
Hierarchical Adaptive State Space Caching
based on Level Sampling

Radu Mateescu and Anton Wijs

INRIA / VASY, 655, avenue de l’Europe, F-38330 Montbonnot St Martin, France
{Radu.Mateescu, Anton.Wijs}@inria.fr

Abstract. In the past, several attempts have been made to deal with the state
space explosion problem by equipping a depth-first search (DFS) algorithm with
a state cache, or by avoiding collision detection, thereby keeping the state hash
table at a fixed size. Most of these attempts are tailored specifically for DFS, and
are often not guaranteed to terminate and/or to exhaustively visit all the states. In
this paper, we propose a general framework of hierarchical caches which can also
be used by breadth-first searches (BFS). Our method, based on an adequate sam-
pling of BFS levels during the traversal, guarantees that the BFS terminates and
traverses all transitions of the state space. We define several (static or adaptive)
configurations of hierarchical caches and we study experimentally their effec-
tiveness on benchmark examples of state spaces and on several communication
protocols, using a generic implementation of the cache framework that we devel-
oped within the CADP toolbox.

1 Introduction

In model checking, the state space explosion problem is the most important issue. It
stems from the fact that a linear growth of the number of concurrent processes in a
specification leads to an exponential growth of the number of states in the resulting
state space. This problem strongly limits the possibilities to verify large systems, since
state space generation algorithms typically need to keep all generated states in memory,
thereby exhausting it quickly. Over the years, many techniques have been introduced to
fight it, e.g., partial order reduction [17, 5], using secondary storage [9, 18], distributed
model checking [14, 3, 2], and directed model checking [10, 11].

Another research branch is to consider partial storage of the previously explored
states. This idea has lead, roughly speaking, to two classes of approaches: one where
exhaustive exploration of the state space is guaranteed, and one where it is not. Since
we are concerned with state space generation, i.e., the traversal of all the transitions in a
state space, we focus on the first class; the reader is referred to Section 5 for the second
one. The first class contains most work on state space caching [20], where a cache is
employed which can never contain more than n states, and a technique which can be
referred to as covering set determination [1] where, by means of static analysis, the goal
is to identify which states to store in order to guarantee termination of the exploration.
The caching approach is usually reserved for depth-first search (DFS) exploration, since
termination can be guaranteed by efficient cycle detection, as opposed to when using

breadth-first search (BFS). However, partial storage of explored states for BFS is desir-
able as well, since BFS (unlike DFS) can be efficiently distributed in order to perform
the state space exploration using clusters of machines.

In this paper, we focus on state space generation with the goal of storing the state
space on disk, meaning that besides minimising the memory use, we also aim at reduc-
ing the number of state revisits, which determines the amount of redundant information
in the generated state space. This distinguishes our work from earlier work on state
space caching, where the goal was to visit all states (but not necessarily traverse all
transitions) and hence memory use was the main factor of importance. First, we pro-
pose a framework allowing hierarchies of caches in addition to single caches. To our
knowledge, this has not been investigated yet in this context, although it is quite com-
mon practice in the field of hardware architectures [19]. The main idea is that several
caches together, each having different characteristics, can be more efficient than one
single cache. We study the performance of several hierarchical cache configurations
using DFS, some of them improving on results shown by single cache setups. Second,
we explain how these caches can be used for BFS by storing search levels instead of
individual states in them. This provides a generic (language-independent) on-the-fly
covering set estimation, instead of a (language-dependent) one based on static analysis.
Our main result in this setting guarantees termination of the BFS with caches if appro-
priate sampling functions are used to decide which search levels must be stored. Finally,
we propose a learning mechanism allowing the BFS algorithm to adapt on-the-fly to the
state space structure by detecting its earlier mistakes.

Using the CADP toolbox [13] and the underlying OPEN/CÆSAR environment [12]
for state space manipulation, we have implemented generic libraries for hierarchical
caches, as well as cache-equipped BFS and DFS exploration tools, which allow to finely
tune the memory use. We applied these tools on many examples of state spaces, taken
either from benchmarks such as VLTS [32], or produced from communication protocols.
These experiments allowed us to identify the most effective cache configurations, which
can lead to memory reductions of over one order of magnitude, and even to speedups of
the generation. Our results improve over existing ones by being language-independent
and robust to the variations of the so-called locality (roughly, the size of back jumps
during BFS) of state spaces.

The paper is organized as follows. Section 2 defines the terminology we use for state
space exploration. Section 3 presents our cache-based BFS algorithm based on sampling
of levels, proves its termination, and defines several instances of it using hierarchical
caches and adaptive mechanisms. Section 4 briefly describes the implementation within
CADP and gives various performance measures. Finally, Section 5 compares our ap-
proach with previous work and Section 6 gives concluding remarks and directions for
future work.

2 Preliminaries

Labelled transition systems (LTSs) capture the operational behaviour of concurrent sys-
tems. An LTS consists of transitions s `−→ s′, meaning that being in a state s, an action `
can be executed, after which a state s′ is reached.

2

Definition 1. A labelled transition system (LTS) is a tuple M = (S ,A ,T ,s0), where
S is a set of states, A a set of transition labels, T : S ×A ×S a transition relation,
and s0 the initial state. A transition (s, `,s′) ∈T is denoted by s `−→ s′.

Furthermore, we express that a state s′ is reachable from s with s→∗ s′, where→∗
is the reflexive, transitive closure of →. Likewise, we express with s→+ s′ that s′ is
reachable from s by traversing at least one transition. The set of enabled transitions
of s is en(s) = {(s, `,s′) | ∃` ∈ A ,s′ ∈ S .s `−→ s′}, and the set of successor states
succ(s) = {s′ ∈S | ∃` ∈A .(s, `,s′) ∈ en(s)} consists of all states reachable from s via
a single transition.

Before generation, the structure of an LTS is not known. A generation algorithm is
given an implicit LTS Mim = (s0,en), with s0 an initial state, and en the enabled function
which can be used to generate the other states and the transitions between them, thereby
creating an explicit LTS in line with Definition 1. We call an LTS finite iff S and A are
of a finite size. Whenever a state is newly discovered, we call it a visited state; once we
have generated all transitions and successors of s by employing the enabled function,
we call s an explored state. Recognising when a newly visited state is already explored
is called duplicate detection. In a standard BFS, all previously explored states are stored
in memory, in what is called the Closed set, and all visited states yet to be explored are
stored in the Open set, also called the search horizon. Given a nonempty Open set, the
exploration of all the states therein can be seen as an iteration of the BFS algorithm,
which produces a new search level consisting of all the newly generated successors.
Subsequently, these states without the duplicates make up the new Open set, which can
be subjected to a new iteration. Duplicate detection will happen whenever applicable,
and the resulting LTS will contain no redundant states, i.e., states which are de facto
equal to other states in the LTS. To make things clear when it comes to partial duplicate
detection, we represent LTS generation explicitly by first constructing a generation tree
of nodes. Figure 1 depicts the generation of an LTS as the traversal of some system
behaviour, using both BFS with and without a Closed set. Left and right of the behaviour
are two trees, where the numbering of the nodes firstly indicates the search level in
which the node is encountered, and secondly, in what order the nodes are encountered.
The dotted lines visualise which system state each node maps to. Using a Closed set, all
explored nodes remain in memory, therefore, in the left tree, once nodes 2.4 and 3.5 are
visited, they are recognised as essentially being equal to nodes 2.3 and 1.1, respectively,
via their associated system states. If we consider BFS without a Closed set, on the right
of the figure, we observe partial duplicate detection. Once node 2.4 is encountered, it
is recognised as being essentially equal to node 2.3, since 2.3 at that time resides in the
Open set. However, later on, node 3.5 is not recognised as being equal to node 1.1, since
the latter has not been kept in memory, and the generation continues endlessly. From a
generation tree, an LTS is derived by creating a state for each node deemed unique. For
the right tree in the figure, this results in redundant states.

For checking duplicates, in practice, often a hash table is used to quickly search the
contents of Closed. Such a hash table uses a hash function h : S →N to store h(s) for
all s ∈ Closed. If h leads to collisions, that is there are s,s′ ∈ S such that s 6= s′ and
h(s) = h(s′), then collision detection is a method to recognise this, which usually means
storing multiple states at the same index in a hash array.

3

....

a

b

c
d

e

a b

c

e

d

a
b

c

e

c

e

d

System

behaviour

s0

s2s1

s3

BFS without ClosedBFS with Closed

0.0

1.1 1.2

3.5

2.3 2.4

0.0

1.1 1.2

2.3 2.4

3.5

4.6

Fig. 1. BFS with and without a Closed set

3 BFS with State Space Caching

Caches have a fixed size, and a so-called replacement strategy, which determines which
element should be removed next, whenever a new element needs to be added to an
already full cache. There have been caching attempts with DFS [21, 6, 28, 29, 20, 16,
22, 1], and a few with BFS, which, however, are not guaranteed to terminate [30, 31].

As with related work on caching with DFS, we intend to restrict the growth of the
Closed set. This, usually, has a negative effect on two other aspects of LTS generation,
namely the execution time and the size of the output LTS. Unlike most previous work,
besides the fact that we focus on BFS, we also try to minimise this negative effect. More
precisely, we aim at satisfying three criteria: (a) The approach should be independent of
any modelling paradigm, that is, it should not rely on analysis of the specification from
which the LTS is derived, e.g., by using techniques such as static analysis, as in [1];
(b) The resulting LTS should contain as few duplicates as possible; restriction of the
growth of the Closed set, however, tends to deteriorate duplicate detection, unless the
LTS has a tree structure, or we are able to store exactly the right states in Closed, which
would require prior knowledge of the LTS structure; (c) Termination of the generation
algorithm must be guaranteed. This is not trivial for BFS, and possibly the main reason
that few attempts exist of partial duplicate detection with BFS; as regards DFS, cycle
detection by keeping the DFS stack in memory suffices to guarantee termination.

Without knowledge of the LTS structure, how can we decide which states to store
and which to ignore? Many attempts have been made in the past to predict state space
structures, e.g., [1, 30, 7, 26], but theoretically, any state may lead to any other state.
Some have observed that, although LTSs may have any conceivable structure, the ones
stemming from real specifications, which form our main target, seem to share some
structural properties [30, 7]. Later, we return to this. First, we determine under which
conditions the partial storage of explored states in the Closed set does not remove the
termination guarantee of BFS.

4

3.1 Partial Storage of Explored States and Termination

Let us consider the relation between partial storage of explored states and termina-
tion of BFS. Earlier approaches using BFS all seem to be probabilistic in this respect;
termination is at best highly likely [31, 30, 7]. Consider the right search tree from Fig-
ure 1, now with Closed = {1.1}. Note that this is sufficient to generate the LTS without
any redundancy. But, focusing on termination, there are more possibilities; consider
Closed = {2.3}. Even though node 3.5 is not recognised as identical to node 1.1, lead-
ing to redundancy in the LTS, the generation will terminate, as node 4.6 will be recog-
nised as identical to the, stored, node 2.3. In other words, the fact that we store search
level 2 means that the algorithm terminates. [1] calls a set of vertices in an automaton
which ensures termination if states associated with them are stored a covering set. Sim-
ilarly, we call a set of states a covering set if stored related nodes ensure termination.
Periodically storing levels seems sufficient to always have a represented covering set in
memory. In those cases where a state s is explored again, some of its ‘descendants’, ei-
ther immediate or remote successors, will be recognised as part of a stored level, hence
the redundant work resulting from the detection failure at s is finite. The levels should be
stored completely, otherwise redundant traces may never be recognised as such (more
precisely, levels need to be stored without any internal redundancy: in the example tree,
note that node 2.4 does not need to be stored, as it is identical to node 2.3.). We call
these stored levels snapshots.

Periodically storing levels allows us the construction of a covering set on-the-fly,
as long as there is no bound on the number of snapshots in memory. We investigate
this setup in more detail in Section 3.2. However, we are also interested in bound-
ing the number of snapshots in memory, since it allows us to be more rigorous at re-
moving states. Algorithm 1 shows this technique, which we call ‘BFS with Snapshots’
(BFSWS), where a sampling function f is used to determine at which levels to make
snapshots, and n is the maximum number of snapshots in memory. When n→ ∞, we
are able to store an unbounded number of snapshots.

It is important to note that although duplicates are removed from Next before the
new horizon is created, this is not done when making a new snapshot, in order to keep
the levels complete. As explained in Section 4, though, storage of states in snapshots can
be implemented such that duplicate occurrences cost little extra memory to keep. Next,

Algorithm 1 BFS with Snapshots
Require: Sampling function f :N→B, number of snapshots n

procedure BFSWS(s0)
i, j← 0, Open←{s0}, S0, . . . ,Sn−1← /0 {Initial state added to horizon}
S j← Open {First snapshot contains initial state}
while Open 6= /0 do {Repeat until there are no more states to explore}

i← i+1, Next← /0 {The next level (i+1) is currently empty}
for all s ∈ Open do {Explore all states in the horizon}

Next← Next∪{s′ | ∃`.(s, `,s′) ∈ en(s)}
Open← Next \

⋃n−1
k=0 Sk {Add new states to horizon}

if f (i) then j← j +1 mod n, S j← Next {Should this level be sampled?}

5

Lemma 1 shows under which conditions we can guarantee termination of BFSWS even
if the number of snapshots is limited. We prove that BFSWS terminates as long as the
sampling period, i.e., the number of levels between the taking of snapshots, increases
along the search. From f , we can derive a function p f as follows:

– p f (0) = 0, (as we assume f (0) is true)
– p f (i) = d, with i,d ∈ N, i,d > 0, f (p f (0) + . . . + p f (i− 1) + d) ∧ ∀0 < d′ <

d.¬ f (p f (0)+ . . .+ p f (i−1)+d′)

In words, p f expresses the subsequent sampling periods observable in f . Now, we need
to prove that BFSWS is terminating for finite LTSs if p f is increasing.

Lemma 1. BFSWS of a finite LTS with a finite number of snapshots n > 0, is terminat-
ing if p f is increasing.

Proof. Let us consider a cycle of size k in an LTS. In a generation tree of BFSWS
without duplicate detection, this cycle will be generated infinitely often, leading to
s0,s1, . . . ,sk−1,sk . . . ,s2k−1,s2k, . . . etc.1, with ∀0 ≤ i ≤ k− 1,∀ j ∈ N.si = si+ j·k. We
need to prove that by taking n snapshots, with p f increasing, the cycle will be detected.
First, we consider the case n = 1. Other cases follow from this.

Without loss of generality, we say that the first snapshot including a state from the
cycle is taken while traversing the cycle for the first time. We call this state ŝ0 = sd ,
with 0 ≤ d ≤ k− 1. Let us first consider a p f with ∀i ∈ N.p f (i) = p, and p < k. It
follows that for subsequent snapshots ŝi = sd+i·p, with i ∈ N. Observe that with ŝ0,
duplicate detection will succeed when reaching state sd+k. But, since p < k, we have
sd+p→+ sd+k, i.e., ŝ1→+ sd+k. Because n = 1, we lose ŝ0 after creating ŝ1, hence there
is no duplicate detection when we reach sd+k. Similarly, with ŝ1, duplicate detection
can happen when reaching sd+p+k, but ŝ2 →+ sd+p+k. In general, with ŝi, detection
may happen at state sd+i·p+k, but ŝi+1→+ sd+i·p+k. However, if p≥ k, we have with ŝi
that sd+i·p+k→∗ sd+(i+1)·p, i.e., sd+i·p+k→∗ ŝi+1, so the next snapshot would be created
some time after the exploration of sd+i·p+k, but when sd+i·p+k is reached, duplicate
detection takes place and the cycle traversal is terminated. If p f is increasing, it follows
that there exists i ∈ N such that p f (i) ≥ k, hence BFSWS can, in that case, deal with
any cycle of arbitrary size. The case of BFSWS with n > 1 is a generalisation of case
n = 1. For a p f with ∀i ∈N.p f (i) = p, if n · p < k, for all ŝi, detection may happen at
state sd+i·p+k, but sd+(i+n)·p →+ sd+i·p+k, i.e., ŝi+n →+ sd+i·p+k, and ŝi+n replaces ŝi.
If n · p ≥ k, then for ŝi, sd+i·p+k →∗ sd+(i+n)·p, i.e., sd+i·p+k →∗ ŝi+n, hence duplicate
detection will take place at sd+i·p+k. If p f is increasing, clearly BFSWS with n > 1 also
terminates.

BFSWS is guaranteed to terminate if the sampling period is bigger than the size
of the largest cycle in the LTS. Since we do not know this size a priori, constantly
increasing the period ensures that eventually, the sampling period will be big enough.
Now that we know under which conditions BFSWS always terminates, we can look at
additional techniques to minimise the amount of redundant work, in order to keep the
LTSs on disk as small as possible, and the execution time.

1 As we enumerate the states of the cycle here, s0 is not necessarily the initial state of the LTS.

6

3.2 Maximising the Efficiency of Partial Duplicate Detection

BFS With Snapshot Caches As explained in Section 1, a cache may contain a finite
number of elements. For BFSWS, we can use a cache to store snapshots, as opposed
to individual states, which is more common in related work. By choosing complete
snapshots as elements, BFSWS is guaranteed to terminate, but it is impossible to enforce
a fixed size of the cache. This seems at odds with the principle of a cache, but the caches
of webbrowsers work in a somewhat similar manner; such a cache must always contain
complete files, not parts of files, even though the files vary in size. For state space
caching, this does not cause real problems, since in practice it shows that the gain in
memory is still considerable. The size, together with the replacement strategy, which
dictates which element to remove in case the cache is full, typically defines a cache. To
this, we add the sampling function, which deals with the input of elements, resulting in
the following definition.

Definition 2 (state space generation cache). A state space generation cache Ci is a
triple (fi,Ri,ni), with fi :N→B the sampling function, Ri : 22S×2N→ 2S the replace-
ment function, taking a set of snapshots together with meta-data about the snapshots
(in the form of natural numbers), and returning a snapshot to be removed next, and ni
the maximal number of snapshots in the cache.

Figure 2 illustrates a stream hierarchy of state space generation caches, in a way in
which also in hardware architectures, multiple caches can be linked together. The fi of
a cache Ci decides which snapshots to accept for storage, ni is the maximum number of
snapshots it contains, and Ri is the replacement strategy. The removal of a snapshot from
Ci leads to the input of a snapshot in Ci+1, that is, if fi+1 accepts it, etc. In general, Ri
computes the cost of every snapshot in the cache based on a cost function c : 2N→N,
and picks the snapshot with the lowest cost for the next removal. The cost function
can use any accumulated data during the generation, e.g., (a) size of the snapshot, (b)
snapshot level number, i.e., the time the snapshot was created, (c) the last time duplicate
detection succeeded due to the snapshot, and (d) hit ratio of the snapshot, i.e., how many
times duplicate detection succeeded due to the snapshot.

Rifi
ni

Fig. 2. A stream hierarchy of state space generation caches

This machinery allows for a wide range of configurations, since it involves at least
four new parameters: the number of caches, and per cache a sampling function, a size,
and a replacement strategy. Next, we explain which configurations make sense for the
generation of LTSs stemming from real specifications.

7

Exploiting Transition Locality Related attempts to search LTSs with partial duplicate
detection often use a notion called transition locality l of states [30, 7, 25]. This is a
property of an LTS together with a corresponding traversal tree of traditional BFS, i.e.,
without caching. It expresses the biggest distance, measured in levels, between any two
nodes which are considered equal. In Figure 1, for the LTS together with the left tree,
l = 2, as nodes 1.1 and 3.5 are considered equal. It has been claimed [30, 7, 25] that
l is extremely low for LTSs resulting from real protocol specifications. This can be
exploited by only keeping the last l levels of the tree in memory, which yields a version
of BFS called frontier search [25]2. Algorithm 1 describes frontier search if f (i) equals
true for all i ∈N, and n = l. Termination is only guaranteed if n≥ l, n = l being ideal,
since it saves as much memory as possible with this technique. However, in practice, l
is not known before traversal of the LTS, therefore termination cannot be guaranteed.
In addition, our experience points out that, although the majority of equalities concern
nodes which are indeed very close to each other, there are usually also some equal nodes
which are much further removed from each other, e.g., more than half the total depth of
the tree. This differs from the results reported by [30, 7, 25], possibly because we look
at a large set of specifications of varying types of systems. In case l is close to the full
depth of the tree, which is likely to happen for e.g., cyclic processes, one cannot gain
that much memory.

However, the fact remains that often, most nodes which are considered equal are
very close to each other in the tree. We choose to exploit this by setting up a stream
of caches, the first one sampling frequently, and subsequent ones sampling less often,
as identification with ‘older’ nodes is less likely to happen. Then, for the first cache,
we can choose n1 < l, which not only removes the necessity to know l a priori, but for
LTSs where l is large, we can also save more memory compared to frontier search and
related techniques. Related to this, Tronci et al. [30] deal with distances larger than l in
a probabilistic way, while we guarantee eventual detection, hence termination. Streams
of caches can be set up in many different ways; we consider two, the results of which
will be discussed in the next section:

1. The first cache samples often, in fixed periods, and a second cache employs a sam-
pling function with increasing period, i.e., conform Lemma 1. We call this setup
Frontier Safety Net, since in addition to having a frontier cache, we also have some
safety nets to fall back on.

2. Initially, there is one cache, C1, sampling often, in fixed periods. As soon as the
cache is full, another one, C2, with the same setup is created and connected behind
C1. Whenever this cache is full, a third one is created, etc. If the sampling period of
the caches is not 0, i.e., not every level is sampled, then the further down the stream,
the fewer levels are accepted by a cache, hence the longer it takes before the cache
is full. Since the number of snapshots allowed in memory is not bounded, this setup
guarantees termination of the algorithm. We call this setup Pebble Search, since the
distribution of the snapshots over a generation tree resembles the waves produced

2 In the original setting of Artificial Intelligence, a predecessor function is assumed to be avail-
able to have access to the recent predecessors. Lacking such a function in on-the-fly model
checking, the last l levels should be stored [11].

8

by a pebble when dropped in a pool, i.e., the further away from the point of impact,
i.e., the horizon, the further the distance between waves.

The Backtracking Set In our experience, Frontier Safety Net and Pebble Search lead
to good reductions of the memory use, ranging from 50% to sometimes less than 10%,
as will be shown in the next section. However, if there are many duplicates to be de-
tected at a distance greater than n1× p1, with p1 the constant sampling period of cache
C1, then this tends to lead to a big increase of redundant work, negatively affecting
both the execution time and the output LTS. Consider Figure 3, where in the Open set,
node 0 is equal to node 1, which has been explored before, but removed from mem-
ory by now. Therefore, node 0 will be re-explored, leading to nodes equal to nodes
2 and 3, the successors of node 1. Since nodes 2 and 3 are also removed, these new
nodes are explored as well, and their successors are finally identified as equal to the
successors of nodes 2 and 3, since these are present in a snapshot, i.e., the grey bar.

1

2 3

History

Open0

Fig. 3. Duplicate work

All in all, failure to recognise that node 0 has essentially
been seen before leads to the traversal of 6 redundant tran-
sitions. In state space traversal, the traversal of transitions is
the most time-consuming operation, therefore this redundant
work has a real impact on the overall execution time. In both
our setups, the older the levels, the fewer remain in mem-
ory, hence, the larger the distance between equal nodes, the
more likely it is that failure of duplicate detection leads to the
exploration of many nodes before a snapshot is ‘reached’.
On the one hand, only keeping a few very old levels makes
sense, since new nodes do not often refer back to very old
nodes. On the other hand, on those occasions where they do,

we often obtain a significant amount of redundant work. Let us call the branching factor,
i.e., the average number of successors of a state in the LTS, b, and the distance between
an old node and the nearest subsequent snapshot d, then every detection failure leads to
approximately ∑

d
i=1 bi additional traversals. In practice, it turns out that if a much older

node, i.e., older than only a few levels ago, is referred to again once, then it tends to be
referred to several times more later on, in our case each time leading to at least ∑

d
i=1 bi

extra traversals (in subsequent re-explorations, the nearest snapshot may well have been
removed from memory, thereby increasing the distance to the next snapshot).3

These nodes seem to represent states which are very common for the specified sys-
tems, imagine e.g., the specification of a car; there are many ways to use the car, but
eventually you return to the state representing ‘off’. By keeping the node representing
‘off’ in memory, we can avoid a lot of redundant work. Recognising these important
nodes is very hard, but we propose a mechanism for BFSWS which can guess which
nodes are important. Every time a node is revisited, the mechanism gets closer to dis-
covering this revisiting. For this we introduce an extra, unbounded, set of nodes to be
kept in memory, the Backtrack set. While traversing, this set is filled with nodes by

3 [20] reports that no relation is found between the number of previous visits to a state and the
likelihood that it will be visited again in the future. We found that revisits are likely to states
which had ‘late’ revisits, i.e., revisits many levels after the first visit.

9

following two rules, where very old snapshots are defined as ‘not in cache C1’: 1) given
a node N in the Open set with | succ(N) |> 1, if there exists a snapshot Si not in C1
such that for all N′ ∈ succ(N), there exists N′′ ∈ Si with N′ = N′′ (i.e., N′ is considered
equal to N′′), then we add N to Backtrack, and 2) given a node N in the Open set with
| succ(N) |> 1, if for all N′ ∈ succ(N), there exists N′′ ∈ Backtrack with N′ = N′′, then
we add N to Backtrack. The first rule states that if all the successors of a node are de-
tected as duplicates due to a single very old snapshot, then it is very likely that we have
explored their parent before. The more successors the node has, the more likely this is,
hence we exclude the case here of a single successor. Failure to detect duplicates which
only have one successor does not directly lead to much redundant work anyway. The
second rule is a continuation of this: if all the successors of a node are suspected of hav-
ing been re-explored, then we suspect this node as well. With this technique, we bound
and lessen the amount of redundant work with each revisit of a node; the nth revisit leads
to ∑

|d−(n−1)|
i=0 bi−1 extra traversals. Practice shows that this learning mechanism is very

successful, as seen next. By only keeping a few extra nodes in memory according to
these rules, we sometimes reduce the amount of redundant work considerably.

4 Implementation, Caching Setups, and Experiments

We built a generic, application-independent implementation of the caching machinery
using the OPEN/CÆSAR [12] environment of the CADP toolbox [13], which provides
various primitives for state space storage and exploration (hash tables, edge lists, stacks,
etc.). The cache library allows to define caches containing a fixed number of elements,
either states or snapshots, each one being possibly assorted with user-defined infor-
mation allowing, e.g., to calculate the cost associated to the element. The replacement
strategy used by a cache can be user provided, or selected among five built-in strate-
gies: least/most recently used (LRU/MRU), least/most frequently used (LFU/MFU), and
random (RND). The elements of a cache are stored in a balanced heap equipped with a
hash table in order to allow fast retrievals of the lowest-cost element and fast searches of
elements. A special primitive retrieves the last element replaced after an insertion took
place in an already full cache; this allows to manage hierarchical caches (organized,
e.g., as trees) by retrieving an element from one cache and inserting it into another.

The most basic usage of the cache library is for storing visited states, assorted with
their id’s, during a DFS traversal of the state space. A more complex usage is made
by the BFSWS approach, where elements stored in the cache are snapshots (lists of
states) but the searches carried out for duplicate detection concern individual states. To
reduce memory consumption, states belonging to the set of snapshots currently present
in a cache are stored uniquely and referenced through pointers; state deletion is done
efficiently using a reference counting scheme borrowed from garbage collection [23].
Next, we study the performance of several BFS and DFS setups experimentally. For
this, we used around 35 LTSs from the VLTS benchmark suite [32] stemming from real,
industrial case studies, and also several communication protocols [8]. The experiments
were run on a LINUX machine with a 2.2GHz CPU and 1 GB memory.

10

4.1 BFS Experiments

Here, we show the results of a representative selection of cases, generated by stan-
dard BFS and by BFSWS using some of the most successful cache setups. Caches are
described as triples, a sampling function which increases its period by n after every
sampling being written as n, a function with constant period n being written as cn,
LLNR being a replacement function based on lowest level number, and BT indicat-
ing the backtracking mechanism. The top three graphs visualise the results on several
instances of the Bounded Retransmission Protocol (BRP), varying in both the size of
messages and the number of retransmissions. Here, the techniques are extremely ef-
fective, allowing not only to reduce the memory use drastically, but also to make the
generation much faster. This is due to the hash table being very small, which speeds up
duplicate detection. Usually, this gain is countered by failed detections, leading to more
(time consuming) transition traversals, but here such failures hardly occur. Additional
tests showed that we could generate the LTS for BRP 〈300,300〉, consisting of more
than 410,000,000 states, in 37 hours with (c2,LLNR,5)(2,LFU,10), and in 22 hours
with backtracking. The bottom three graphs show the generation results for the SCSI-2
bus arbitration protocol, varying the number of competing disks. Here, memory use can
be reduced to 20% compared to standard BFS, using a Frontier Safety Net with back-
tracking. Moreover, both backtracking setups show practically no increase in execution
time, and the number of redundant states produced is reasonable.

The graphs below compare execution times and state generation of BFS and 3 sam-
pling setups. Execution times of the setups are often much longer than for BFS, due
to using more complex data structures, and the redundant work. However, this effect
becomes mainly apparent with small examples. The bottom two graphs relate output
LTS sizes with the original sizes, indicating the number of states in memory by the
size of the bubbles. Bubbles on the same horizontal line relate to the same case. Pebble
Search with backtracking sometimes produces remarkably smaller LTSs than the other
methods, and faster, suggesting that for these cases, keeping snapshots which are more

11

evenly distributed over the history of the generation pays off. In Frontier Safety Net,
the second cache samples more and more infrequently, eventually leaving a big ‘hole’
in the stored history. There is still room for improvement, though, which we plan as
future work. For most cases, memory use can be reduced to about 30% using the sam-
pling mechanism. The graphs show that either backtracking has a very positive effect
(e.g. in execution time), or no effect; a negative effect hardly ever occurs. This makes
backtracking a useful feature to enable by default in the BFSWS state space generator.

4.2 DFS with caches

Our generic cache machinery
can also be used in conjunc-
tion with other graph traver-
sals in order to reduce the
amount of memory needed for
generating an LTS. The figure
below shows the behaviour of
DFS equipped with cycle de-
tection (by searching states
on the DFS stack) and a hi-
erarchical 〈MFU,LRU〉 cache,
executed on a subset of the
VLTS benchmark suite. For each example, the figure gives the minimal size of the
cache yielding an output LTS of size at most double w.r.t. the input LTS. Among the
five built-in replacement strategies, LRU performs best on all examples (reducing the
cache size down to 40% of the number of states), followed closely by MFU and RND.
LRU is close to the strategy removing the oldest states, which was rated best among the

12

strategies analysed in [20]. If we split the cache into two cascading subcaches of varying
sizes and different replacement strategies, the best cache size reduction (down to 30%
of the number of states) was achieved by using an MFU or RND subcache followed
by an LRU subcache (of about 25% of the whole cache). Overall performance (see the
figure above) was further improved by increasing the LRU subcache to 75%. Compared
to BFSWS, the success of DFS setups differs a lot from one case to another. Moreover,
a difficulty with ‘fixed size’ DFS caching is to determine the right size of the cache,
which, in order to be effective, should lie between 30−60% of the (a priori unknown)
LTS size; BFSWS, on the other hand, simply takes whatever memory it needs.

5 Related Work

As mentioned in the introduction, existing approaches for state space generation can
roughly be divided in two classes. In the second class, where exhaustiveness is not
guaranteed, hashing without collision detection is often used, which is a way to en-
sure that the hash table stores a fixed number of states. Concerning collisions, [21, 6]
assume that whenever a collision happens in the hash table, the new state has already
been visited. In [6], this is used for a nested DFS to search for errors in LTSs. Colli-
sion avoidance in this way guarantees termination. [30, 7] take the opposite approach
concerning this. They fully depend on LTSs of protocols having small localities. They
avoid collision detection, by removing a previously stored state if there is a hash col-
lision with a new state, arguing that in most cases this means removing a state beyond
the locality region. Termination is handled by stopping the search once the collision
rate is sufficiently high, or a maximum search depth has been reached. In [31], a fixed
size cache and Open set is used for a probabilistic, randomised BFS, where states are
replaced at random. These last two cases report memory savings of 40% on average, the
first case achieving this partly by keeping the Open set on disk. In [28], the probability
of failures is reduced by using open addressing and t-limited lookups and insertions in
the hash table, where a hash function provides not one position for a state in the hash
table, but a sequence of t possible locations. In addition to this, [29] includes the level
number of a state in a BFS in calculating its omission probability.

The other class, guaranteeing exhaustiveness, includes most state space caching
work, which has been done for DFS [20, 16, 22, 15]. In [20], several replacement strate-
gies are used for a single LTS, and the conclusion is that the one selecting the oldest
states is the best. [22] continue on this, believing the conclusion to be a random strategy.
[15] reinvestigates this, employing many other strategies on many examples, some of
them from practical cases. In those cases, a proposed strategy called stratified caching
with random replacement performs best. Here, strata are created, very similar to our
snapshots. The states of certain strata, however, are candidates for removal from mem-
ory, as opposed to storing in memory. Caching is combined with static analysis and
partial order reduction in [16]. Our setting allows hierarchies of caches, and they can
be used to store snapshots in case of BFS. In [1], an unbounded set of states is stored
based on a storing strategy, usually based on static analysis. They claim that up to 90%
can be saved in memory use, but, as reported by [18], this leads to an extensive amount
of redundant work. In [18], a hash table is initially used in a traditional manner, until it
fills up the whole memory, at which point older states are moved to secondary storage.

13

The number of lookups on disk is reduced by using a Bloom filter. Instead of trying to
use memory in a smarter way, they want the generation to be able to continue once the
memory is filled. We experience that trying to avoid a big Closed set pays off in terms
of execution time, since the hash table is kept small. However, our BFS method may
still run out of memory. It could be interesting to look at a combination of the two.

In Artificial Intelligence (AI), connecting to directed model checking, multiple
methods are presented to bound the memory use of exhaustive search algorithms, e.g.,
IDA∗ [24], MA∗ [4], and extensions IE and SMA∗ [27]. As is common in this field, the
algorithms employ a cost function, mapping states to costs. For memory-bounding, this
function is used to decide which states to remove from memory. The cost function pro-
vides knowledge of the LTS structure a priori, and its main purpose is to guide the search
to a goal state. In this paper, we are neither concerned with a subset of goal states, nor
have any structural knowledge. It is, however, possible to incorporate the AI algorithms
in our framework, like DFS and BFS, in order to obtain more memory efficient variants.

6 Conclusion and Future Work
We presented generic machinery for hierarchical, adaptive state space caching, imple-
mented using the OPEN/CÆSAR environment [12] of the CADP toolbox [13]. This ma-
chinery can be used in a very flexible manner for state space generation, in conjunction
with DFS and BFS traversals. Our algorithm BFSWS is exhaustive and guaranteed to
terminate, and its behaviour can be finely tuned using the caching and learning mecha-
nisms introduced in Section 3. These techniques compete favourably with earlier ones,
such as hashing without collision detection and frontier search, which only concern
LTS search (and not generation), lack termination or exhaustiveness (or both), or are
dedicated to LTSs with small localities. The learning mechanism for BFSWS strongly
reduces the amount of redundant work, and is also able to speed up the generation.

As future work, we will study other BFSWS configurations on further examples
(e.g., the BEEM benchmark [26]), and try to design additional mechanisms to deal more
efficiently with different LTS structures. Secondly, we plan to adapt the machinery for
distributed state space generation [14]. Finally, we want to investigate its use in conjunc-
tion with on-the-fly LTS reduction modulo τ-confluence and branching bisimulation.

References

1. G. Behrmann, K.G. Larsen, and R. Pélanek. To Store or Not To Store. In CAV, volume 2725
of LNCS, pages 433–445, 2003.

2. S.C.C. Blom, J.R. Calamé, B. Lisser, S. Orzan, J. Pang, J.C. van de Pol, M. Torabi Dashti,
and A.J. Wijs. Distributed Analysis with µCRL: A Compendium of Case Studies. In TACAS,
volume 4424 of LNCS, pages 683–689, 2007.

3. S.C.C. Blom and S. Orzan. Distributed State Space Minimization. STTT, 7(3):280–291,
2005.

4. P.P. Chakrabarti, S. Ghose, A. Acharya, and S.C. de Sarkas. Heuristic Search in Restricted
Memory. Artificial Intelligence, 41(2):197–222, 1989.

5. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, 1999.
6. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-Efficient Algorithms

for the Verification of Temporal Properties. FMSD, 1(2/3):275–288, 1992.

14

7. G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli. Exploiting Transition Locality
in the Disk Based Murphi Verifier. In FMCAD, volume 2517 of LNCS, pages 202–219, 2002.

8. CADP demos. CADP online demo examples. http://www.inrialpes.fr/vasy/cadp/

demos.html, 2008. Last visited on October 7, 2008.
9. S. Edelkamp and S. Jabbar. Real-Time Model Checking on Secondary Storage. In MoChArt,

volume 4428 of LNAI, pages 68–84, 2007.
10. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model checking in the

validation of communication protocols. STTT, 5:247 – 267, 2004.
11. S. Edelkamp, V. Schuppan, D. Bošnački, A.J. Wijs, A. Fehnker, and H. Aljazzar. Survey on

Directed Model Checking. In MoChArt, volume 5348 of LNAI, 2009. To Appear.
12. H. Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification, Simulation,

and Testing. In TACAS, volume 1384 of LNCS, pages 68–84, 1998.
13. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2006: A Toolbox for the Construc-

tion and Analysis of Distributed Processes. In CAV, volume 4590 of LNCS, pages 158–163,
2007.

14. H. Garavel, R. Mateescu, and I. Smarandache. Parallel State Space Construction for Model-
Checking. In SPIN, volume 2057 of LNCS, pages 217–234, 2001.

15. J. Geldenhuys. State Caching Reconsidered. In SPIN, volume 2989 of LNCS, pages 23–38,
2004.

16. P. Godefroid, G.J. Holzmann, and D. Pirottin. State-Space Caching Revisited. FMSD,
7(3):227–241, 1995.

17. P. Godefroid and P. Wolper. Using Partial Orders for the Efficient Verification of Deadlock
Freedom and Safety Properties. In CAV, volume 575 of LNCS, pages 410–429, 1991.

18. M. Hammer and M. Weber. “To Store or Not To Store” Reloaded: Reclaiming Memory on
Demand. In FMICS, volume 4346 of LNCS, pages 51–66, 2006.

19. J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann, fourth edition, 2006.

20. G.J. Holzmann. Automated Protocol Validation in Argos, assertion proving and scatter
searching. IEEE Trans. on Software Engineering, 13(6):683–696, 1987.

21. G.J. Holzmann. An Improved Protocol Reachability Analysis Technique. Software - Practice
and Experience, 18(2):137–161, 1988.

22. C. Jard and T. Jéron. Bounded-memory Agorithms for Verification On-the-fly. In CAV,
volume 575 of LNCS, pages 192–202, 1991.

23. Donald E. Knuth. The Art of Computer Programming — Volume III: Sorting and Searching.
Computer Science and Information Processing. Addison-Wesley, 1973.

24. R. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intel-
ligence, 27(1):97–109, 1985.

25. R. Korf, W. Zhang, I. Thayer, and H. Hohwald. Frontier search. Journal of the ACM,
52(5):715–748, 2005.

26. R. Pelánek. Properties of state spaces and their applications. STTT, 10(5):443–454, 2008.
27. S. Russell. Efficient memory-bounded search methods. In ECAI, pages 1–5. Wiley, 1992.
28. U. Stern and D.L. Dill. Combining State Space Caching and Hash Compaction. In 4.

GI/ITG/GME Workshop, pages 81–90, 1996.
29. U. Stern and D.L. Dill. A New Scheme for Memory-Efficient Probabilistic Verification. In

FORTE, pages 333–348, 1996.
30. E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. Exploiting Transition Locality

in Automatic Verification. In CHARME, volume 2144 of LNCS, pages 259–273, 2001.
31. E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. A Probabilistic Approach to

Automatic Verification of Concurrent Systems. In APSEC, pages 317–324, 2001.
32. VLTS. The VLTS Benchmark Suite. http://www.inrialpes.fr/vasy/cadp/

resources/benchmark bcg.html, 2008. Last visited on June 6, 2008.

15

