. Section 6 presents
several experimental results. Section 7 reports about the application of Ccd in
an industrial case-study. Finally, Section 8 gives concluding remarks.

2 Preliminaries

We consider the standard Lts (Labeled Transition System) semantic model [30],
which is a graph consisting of a set of states, an initial state, and a set of
transitions between states, each transition being labeled by an action of the
system.

Definition 1 (Labeled Transition System) Let A be a set of symbols
called labels, which contains a special symbol τ , called the unobservable label.
An Lts is a quadruple (Q, A,→, q0), where Q is the set of states, A ⊆ A is the
set of labels, →⊆ Q × A× Q is the transition relation, and q0 ∈ Q is the initial
state of the Lts. As usual, we may write q1

a
−→ q2 instead of (q1, a, q2) ∈→.

Any sequence of the form q1
a1−→ q2

a2−→ . . . qn
an−→ qn+1 is called a path of length

n from q1 to qn+1 (n ≥ 0). We write q1 −→n qn+1 if there exists such a path.
The transition relation is acyclic if every path from a state to itself has length
0. �

Branching equivalence [42] is a weak bisimulation relation between states of
an Lts that removes some τ -transitions while preserving the branching struc-
ture of the Lts. Therefore, branching equivalence is of interest when verifying
branching-time temporal logic properties that concern only observable labels.

Definition 2 (Branching equivalence [42]) As usual, we write
τ∗
−→ the re-

flexive and transitive closure of
τ

−→. Two states q1, q2 ∈ Q are branching equiv-
alent if and only if there exists a relation R ⊆ Q × Q such that R(q1, q2) and

(1) for each transition q1
a

−→ q′1, either a = τ and R(q′1, q2) or there is a path

INRIA
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b b b

(i) (ii) (iii)

where b = τ where a = τ

strict strong confluence

strong confluence

a aa
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Figure 1: Graphical definition of strong confluence and strict strong confluence

q2
τ∗
−→ q′2

a
−→ q′′2 such that R(q1, q

′
2) and R(q′1, q

′′
2 ), and (2) for each transition

q2
a

−→ q′2, either a = τ and R(q1, q
′
2) or there is a path q1

τ∗
−→ q′1

a
−→ q′′1 such

that R(q′1, q2) and R(q′′1 , q′2). �

The following definition of strong confluence is a synthesis of the definitions of
confluence by Milner [30], which is a property of processes, and partial strong
τ-confluence by Groote and van de Pol [18], which is a property of τ -transitions.
We thus generalize Groote and van de Pol’s definition to transitions labeled by
arbitrary symbols, as was the case of Milner’s original definition. In addition,
we distinguish between the property of strong confluence, and a slightly more
constrained property, named strict strong confluence.

Definition 3 (Strong confluence) Let (Q, A,→, q0) be an Lts and T ⊆→.

We write q
a

−→T q′ if (q, a, q′) ∈ T . We write q
a

−→ q′ if either q
a

−→ q′ or q = q′

and a = τ , and similarly for q
a

−→T q′. T is strongly confluent if for every pair

of distinct transitions q1
a

−→T q2 and q1
b

−→ q3, there exists a state q4 such

that q3
a

−→T q4 and q2
b

−→ q4. T is strictly strongly confluent if for every pair

of distinct transitions q1
a

−→T q2 and q1
b

−→ q3, there exists a state q4 such

that q3
a

−→T q4 and q2
b

−→ q4. A transition is strongly confluent (respectively
strictly strongly confluent) if there exists a strongly confluent set (respectively
strictly strongly confluent set) T ⊆→ containing that transition. �

Figure 1 gives a graphical picture of strong confluence. Plain arrows denote tran-
sitions quantified universally, whereas dotted arrows denote transitions quanti-
fied existentially. For strict strong confluence, case (iii) is excluded.

Strong τ -confluence is strong confluence of τ -transitions. Weaker notions of τ -
confluence have been defined [19, 44], but are out of the scope of this paper.
For brevity, we use below the terms confluent and strictly confluent instead of
strongly confluent and strictly strongly confluent, respectively.

Prioritization consists of giving priority to some transitions. Definition 4 below
generalizes the definition of [18], which was restricted to τ -transitions.

RR n° 7078
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Definition 4 (Prioritization [18]) Let (Q, A,→1, q0) be an Lts and T ⊆
→1. A prioritization of (Q, A,→1, q0) with respect to T is any Lts of the form

(Q, A,→2, q0), where →2 ⊆ →1 and for all q1, q2 ∈ Q, a ∈ A, if q1
a

−→1 q2 then

(1) q1
a

−→2 q2 or (2) there exists q3 ∈ Q and b ∈ A such that q1
b

−→2 q3 ∈ T . �

In [18], Groote and van de Pol proved that branching bisimulation is preserved
by prioritization of τ -confluent transitions, provided the Lts does not contain
cycles of τ -transitions. Theorem 1 below relaxes this constraint by only requiring
that the set of prioritized τ -confluent transitions does not contain cycles (which
is similar to the cycle-closing condition for ample sets [33]).

Theorem 1 Let (Q, A,→, q0) be an Lts and T ⊆ → such that T is acyclic and
contains only τ -confluent transitions. Any prioritization of (Q, A,→, q0) with
respect to T yields an Lts that is branching equivalent to (Q, A,→, q0). �

Proof. See [18]. The proof remains correct, despite the fact that the assump-
tion “every cycle of (Q, A,→1, q0) contains at least one transition that does
not belong to →2” is slightly more general than the assumption stated in [18]
“the Lts must not contain cycles of τ -transitions”. Indeed, the justification
of the assumption in [18] is precisely to avoid prioritizing all τ -transitions in
the same cycle of τ -confluent transitions. This issue is related to the problem
known in the setting of persistent sets as the ignoring problem, which is solved
similarly. �

Theorem 2 below states that deadlock states can always be reached without
following transitions that are in choice with strictly confluent transitions. This
allows prioritization of strictly confluent transitions, while ensuring that at least
one (minimal) diagnostic path can be found for each deadlock state.

Theorem 2 Let (Q, A,→, q0) be an Lts, T ⊆ → a strictly confluent set of

transitions, and qδ ∈ Q be a deadlock state. If q1 −→n qδ and q1
a

−→T q2, then
q2 −→m qδ with m < n. �

Proof. We proceed by induction on n. If n = 0 then q1 = qδ, and q1
a

−→T q2

is not possible since a deadlock state has no outgoing transition.

If n = 1 then, since qδ is a deadlock state, q2 = qδ, otherwise

the length of the shortest paths from q1 to qδ. If the length is 0 then q1 = qδ

and the property trivially holds.

We assume that the property holds up to an arbitrary length n. Let the shortest
paths from q1 to qδ have length n + 1. Then there exists a1 ∈ A, q2 ∈ Q and
a shortest path from q1 to qδ whose first transition has the form q1

a1−→ q2. By

INRIA



Partial Order Reductions using Compositional Confluence Detection 9

the induction hypothesis, we know that there exists a (possibly empty) shortest

path from q2 to qδ of the form q2
a2−→ q3

a3−→ . . .
an−→ qn+1 = qδ such that for

all i ∈ 2..n either qi is not the source of any strictly confluent transition or
qi

ai−→ qi+1 is strictly confluent. We consider two cases:� If q1 is not the source of any confluent transition or if q1
a1−→ q2 is confluent

then the path q1
a1−→ q2

a2−→ . . .
an−→ qn+1 = qδ is a shortest path from q1

to qδ such that for all i ∈ 1..n either qi is not the source of any strictly
confluent transition or qi

ai−→ qi+1 is strictly confluent.� Otherwise, there exists a strictly confluent transition of the form q1
a

−→ q′1.
By definition of strict confluence, either q′1 = q2 and a = a1 or there exists

a state q′′1 such that q2
a

−→ q′′1 is strictly confluent. From the induction

hypothesis, we know that if q2
a

−→ q′′1 is strictly confluent then a = a2 and

q′′1 = q3. Therefore, the path q1
a1−→ q2

a2−→ . . .
an−→ qn+1 = qδ is a shortest

path from q1 to qδ such that for all i ∈ 1..n either qi is not the source of
any strictly confluent transition or qi

ai−→ qi+1 is strictly confluent. �

Therefore, any prioritization of (Q, A,→, q0) with respect to T yields an Lts
that has the same deadlock states as (Q, A,→, q0).

Note. Theorem 2 is not true for non-strict confluence, as illustrated by the Lts
consisting of the transition q1

a
−→ qδ and the (non-strictly) confluent transition

q1
τ

−→ q1.

3 Networks of LTSs

This section introduces networks of Ltss [24, 25], a concurrent model close to
Mec [1] and Fc2 [4], which consists of a set of Ltss composed in parallel and
synchronizing following general synchronization rules.

Definition 5 (Vector) A vector of length n over a set T is an element of T n.
Let v, also written (v1, . . . , vn), be a vector of length n. The elements of 1..n
are called the indices of v. For each i ∈ 1..n, v[i] denotes the ith element vi of
v. �

Definition 6 (Network of LTSs) Let • /∈ A be a special symbol denoting
inaction. A synchronization vector is a vector over A ∪ {•}. Let t be a syn-
chronization vector of length n. The active components of t, written act(t), are
defined as the set {i ∈ 1..n | t[i] 6= •}. The inactive components of t, written
inact(t), are defined as the set 1..n \ act(t). A synchronization rule of length
n is a pair (t, a), where t is a synchronization vector of length n and a ∈ A.
The elements t and a are called respectively the left- and right-hand sides of the

RR n° 7078
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synchronization rule. A network of Ltss N of length n is a pair (S, V ) where
S is a vector of length n over Ltss and V is a set of synchronization rules of
length n. �

In the sequel, we may use the term network instead of network of Ltss. A
network (S, V ) therefore denotes a product of Ltss, where each rule expresses
a constraint on the vector of Ltss S. In a given state of the product, each rule
(t, a) ∈ V yields a transition labeled by a under the condition that, assuming
act(t) = {i0, . . . , im}, the Ltss S[i0], . . . , S[im] may synchronize altogether on
transitions labeled respectively by t[i0], . . . , t[im]. This is described formally by
the following definition.

Definition 7 (Network semantics) Let N be a network of length n defined
as a couple (S, V ) and for each i ∈ 1..n, let S[i] be the Lts (Qi, Ai,→i, q0i).
The semantics of N , written lts(N) or lts(S, V ), is an Lts (Q, A,→, q0) where
Q ⊆ Q1 × . . . × Qn, q0 = (q01, . . . , q0n) and A = {a | (t, a) ∈ V }. Given a
synchronization rule (t, a) ∈ V and a state q ∈ Q1 × . . . × Qn, we define the
successors of q by rule (t, a), written succ(q, (t, a)), as follows:

succ(q, (t, a)) = {q′ ∈ Q1 × . . . × Qn | (∀i ∈ act(t)) q[i]
t[i]
−→i q′[i] ∧

(∀i ∈ inact(t)) q[i] = q′[i]}

The state set Q and the transition relation → of lts(N) are the smallest set and
the smallest relation such that q0 ∈ Q and:

q ∈ Q ∧ (t, a) ∈ V ∧ q′ ∈ succ(q, (t, a)) ⇒ q′ ∈ Q ∧ q
a

−→ q′. �

Synchronization rules must obey the following admissibility condition, which
forbids cutting, synchronization and renaming of the τ transitions present in
the individual Ltss. This is suitable for a process algebraic framework, most
parallel composition, hiding, renaming, and cutting operators of which can be
translated into rules obeying these conditions. This also ensures that weak
trace equivalence and stronger relations (e.g., safety, observational, branching,
and strong equivalences) are congruences for synchronization rules [24].

Definition 8 (Network admissibility) The network (S, V ) is admissible if

for each q, q′, i such that q
τ

−→i q′ there exists a rule (ti, τ) ∈ V where ti[i] = τ ,
(∀j 6= i) ti[j] = •, and (∀(t, a) ∈ V \ {(ti, τ)}) t[i] 6= τ . Below, every network
will be assumed to be admissible. �

Example 1 We consider the simple network of Ltss consisting of the vector
of Ltss (Sender1,Bag ,Sender2) depicted in Figure 2 (the topmost node being
the initial state of each Lts), and of the following four synchronization rules:
((s1, s1, •), τ), ((•, s2, s2), τ), ((•, r1, •), r1), ((•, r2, •), r2).

This network represents two processes Sender1 and Sender2, which send their
respective messages s1 and s2 via a communication buffer that contains one

INRIA



Partial Order Reductions using Compositional Confluence Detection 11

place for each sender and uses a bag policy (received messages can be delivered
in any order). Every transition in the individual Ltss of this network is strictly
confluent. The Lts (i) depicted in Figure 3, page 14, represents the semantics
of this network.

Sender1 Bag Sender2

r1 r2

s1

r2

s2

r1

s2 s1

s1 s2

Figure 2: Individual Ltss of the network defined in Example 1

4 Compositional Confluence Detection

Although prioritizing confluent transitions yields Lts reductions, finding con-
fluent transitions in large Ltss such as those obtained by parallel composition
of smaller Ltss can be quite expensive in practice. Instead, the aim of Ccd is
to infer confluence in the large Lts from the (much cheaper to find) confluence
present in the smaller Ltss that are composed.

Definition 9 Let (S, V ) be a network, (t, a) ∈ V , and q, q′ be states of
lts(S, V ). We write all conf(q, (t, a), q′) for the predicate “q′ ∈ succ(q, (t, a)) ∧

(∀i ∈ act(t)) q[i]
t[i]
−→i q′[i] is confluent”. We write all conf strict for the same

predicate, where “strictly confluent” replaces “confluent”. �

Theorem 3 below presents the main result of this paper: synchronizations in-
volving only confluent (resp. strictly confluent) transitions in the individual
Ltss produce confluent (resp. strictly confluent) transitions in the Lts of the
network.

Theorem 3 (Compositional confluence detection) Let (S, V ) be a net-
work, (t, a) ∈ V , and q, q′ be states of lts(S, V ). (1) If all conf(q, (t, a), q′),

then q
a

−→ q′ is confluent and (2) if all conf strict(q, (t, a), q′), then q
a

−→ q′ is
strictly confluent. �

Proof. We give the proof for non-strict confluence. The proof for strict

confluence is simpler since we have to consider fewer relations of the form q
a

−→
q′ where a = τ and q = q′.

RR n° 7078



12 F. Lang and R. Mateescu

For each i ∈ act(t), we name Ti the smallest confluent set that contains q[i]
t[i]
−→i

q′[i]. For brevity, we write −→Ti
instead of −→iTi

. We also define T as the set

of transitions {p
a

−→ p′ | all conf(p, (t, a), p′)}. Note that T contains q
a

−→ q′.

We show that T is a confluent set, which implies that q
a

−→ q′ is confluent.

Let p1
a

−→T p2. By definition of T , p2 ∈ succ(p1, (t, a)) and
all conf(p1, (t, a), p2) holds. Let (t′, b) ∈ V and p3 be such that p3 ∈

succ(p1, (t
′, b)), i.e., p1

b
−→ p3. Note that (t′, b) and p3 necessarily exist, e.g.,

(t′, b) = (t, a) and p3 = p2. By Definition 7 and the facts p2 ∈ succ(p1, (t, a)),
p3 ∈ succ(p1, (t

′, b)), and all conf(p1, (t, a), p2), we can establish the following:

(P1) If i ∈ inact(t) then p1[i] = p2[i].

(P2) If i ∈ act(t) then p1[i]
t[i]
−→Ti

p2[i].

(P3) If i ∈ inact(t′) then p1[i] = p3[i].

(P4) If i ∈ act(t′) then p1[i]
t′

[i]
−→i p3[i].

We show that there exists p4 such that p3
a

−→T p4 and p2
b

−→ p4. We build
p4 as follows:

(Q1) For each i ∈ inact(t), p4[i] is defined as p3[i]. We have p1[i] = p2[i]
(by P1) and:

(Q1a) if i ∈ inact(t′) then p1[i] = p3[i] (by P3), and therefore p2[i] =
p4[i]

(Q1b) if i ∈ act(t′) then p1[i]
t′

[i]
−→i p3[i] (by P4), and therefore p2[i]

t′
[i]

−→i

p4[i]

(Q2) For each i ∈ act(t) ∩ inact(t′), p4[i] is defined as p2[i].

Since p1[i]
t[i]
−→Ti

p2[i] (by P2), we also have p1[i]
t[i]
−→Ti

p4[i].

(Q3) For each i ∈ act(t) ∩ act(t′), we have p1[i]
t[i]
−→Ti

p2[i] (by P2) and

p1[i]
t′

[i]
−→i p3[i] (by P4). By definition of confluence, there exists a state q

such that p2[i]
t′

[i]
−→i q and p3[i]

t[i]
−→Ti

q. p4[i] is defined as q.

By construction, the following therefore holds:

(R1) For each i ∈ inact(t), p3[i] = p4[i] (by Q1) and for each i ∈ act(t),

p3[i]
t[i]
−→Ti

p4[i] (by Q2 and Q3). If for some i ∈ act(t) we have t[i] = τ
and p3[i] = p4[i], then we also have a = τ and p3 = p4 due to the network
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admissibility conditions (Definition 8). Otherwise, for each i ∈ act(t),

we have p3[i]
t[i]
−→Ti

p4[i], i.e., p4 ∈ succ(p3, (t, a)) (by Definition 7) and

all conf(p3, (t, a), p4), which implies p3
a

−→T p4. Therefore in both cases,

p3
a

−→T p4 holds.

(R2) For each i ∈ inact(t′), we have p2[i] = p4[i] (by Q1a and Q2) and for

each i ∈ act(t′), we have p2[i]
t′

[i]
−→i p4[i] (by Q1b and Q3). If for some

i ∈ act(t′) we have t′[i] = τ and p2[i] = p4[i], then we also have b = τ
and p2 = p4 due to the network admissibility conditions (Definition 8).

Otherwise, for each i ∈ act(t′), we have p2[i]
t′

[i]
−→i p4[i], i.e., p2

b
−→ p4

(by Definition 7). Therefore in both cases, p2
b

−→ p4 holds.

From p3
a

−→T p4 (by R1) and p2
b

−→ p4 (by R2), we can conclude that T is
confluent.

We call deadlock preserving reduction using Ccd a prioritization of transitions
obtained from synchronization of strictly confluent transitions (which indeed
preserves the deadlocks of the system following Theorems 2 and 3), and branch-
ing preserving reduction using Ccd a prioritization of τ -transitions obtained
from synchronization of confluent transitions, provided they are acyclic (which
indeed preserves branching bisimulation following Theorems 1 and 3). The ma-
jor differences between both reductions are thus the following: (1) branching
preserving reduction does not require strict confluence; (2) deadlock preserving
reduction does not require any acyclicity condition; and (3) deadlock preserving
reduction does not require the prioritized transitions to be labeled by τ , which
preserves the labels of diagnostic paths leading to deadlock states.

Example 2 Figure 3 depicts three Ltss corresponding to the network presented
in Example 1, page 10. Lts (i) corresponds to the semantics of the network,
generated without reduction. Lts (ii) is the same generated with branching
preserving reduction using Ccd and thus is branching equivalent to Lts (i).
Lts (iii) is the same generated with deadlock preserving reduction using Ccd
and thus has the same deadlock state as Lts (i).

As persistent subset methods, Ccd is able to detect commuting transitions by a
local analysis of the network. For persistent subsets, a relation of independence
between the transitions enabled in the current state is computed dynamically
by inspection of the transitions enabled in the individual Ltss and of their
interactions (defined here as synchronization rules). By contrast, Ccd performs
a static analysis of the individual Ltss to detect which transitions are locally
confluent, the dynamic part being limited to checking whether a transition of
the network can be obtained by synchronizing only locally confluent transitions.
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τ

τ

r1 r2

r2 r1

r1 r2

τ τ

τ

τ

τ

τ

r1

r2

τ

τ

r1 r2

r2 r1

(i) (ii) (iii)

Figure 3: Three Ltss corresponding to the semantics of the network of Exam-
ple 1, one generated without Ccd (i) and two generated using Ccd preserving
respectively branching equivalence (ii) and deadlocks (iii)

Branching preserving reduction using Ccd does not require detection of all
confluent transitions in the individual Ltss of the network, but can be restricted
to those active in a synchronization rule of the form (t, τ). In a network (S, V )
of length n, we thus compute for each i ∈ 1..n a subset Ci ⊆ Ai of labels
that contains all labels t[i] 6= • such that there exists (t, τ) ∈ V . For deadlock
preserving reduction, the subset Ci is defined as Ai.

The problem of detecting confluence in the individual Ltss is reformulated in
terms of the local resolution of a Bes (Boolean Equation System), following the
scheme we proposed in [32].

Definition 10 (Confluence BES) Let (Q, A,→, q0) be an Lts and C ⊆ A
a set of actions. The maximal set of confluent transitions labeled by actions
a ∈ C is encoded by the maximal fixed point Bes below:

B =



Xq1aq2

ν
=

V

q1
b

−→q3

W

q2
b

−→q4

(
W

q3
a

−→q′
4

(q4 = q′

4
∧ Xq3aq4

) ∨ (a = τ ∧ q3 = q4))

ff

q1,q2∈Q,a∈C

Each boolean variable Xq1aq2
, where q1, q2 ∈ Qi and a ∈ Ci, evaluates to true if

and only if q1
a

−→i q2 is confluent. The Bes has maximal fixed point semantics
because we seek to determine the maximal set of confluent transitions contained
in an Lts. For strict confluence,

∨
q3

a
−→iq′

4

must be merely replaced by
∨

q3

a
−→iq′

4

.

A few additional notions are needed in order to prove the correctness of this
encoding. Let (Q, A,→, q0) be an Lts and C ⊆ A a set of actions. Con-

sider the two lattices 〈Bool
|Q|·|C|·|Q|,⊑, false|Q|·|C|·|Q|, true

|Q|·|C|·|Q|,⊔,⊓〉 and
〈2Q×C×Q,⊆, ∅, Q × C × Q,∪,∩〉, where the relation ⊑ and the operations ⊔,
⊓ are defined as the pointwise extensions of the boolean connectors ⇒, ∨, and
∧, respectively. These lattices are isomorphic, being related by the function
Γ : Bool

|Q|·|C|·|Q| → 2Q×C×Q defined below:

Γ(〈bq1aq2
〉q1,q2∈Q,a∈C) = {q1

a
→ q2 | bq1aq2

= true}.
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Partial Order Reductions using Compositional Confluence Detection 15

Γ is an isomorphism, i.e., it is a bijection preserving the compatibility of op-
erations (b ⊑ b′ ⇔ Γ(b) ⊆ Γ(b′), Γ(false|Q|·|C|·|Q|) = ∅, Γ(true

|Q|·|C|·|Q|) =
Q × C × Q, Γ(b ⊔ b

′) = Γ(b) ∪ Γ(b′), and Γ(b ⊓ b
′) = Γ(b) ∩ Γ(b′)).

The interpretation [[B]] of the Bes given in Definition 10 is defined as the maxi-

mal fixed point νΦ, where Φ : Bool
|Q|·|C|·|Q| → Bool

|Q|·|C|·|Q| is the (monotonic)
functional associated to B:

Φ(〈bq1aq2
〉q1,q2∈Q,a∈C) = 〈[[

∧
q1

b
−→q3

∨
q2

b
−→q4

(
∨

q3

a
−→q′

4

(q4 = q′4 ∧ Xq3aq4
) ∨

(a = τ ∧ q3 = q4))]][bq1aq2
/Xq1aq2

]〉q1,q2∈Q,a∈C .

From Tarski’s theorem, the maximal fixed point νΦ can be computed as follows:

νΦ =
⊔

{b ∈ Bool
|Q|·|C|·|Q| | b ⊑ Φ(b)}.

The following lemma provides a link between sets of confluent transitions and
the functional associated to the Bes above.

Lemma 1 Let (Q, A,→, q0) be an Lts, C ⊆ A a set of actions, and let b ∈

Bool
|Q|·|C|·|Q|. Then:

b ⊑ Φ(b) if and only if Γ(b) is confluent.

Proof. If. Let b = 〈bq1aq2
〉q1,q2∈Q,a∈C such that Γ(b) is confluent. We must

show that b ⊑ Φ(b).

Let q1, q2 ∈ Q and a ∈ C such that bq1aq2
= true. From the definition of Γ, this

implies q1
a
→ q2 ∈ Γ(b). Since Γ(b) is confluent, from Definition 3 this implies

that for all q1
b
→ q3, there exists q4 ∈ Q such that q3

a
→Γ(b) q4 and q2

b
→ q4.

Let q1
b
→ q3 be a transition. From the condition above, there exists q4 ∈ Q such

that q2
b
→ q4 and q3

a
→Γ(b) q4. The latter condition means that q3

a
→ q4 ∈ Γ(b).

Two cases are possible: either q3
a
→ q4 ∈ Γ(b), which from the definition of Γ

implies bq3aq4
= true, and we can choose q′4 = q4; or a = τ and q3 = q4. In either

case, the boolean formula

∨
q3

a
−→q′

4

(q4 = q′4 ∧ Xq3aq4
) ∨ (a = τ ∧ q3 = q4)

is true, making the right-hand side of the equation defining variable Xq1aq2
in B

true. This means (Φ(b))q1aq2
= true and, since q1, q2, a were chosen arbitrarily,

b ⊑ Φ(b).

Only if. Let b = 〈bq1aq2
〉q1,q2∈Q,a∈C such that b ⊑ Φ(b). We must show that

Γ(b) is confluent, i.e., it satisfies Definition 3.
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16 F. Lang and R. Mateescu

Let q1
a
→ q2 ∈ Γ(b). From the definition of Γ, this implies bq1aq2

= true. Since
b ⊑ Φ(b), from Definition 10 and the interpretation of boolean formulas, this
implies:

[[
∧

q1

b
−→q3

∨
q2

b
−→q4

(
∨

q3

a
−→q′

4

(q4 = q′4 ∧ Xq3aq4
) ∨

(a = τ ∧ q3 = q4))]][bq1aq2
/Xq1aq2

]q1,q2∈Q,a∈C = true.

Let q1
b
→ q3 be a transition. From the condition above, each conjunct associated

to such a transition must be true, i.e., there must exist a transition q2
b

−→ q4

such that the boolean formula below is true:
∨

q3

a
−→q′

4

(q4 = q′4 ∧ Xq3aq4
) ∨ (a = τ ∧ q3 = q4)

Two cases are possible: either the first disjunct is true, i.e., there exists q′4 ∈ Q

such that q3
a
→ q′4, q4 = q′4, and bq3aq4

= true, which from the definition of Γ

implies q3
a
→ q4 ∈ Γ(b); or the second disjunct is true, i.e., a = τ and q3 = q4.

Since both cases match Definition 3, it follows that Γ(b) is confluent. �

A useful property of confluent sets is that they are closed under union, i.e., the
union of two confluent sets is also confluent. This property can be easily shown
for our notion of confluence in the same way it was shown for τ -confluence
in [18].

The theorem below states the correctness of the Bes encoding of confluence.

Theorem 4 (Correctness of confluence BES) Let (Q, A,→, q0) be an Lts,
C ⊆ A a set of actions, and T ⊆→ the maximal confluent set of transitions
included in {q1

a
→ q2 | a ∈ C}. Then:

Γ([[B]]) = T.

Proof.
Γ([[B]]) = Γ(νΦ) by Definition 10

= Γ(
F

{b | b ∈ Bool
|Q|·|C|·|Q| ∧ b ⊑ Φ(b)}) by Tarski’s theorem

=
S

{Γ(b) | b ∈ Bool
|Q|·|C|·|Q| ∧ b ⊑ Φ(b)} by Γ isomorphism

=
S

{Γ(b) | b ∈ Bool
|Q|·|C|·|Q| ∧ Γ(b) is confluent} by Lemma 1

=
S

{U ⊆ Q × C × Q | U is confluent} by Γ bijection
= T by closure under union.

�

5 Implementation

Ccd was implemented in Cadp2 (Construction and Analysis of Distributed Pro-
cesses) [12], a toolbox for the design of communication protocols and distributed

2http://www.inrialpes.fr/vasy/cadp
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systems, which offers a wide set of functionalities, ranging from step-by-step sim-
ulation to massively-parallel model checking. Cadp is designed in a modular
way and puts the emphasis on intermediate formats and programming inter-
faces. Related to the current work are the following:� Bcg is a compact graph format and a set of tools and libraries that al-

low coding and manipulation of Ltss, including stochastic and probabilis-
tic Ltss, represented explicitly as a list of states and transitions. The
Bcg Min tool allows minimization of Bcg graphs modulo strong and
branching bisimulation.� Open/Cæsar [10] is a set of C programming interfaces and libraries ded-
icated to verification. In particular, Open/Cæsar allows an implicit rep-
resentation of Ltss in the form of an initial state and a successor state
function, which we call an implicit Lts. Open/Cæsar draws a clear
separation between languages that can be compiled into implicit Ltss,
and on-the-fly graph traversal tools, which take implicit Ltss as input.
The Generator tool implements a simple breadth-first traversal of the
implicit Lts and stores it on disk as an explicit Lts in the Bcg format.� Exp.Open 2.0 (an extension of the previous version Exp.Open 1.0 of
Bozga, Fernandez, and Mounier) is a compiler into Open/Cæsar im-
plicit Ltss of systems made of Bcg graphs composed using synchroniza-
tion vectors and parallel composition, hiding, renaming, and cutting op-
erators taken from the Ccs [30], Csp [37], Lotos [21], E-Lotos [22],
and µCrl [17] process algebras. As an intermediate step, those sys-
tems are translated into the network of Ltss model presented in Defi-
nition 6. Exp.Open 2.0 has several partial order reduction options that
allow standard persistent set methods (generalizations of Ramakrishna
and Smolka’s method presented in [35]) to be applied on-the-fly, among
which -branching preserves branching bisimulation, -ratebranching
preserves stochastic branching bisimulation3, -deadpreserving preserves
deadlocks, and -weaktrace preserves weak trace equivalence (i.e., observ-
able traces).� Caesar Solve [28] is a generic library for on-the-fly resolution of Bess,
developed within Open/Cæsar. Bess are manipulated by means of their
implicit dependency graphs, represented in a way similar to the implicit
Ltss of Open/Cæsar. The library currently provides nine resolution al-
gorithms based on various traversals of the dependency graphs (breadth-
first search, depth-first search with or without detection of strongly con-
nected components, etc.). Caesar Solve serves as verification engine for
several on-the-fly verification tools of Cadp, such as the model checker
Evaluator, the equivalence checker Bisimulator, and the Lts reduc-
tion tool Reductor.

3This option is similar to -branching and additionally gives priority to τ -transitions over
stochastic transitions.
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18 F. Lang and R. Mateescu

We developed in the Exp.Open 2.0 tool a new procedure that takes as input a
Bcg graph, a file that contains a set of labels represented using a list of regular
expressions, and a boolean parameter for strictness. For each transition whose
label matches one of the regular expressions, this procedure checks whether this
transition is confluent (or strictly confluent if the boolean parameter is set to
true). The Bes encoding the confluence detection problem is solved using a
global algorithm based on the same principles as the Caesar Solve library.
This produces as output an Lts in the Bcg format, the transition labels of
which are prefixed by a special tag indicating confluence when appropriate.

We also added to Exp.Open 2.0 a new -confluence option, which can only
be used in combination with one of the partial order reduction options already
available (-branching, -deadpreserving, -ratebranching, -weaktrace4). In
this case, Exp.Open 2.0 first computes the labels for which confluence detection
is useful, and then calls the above procedure (setting the boolean parameter
to true if Exp.Open was called with the -deadpreserving option) on the
individual Ltss, providing these labels as input. Finally, it uses the information
collected in the individual Ltss to prioritize the confluent transitions on the fly.

6 Experimental Results

We applied partial order reductions using Ccd to several examples. To this
aim, we used a 2 GHz, 16 GB RAM, dual core AMD Opteron 64-bit computer
running 64-bit Linux. Examples identified by a two digit number xy (01, 10,
11, etc.) correspond to Lts compositions extracted from an official Cadp demo
available at ftp://ftp.inrialpes.fr/pub/vasy/demos/demo xy. These in-
clude telecommunication protocols (01, 10, 11, 18, 20, 27), distributed systems
(25, 28, 35, 36, 37), and asynchronous circuits (38). Examples st(1), st(2),
and st(3) correspond to process compositions provided to us by the STMi-
croelectronics company, which uses Cadp to verify critical parts of their
future-generation multiprocessor systems on chip.

In each example, the individual Ltss were first minimized (compositionally)
modulo branching bisimulation using Bcg Min. This already achieves more re-
duction than the compositional τ -confluence technique presented in [32], since
minimization modulo branching bisimulation subsumes τ -confluence reduction.
The Lts of their composition was then generated using Exp.Open 2.0 and
Generator following different strategies: (1) using no partial order reduction
at all, (2) using persistent sets, and (3) using both persistent sets and Ccd.
Figure 4 reports the size (in states/transitions) of the resulting Lts obtained
when using option -branching (top) or -deadpreserving (bottom). The sym-
bol “−” indicates that the number of states and/or transitions is the same as
in the column immediately to the left.

4Note that branching preserving reduction using Ccd also preserves weaker relations such
as weak trace equivalence.
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Branching preserving reduction
Example No partial order reduction Persistent sets Persistent sets + Ccd

01 112/380 −/328 −/−
10 688/2,540 −/2,200 −/−
11 2,995/9,228 −/− −/9,200
18 129,728/749,312 −/746,880 −/−
20 504,920/5,341,821 −/− −/5,340,117
25 11,031/34,728 −/− −/−

27(1) 1,530/5,021 −/− −/−
27(2) 6,315/22,703 −/− −/−
28 600/1,925 −/− −/−
35 156,957/767,211 −/− −/−
36 23,627/84,707 21/20 −/−
37 22,545/158,318 −/− 541/2,809
38 1,404/3,510 −/3,504 390/591

st(1) 6,993/100,566 −/− −/79,803
st(2) 1,109,025/7,448,719 −/− −/6,163,259
st(3) 5,419,575/37,639,782 −/− 5,172,660/24,792,525

Deadlock preserving reduction
Example No partial order reduction Persistent sets Persistent sets + Ccd

01 112/380 92/194 −/−
10 688/2,540 568/1,332 −/−
11 2,995/9,228 2,018/4,688 −/4,670
18 129,728/749,312 124,304/689,760 90,248/431,232
20 504,920/5,341,821 481,406/4,193,022 481,397/4,191,555
25 11,031/34,728 6,414/11,625 −/−

27(1) 1,530/5,021 1,524/4,811 −/−
27(2) 6,315/22,703 6,298/22,185 −/−
28 600/1,925 375/902 −/−
35 156,957/767,211 −/− −/−
36 23,627/84,707 171/170 −/−
37 22,545/158,318 −/− 76/128
38 1,404/3,510 −/3,474 492/673

st(1) 6,993/100,566 6,864/96,394 1/1
st(2) 1,109,025/7,448,719 −/7,138,844 101,575/346,534
st(3) 5,419,575/37,639,782 5,289,255/34,202,947 397,360/1,333,014

Figure 4: Lts sizes in states/transitions for branching and deadlock preserving
reductions

As a reference of the maximal amount of reductions achievable, Figure 5 pro-
vides also, for each example, the size of the Ltss obtained by eliminating all τ -
confluence (while still preserving branching bisimulation), using the Reductor
tool of Cadp.

These experiments show that Ccd may improve the reductions obtained using
persistent sets and compositional verification, most particularly in examples 37,
38, st(1), st(2), and st(3). Indeed, in these examples the individual Ltss are
themselves obtained by parallel compositions of smaller processes. This tends
to generate confluent transitions, which are detected locally by Ccd. On the
other hand, it is not a surprise that neither Ccd nor persistent sets methods
preserving branching bisimulation reduce examples 25, 27(1), 27(2) and 28,
since the resulting Ltss corresponding to these examples contain no confluent
transitions.
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Example States / transitions

01 4/4
10 12/20
11 2,836/8,677
18 108,864/683,712
20 439,443/4,627,974
25 11,031/34,728

27(1) 1,530/5,021
27(2) 6,315/22,703
28 600/1,925
35 2/1
36 11/10
37 433/2,276
38 6/7

st(1) 2,103/31,428
st(2) 709,776/3,729,649
st(3) 1,629,825/11,010,192

Figure 5: Maximal reductions achieved when eliminating all confluent τ -
transitions

No partial order reduction Persistent sets + Ccd
total time (s) peak memory (MB) total time (s) peak memory (MB)

st(1) 0.72 5.6 0.91 5.6
st(2) 271 312 287 271
st(3) 2,116 1,390 1,588 981

Figure 6: Resources used to generate and reduce Ltss modulo branching bisim-
ulation

One might be amazed by the reduction of st(1) to an Lts with only one state
and one transition in the deadlock preserving case. The reason is that one Lts of
the network has a strictly confluent self looping transition that is independent
from the other Ltss. Therefore, the network cannot have a deadlock and is
reduced by Ccd to this trivial, deadlock-free Lts.

For st(1), st(2), and st(3), we also compared the total time and peak memory
needed to generate the product Lts (using Exp.Open 2.0/Generator) and
then minimize it modulo branching bisimulation (using Bcg Min), without
using any partial order reduction and with persistent sets combined with Ccd.
This includes time and memory used by the tools Exp.Open 2.0, Generator
and Bcg Min. Figure 6 shows that Ccd may significantly reduce the total time
and peak memory (for st(3), 30% and 40%, respectively) needed to generate a
minimal Lts.
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Figure 7: Two xSTream queues connected via a NoC with four routers

without Ccd with Ccd
intermediate time mem. intermediate time mem.

itf POPQ+N1 244,569/1,320,644 18.56 51 179,706/587,187 9.66 26
N0+PUSHQ 22,674/120,222 1.35 17 22,674/86,528 1.12 17
N0+N1+PUSHQ 140,364/828,930 12.62 32 95,208/444,972 6.40 22
NOC4 324,261/2,549,399 11.32 93 310,026/1,073,316 9.77 46

Figure 8: Performance of Lts generation and minimization with and without
Ccd (times are in seconds and memory usage in megabytes)

7 Case study

We present here in more detail the use of Ccd in the context of the
Multival project5, which aims at the formal specification, verification, and
performance evaluation of multiprocessor multithreaded architectures devel-
oped by Bull, the Cea/Leti, and STMicroelectronics. The case-study be-
low concerns xSTream, a multiprocessor dataflow architecture designed by
STMicroelectronics for high performance embedded multimedia streaming ap-
plications. In this architecture, computation nodes (e.g., filters) communicate
using xSTream queues connected by a NoC (Network on Chip) composed of
routers connected by direct communication links.

We used as input the network of communicating Ltss produced from a Lotos
specification of two xSTream queues connected via a NoC with four routers.
The architecture of the system is depicted in Figure 7, where the components
N0 and N1 denote the routers involved in the communication between PUSHQ and
POPQ, the behaviour of which incorporates perturbations induced by the other
two routers of the NoC.

The Lts of the system can be generated and minimized compositionally us-
ing the following verification script written in the Svl [11] scripting language
of Cadp. This script first generates an interface graph "itf POPQ+N1.bcg",
which is used to constrain the Lts "N0+PUSHQ.bcg" using the semi-composition
operator “-|[...]|” [23]. The Lts of the NoC is constructed by gradually

5http://www.inrialpes.fr/vasy/multival
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composing the component Ltss altogether, hiding internal gates, and minimiz-
ing the resulting intermediate Ltss.

"itf_POPQ+N1.bcg" = branching reduction of leaf safety reduction of

hide all but LINK_01, LINK_10 in "N1.bcg" |[TO_1, FROM_1]| "POPQ.bcg";

"N0+PUSHQ.bcg" = branching reduction of

(hide TO_0, FROM_0 in "PUSHQ.bcg" |[TO_0, FROM_0]| "N0.bcg")

-|[ LINK_01, LINK_10 ]| "itf_POPQ+N1.bcg";

"N0+N1+PUSHQ.bcg" = branching reduction of

(hide LINK_01, LINK_10 in "N0+PUSHQ.bcg" |[LINK_01, LINK_10]| "N1.bcg")

-|[ TO_1, FROM_1 ]| "POPQ.bcg";

"NOC4.bcg" = branching reduction of

hide TO_1, FROM_1 in "N0+N1+PUSHQ.bcg" |[TO_1, FROM_1]| "POPQ.bcg";

The Svl script above was executed first with Ccd deactivated, then with Ccd
activated. For each case, Figure 8 gives the following information: The “inter-
mediate” column indicates the size (in states/transitions) of the intermediate
Lts generated by the Exp.Open tool, before minimization modulo branching
bisimulation; The “time” and “mem.” columns indicate respectively the cumu-
lative time (in seconds) and memory peak (in megabytes) taken by Lts gener-
ation (including confluence detection when relevant) and minimization modulo
branching bisimulation.

Figure 8 shows that Ccd may reduce both the time (the Ltss
"itf POPQ+NI.bcg" and "N0+N1+PUSHQ.bcg" were generated and minimized
twice faster with Ccd than without Ccd) and memory ("itf POPQ+NI.bcg"

and "NOC4.bcg" were generated using about half as much memory with Ccd
as without Ccd).

8 Conclusion

Ccd (Compositional Confluence Detection) is a partial order reduction method
that applies to systems of communicating automata. It detects confluent tran-
sitions in the product graph, by first detecting the confluent transitions in the
individual automata and then analysing their synchronizations. Confluent tran-
sitions of the product graph can be given priority over the other transitions, thus
yielding graph reductions. We detailed two variants of Ccd: one that preserves
branching bisimilarity with the product graph, and one that preserves its dead-
locks.

Ccd was implemented in the Cadp toolbox. An encoding of the confluence
property using a Bes (Boolean Equation System) allows the detection of all
confluent transitions in an automaton. The existing tool Exp.Open 2.0, which
supports modeling and verification of systems of communicating automata, was
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extended to exploit on-the-fly the confluence detected in the individual au-
tomata.

Ccd can be combined with both compositional verification and other partial
order reductions, such as persistent sets. We presented experimental results
showing that Ccd may significantly reduce both the size of the system graph
and the total time and peak memory needed to generate a minimal graph.

As future work, we plan to combine Ccd reductions with distributed graph
generation [13] in order to further scale up its capabilities. This distribution can
be done both at automata level (by launching distributed instances of confluence
detection for each automaton in the network or by performing the confluence
detection during the distributed generation of each automaton) and at network
level (by coupling Ccd with the distributed generation of the product graph).
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[1] André Arnold. MEC: A System for Constructing and Analysing Transition
Systems. In Joseph Sifakis, editor, Proceedings of the 1st Workshop on Au-
tomatic Verification Methods for Finite State Systems (Grenoble, France),
volume 407 of Lecture Notes in Computer Science, pages 117–132. Springer
Verlag, June 1989.

[2] S.C.C. Blom. Partial τ -Confluence for Efficient State Space Generation.
Technical Report SEN–R0123, Centrum voor Wiskunde en Informatica,
2001.

[3] Stefan Blom and Jaco van de Pol. State Space Reduction by Proving
Confluence. In Computer Aided Verification 2002, volume 2404 of Lecture
Notes in Computer Science, 2002.

[4] Amar Bouali, Annie Ressouche, Valérie Roy, and Robert de Simone. The
Fc2Tools set: a Toolset for the Verification of Concurrent Systems. In
Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the 8th
Conference on Computer-Aided Verification (New Brunswick, New Jersey,
USA), volume 1102 of Lecture Notes in Computer Science. Springer Verlag,
August 1996.

[5] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Commu-
nicating Sequential Processes. Journal of the ACM, 31(3):560–599, July
1984.

RR n° 7078



24 F. Lang and R. Mateescu

[6] S. C. Cheung and J. Kramer. Enhancing Compositional Reachability Anal-
ysis with Context Constraints. In Proceedings of the 1st ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (Los
Angeles, CA, USA), pages 115–125. ACM Press, December 1993.

[7] Jean-Claude Fernandez. ALDEBARAN : un système de vérification par
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the Fly”. In Juan Quemada, José Manas, and Enrique Vázquez, editors,
Proceedings of the 3rd International Conference on Formal Description
Techniques FORTE’90 (Madrid, Spain). North-Holland, November 1990.

[10] Hubert Garavel. OPEN/CÆSAR: An Open Software Architecture for Ver-
ification, Simulation, and Testing. In Bernhard Steffen, editor, Proceed-
ings of the First International Conference on Tools and Algorithms for
the Construction and Analysis of Systems TACAS’98 (Lisbon, Portugal),
volume 1384 of Lecture Notes in Computer Science, pages 68–84, Berlin,
March 1998. Springer Verlag. Full version available as INRIA Research
Report RR-3352.

[11] Hubert Garavel and Frédéric Lang. SVL: a Scripting Language for Com-
positional Verification. In Myungchul Kim, Byoungmoon Chin, Sungwon
Kang, and Danhyung Lee, editors, Proceedings of the 21st IFIP WG 6.1
International Conference on Formal Techniques for Networked and Dis-
tributed Systems FORTE’2001 (Cheju Island, Korea), pages 377–392. IFIP,
Kluwer Academic Publishers, August 2001. Full version available as INRIA
Research Report RR-4223.

[12] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
CADP 2006: A Toolbox for the Construction and Analysis of Distributed
Processes. In Werner Damm and Holger Hermanns, editors, Proceed-
ings of the 19th International Conference on Computer Aided Verification
CAV’2007 (Berlin, Germany), volume 4590 of Lecture Notes in Computer
Science, pages 158–163. Springer Verlag, July 2007.

[13] Hubert Garavel, Radu Mateescu, Damien Bergamini, Adrian Curic, Nico-
las Descoubes, Christophe Joubert, Irina Smarandache-Sturm, and Gilles
Stragier. DISTRIBUTOR and BCG MERGE: Tools for Distributed Ex-
plicit State Space Generation. In Holger Hermanns and Jens Palberg,
editors, Proceedings of the 12th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems TACAS’2006 (Vi-
enna, Austria), volume 3920 of Lecture Notes in Computer Science, pages
445–449. Springer Verlag, March–April 2006.

INRIA



Partial Order Reductions using Compositional Confluence Detection 25

[14] D. Giannakopoulou. Model Checking for Concurrent Software Architec-
tures. PhD thesis, Imperial College of Science, Technology and Medicine
— University of London — Department of Computer Science, January
1999.

[15] Patrice Godefroid. Using Partial Orders to Improve Automatic Verifica-
tion Methods. In R. P. Kurshan and E. M. Clarke, editors, Proceedings of
the 2nd Workshop on Computer-Aided Verification (Rutgers, New Jersey,
USA), volume 3 of DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science, pages 321–340. AMS-ACM, June 1990.
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