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Abstract: The notion of τ -confluence provides a form of partial order reduction of Labelled
Transition Systems (Ltss), by allowing to identify the τ -transitions whose execution does
not alter the observable behaviour of the system. Several forms of τ -confluence adequate
with branching bisimulation were studied in the literature, ranging from strong to weak
ones according to the length of τ -transition sequences considered. Weak τ -confluence is
more complex to compute than strong τ -confluence, but provides better Lts reductions. In
this report, we aim at devising an efficient detection of weak τ -confluent transitions during
an on-the-fly exploration of Ltss. To this purpose, we define and prove new encodings of
several weak τ -confluence variants using alternation-free boolean equation systems (Bess),
and we apply efficient local Bes resolution algorithms to perform the detection. The resulting
reduction module, developed within the Cadp toolbox using the generic Open/Cæsar
environment for Lts exploration, was experimented on numerous examples of large Ltss
underlying communication protocols and distributed systems. These experiments assessed
the efficiency of the reduction and allowed us to identify the best variants of weak τ -confluence
that are useful in practice.
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Calcul efficace à la volée de la tau-confluence faible

Résumé : La notion de τ -confluence fournit une forme de réduction des systèmes de tran-
sitions étiquetées (Stes) par ordre partiel, en permettant d’identifier les τ -transitions dont
l’exécution ne perturbe pas le comportement observable du système. Plusieurs variantes
de τ -confluence adéquates avec la bisimulation de branchement ont été étudiées dans la
littérature, depuis la variante forte jusqu’au variantes faibles obtenues selon la longueur des
séquences de τ -transitions considérées. La τ -confluence faible est plus complexe à calculer
que la τ -confluence forte, mais fournit des réductions plus fortes des Stes. Dans ce rap-
port, nous visons une détection efficace des τ -transitions faiblement confluentes pendant une
exploration à la volée des Stes. Dans ce but, nous définissons et prouvons de nouveaux en-
codages de plusieurs variantes de la τ -confluence faible sous forme de systèmes d’équations
booléennes (Sebs) sans alternance et nous effectuons la détection au moyen d’algorithmes
efficaces de résolution locale des Sebs. Le module reducteur ainsi obtenu, developpé au
sein de la bôıte à outils Cadp en utilisant l’environnement générique Open/Cæsar pour
l’exploration des Stes, a été expérimenté sur de nombreux exemples de Stes de grande taille
provenant de protocoles de communication et de systèmes distribués. Ces expériences ont
demontré l’efficacité de la réduction et nous ont permis d’identifier les meilleures variantes
de la τ -confluence faible utiles en pratique.

Mots-clés : système d’équations booléennes, bisimulation de branchement, système de
transitions étiquetées, réduction par ordre partiel, vérification à la volée



Efficient On-the-Fly Computation of Weak Tau-Confluence 3

1 Introduction

Explicit-state verification consists in exploring the state space of a concurrent program by
enumerating its states and transitions in order to determine whether it satisfies a temporal
logic formula (model checking) or it is equivalent to an automaton (equivalence checking).
Although this method allows a fast and economic detection of errors in real-life systems,
in practice it is confronted with the well-known problem of state explosion, i.e., an expo-
nential growth of the state space w.r.t. the size of the program under verification when it
contains many concurrent processes and complex data structures. Several techniques were
proposed to combat state explosion in explicit-state verification, among which on-the-fly veri-
fication (incremental construction of the state space during verification) [13, 6], partial order
reduction (elimination of redundant sequences caused by the interleaving of independent
transitions) [21, 10], and massively parallel verification (usage of the computing resources of
several machines connected by a network) [5, 22].

Here we focus on combining on-the-fly verification and partial order reduction for the analysis
of concurrent systems described using process algebraic languages, whose natural models are
Labeled Transition Systems (Ltss). In this context, specific variants of partial order reduc-
tion, such as τ -confluence [11], were proposed for reducing Ltss whilst preserving branching
bisimulation. Basically, confluent τ -transitions do not alter the observable behaviour of
the system, and therefore they can be prioritized by ignoring their neighbour transitions,
which reduces the amount of redundant interleavings. The on-the-fly detection of confluent
τ -transitions in Ltss can be done by encoding the problem as the local resolution of an
alternation-free Boolean Equation System (Bes) [1, 15], which was successfully applied for
strong τ -confluence [20]. The reductions can be further improved, at a higher computation
cost, using weaker forms of τ -confluence, as those studied in [12, 26, 3], but no attempt of
fully implementing them on-the-fly in the explicit-state setting has been done so far.

In this report, we propose a new encoding of weak τ -confluence by using alternation-free
Bess. The idea is to consider τ -convergent Ltss (without cycles of τ -transitions), for which
the computation of τ -closures can be done using maximal (instead of minimal) fixed point
equations. These equations can be merged with those of the maximal fixed point Bes encod-
ing the confluence detection, yielding an alternation-free Bes containing a single equation
block. The on-the-fly detection of weakly confluent τ -transitions is carried out by combining
the local Bes resolution with a τ -compression [16] of the Lts, which collapses the strongly
connected components (Sccs) of τ -transitions in order to obtain a τ -convergent Lts on
which the Bes encoding operates correctly. A similar scheme was succesfully applied to
obtain alternation-free Bes encodings of weak and branching bisimulation [19]. We study a
hierarchy containing seven variants of weak τ -confluence, some of them not considered be-
fore in the literature, with the goal of achieving better reductions than strong τ -confluence
(which is on top of the hierarchy) without penalizing the performance. For each variant R,
we propose two Bes encodings, an individual one that implements the mathematical defini-
tion of R, and a hierarchical one meant to speed up the convergence of Bes resolution by
trying to detect first the τ -transitions confluent modulo variants R′ that are stronger (and
therefore easier to compute) than R.

RR n° 7000



4 Mateescu & Wijs

This resulted in sixteen different Bes encodings of weak τ -confluence variants, all of which
were implemented within the Cadp toolbox [8] using the Open/Cæsar [7] generic envi-
ronment for on-the-fly Lts manipulation. We carried out an extensive set of experiments
by trying each Bes encoding of weak τ -confluence on Ltss corresponding to communica-
tion protocols and other real-life distributed systems. The measures included the memory
and execution time for reducing each Lts, and also the amount of reduction achieved w.r.t.
the Lts minimized modulo branching bisimulation. This enabled us to identify the Bes
encodings that offer the best compromise between the computation cost and the amount of
reduction achieved.

Related work. In [12], the relation between several notions of confluence and τ -inertness
is explained. Besides strong and weak confluence, several other versions are discussed, which
relax the confluence condition by allowing the branches to end up in two different states
(instead of a single one), which are related modulo some equivalence relation (strong, weak,
branching, or finite trace). In [11], an algorithm is presented to determine a set of strongly
confluent τ -transitions for a given Lts, in order to reduce it; repeated application leads to
increasingly smaller Ltss.

Another hierarchy of variants of τ -confluence is presented in [3]. Also here, strong and
weak τ -confluence, the latter being called ultra weak, form the two extremes. The two
variants in between, confluence and weak confluence, however, are not represented in our
hierarchy, since these ones are not suitable for Bes encodings. As in our report, a method is
described to detect confluent τ -transitions on-the-fly, here using a depth-first search through
the confluent transition graph to determine representatives of states and detect terminal
Sccs. An implementation of weak τ -confluence using this method is reported in [3, 4]; it is
able to handle infinite-state spaces by means of symbolic reasoning, but considers sequences
of at most two τ -transitions.

Report outline. Section 2 recalls the basic definitions of τ -confluence and introduces the
hierarchy of weak τ -confluence variants that we consider. Section 3 defines the individual
and hierarchical Bes encodings of the variants, and states their correctness. Section 4 briefly
describes the implementation of the reductor module based on Bes resolution. Section 5
shows experimental figures and compares the performance of the encodings on various Ltss.
Section 6 summarizes the results and gives directions of future work. Annex A contains the
definitions of all Bes encodings and Annex B gives the proofs of their correctness.

2 Hierarchy of Weak Tau-Confluence Variants

The reduction by τ -confluence operates on Ltss, which are the natural models for action-
based description languages, such as process algebras. An Lts is a tuple M = 〈S,A,T , s0〉,
where S is the set of states, A is the set of actions (including the internal action τ), T ⊆
S×A×S is the transition relation, and s0 ∈ S is the initial state. A transition (s1, a, s2) ∈ T

INRIA
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(also noted s1
a
→ s2) indicates that the system can move from state s1 to state s2 by executing

action a. The notation s1
a
→ s2 is equivalent to s1

a
→ s2 if a 6= τ and to s1

τ
→ s2 ∨ s1 = s2

otherwise. The definition of weak τ -confluence below is based on the notion introduced
in [12] and revisited in [3] under the name ultra weak τ -confluence.

Definition 1 (Weak τ-confluence) Given an Lts M = 〈S,A,T , s0〉, and S ⊆ S2, we
say that S is weak τ -confluent in M if for every 〈s1, s2〉 ∈ S and s1

a
→ s3, we have s1

τ
→ s2,

and for some n,m, p > 0 there exist s2,0, . . . , s2,n, s′2,0, . . . , s
′
2,m, s4 ∈ S with s2,0 = s2, and

s3,0, . . . , s3,p ∈ S with s3,0 = s3 such that s2,i
τ
→ s2,i+1 and 〈s2,i, s2,i+1〉 ∈ S for 0 ≤ i < n,

s2,n
a
→ s′2,0, s′2,j

τ
→ s′2,j+1 and 〈s′2,j, s

′
2,j+1〉 ∈ S for 0 ≤ j < m, s′2,m

τ
→ s4 and 〈s′2,m, s4〉 ∈ S,

s3,k
τ
→ s3,k+1 and 〈s3,k, s3,k+1〉 ∈ S for 0 ≤ k < p, and s3,p

τ
→ s4 and 〈s3,p, s4〉 ∈ S. The

maximal τ -confluent set T(S) ⊆ S2 is the union of all τ -confluent sets of M.

Weak τ -confluence is illustrated graphically by the R8 diagram at the bottom of the hierarchy
shown in Figure 1. The transitions drawn with solid lines are given, whereas the existence of
the dashed ones must be proven in order to make the diagram confluent. Transitions that are
τ -confluent (i.e., belong to S) are labeled by τc. The diagram R1 at the top of the hierarchy
corresponds to strong τ -confluence [11] and the other diagrams denote particular cases of

weak τ -confluence obtained either by dropping sequences si
τ∗

c→ sj or by replacing them with

single-step sequences si
τc→ sj. Arrows between diagrams indicate that the source diagram

is a particular case of the target diagram. In [12, 11, 3] it was shown that both strong and
weak τ -confluence are adequate w.r.t. branching bisimulation, i.e., if a transition s1

τ
→ s2

is τ -confluent, then s1 and s2 are branching bisimilar [12, 3]. Therefore, all intermediate
τ -confluence variants R2-R7 are also adequate w.r.t. branching bisimulation.

The τ -confluence reduction proposed in [11] consists of detecting confluent τ -transitions
s1

τc→ s2 and prioritizing them by deleting all their neighbour transitions s1
a
→ s3, thus

obtaining an Lts smaller, but still branching bisimilar to the original one. The detection
of confluent τ -transitions during an on-the-fly exploration of the Lts can be performed
efficiently using local Bes resolution, as shown in the sequel.

3 BES Encodings of Weak Tau-Confluence

An alternation-free boolean equation system (Bes) [1, 15] is a set of fixed point equations
having boolean variables in their left-hand sides and boolean formulas in their right-hand
sides. For our purpose, we consider maximal fixed point Bess containing simple equations [2],
i.e., whose boolean formulas in the right-hand sides are either purely disjunctive, or purely
conjunctive. We propose below new encodings of the weak τ -confluence variants R2-R8

using alternation-free Bess. For each weak τ -confluence variant Ri, we give an individual
encoding derived from its definition, and several hierarchical encodings taking into account
the variants stronger than Ri present in the hierarchy.

RR n° 7000



6 Mateescu & Wijs

s2 s′
2

s′′
2

s3s1

a

τc τ∗

c

a τ∗

c

s4

τ∗

c

s2

s3s1

a

τc

s4

s2

s3s1

a

τc

s4 s2

s3s1

a

τc τ∗

c

s4 s2 s′
2

s3s1

a

τc

s4

τ∗

c

s2

s3s1

a

τc τ∗

c

τ∗

c

s4 s2 s′
2

s′′
2

s3s1

a

τc

a τ∗

c

s4

τ∗

c

s2 s′
2

s3s1

a

τc τ∗

c

s4

τ∗

c

τc

a

s′′
2

a τ∗

c

τ c

τc

a a

τc

a
s′′
2

a

R1

R2 R3

R4

R5

R6 R7

R8

Figure 1: Variants of τ -confluence, ranging from strong (R1) to weak (R8)

3.1 Individual encodings

An alternation-free Bes encoding for the strong τ -confluence (R1) was proposed in [20] and
applied for reducing Ltss in networks of automata. To devise a similar encoding for weak
τ -confluence (R8), we associate to each transition s1

τc→ s2 a boolean variable Xs1,s2
indicat-

ing whether the transition is weakly τ -confluent or not. A direct encoding of the diagram
R8 yields the Bes (a) below. This Bes is further simplified by introducing additional vari-
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ables and equations to factor subformulas, such that every right-hand side formula becomes
disjunctive or conjunctive, yielding the Bes (b).







Xs1,s2

ν

=
∧

s1

a

→s3

∨

s2

τ
∗
c

→s
′

2

a

→s
′′

2

τ
∗
c

→s4
∨

s3

τ
∗
c

→s4

true





 s1, s2 ∈ S
a ∈ A







































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

τ
∗
c

→s
′

2

Zs
′

2
,s3,a

Zs
′

2
,s3,a

ν

=
∨

s
′

2

a

→s
′′

2

Us
′′

2
,s3

Us
′′

2
,s3

ν

=
∨

s
′′

2

τ
∗
c

→s4

Vs3,s4

Vs3,s4

ν

=
∨

s3

τ
∗
c

→s4

true







































s1, s2,
s′2, s′′2 ,
s3, s4 ∈ S,
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(a) (b)

We observe that the evaluation of the formulas in the right-hand sides of the equations defin-
ing Ys2,s3,a, Us′′2 ,s3

, and Vs3,s4
requires to compute transitive reflexive closures over confluent

τ -transitions. These τ -closure computations correspond to the evaluation of minimal fixed
points and can be encoded using an additional block of minimal fixed point equations. Since
these equations refer back to the variables Xs1,s2

of the maximal fixed point equation block
encoding the τ -confluence detection, the resulting Bes would be of alternation depth two,
a class with quadratic resolution complexity [24]. However, when the Lts is τ -convergent
(i.e., it does not contain cycles of τ -transitions), τ -closures can be encoded using maximal
(instead of minimal) fixed point equations, which can be added to the other equations of the
Bes (b). This produces the Bes below:
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s1,s2,s′2,s′′2 ,s3,s′3,s4∈S,a∈A

The detection of confluent τ -transitions is performed by solving the Xs1,s2
variables of this

Bes using the local resolution algorithms presented in [17]. The local Bes resolution triggers
a forward exploration of the Lts transitions in order to evaluate the formulas in the right-
hand sides of equations, and therefore is compatible with an on-the-fly exploration of the Lts.
Since this encoding scheme is correct only on τ -convergent Ltss, the cycles of τ -transitions
possibly present in the Lts must be eliminated on-the-fly during the Bes resolution, e.g., by
using the τ -compression algorithm proposed in [16].

The Bes encodings of the other weak τ -confluence variants R2-R7 of the hierarchy are
obtained as particular cases of the Bes above (see Annex A.1).

RR n° 7000
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3.2 Hierarchical encodings

The Bes encoding of weak τ -confluence (diagram R8 in Figure 1) defined in Section 3.1 yields
very good reductions, the resulting Ltss being sometimes very close to their minimized ver-
sions modulo branching bisimulation. However, when the Lts contains large τ -diamonds
produced by the interleaved internal activity of concurrent processes, the size of the Bes
(number of variables and operators) may become quadratic w.r.t. the size of the Lts (num-
ber of states and transitions). On the other hand, detecting strong τ -confluence (diagram R1)
yields smaller Bess, of size linear in the number of τ -transitions and quadratic in the branch-
ing factor of the Lts [20], but always provides less reduction than the other τ -confluence
variants (diagrams R2-R8).

To achieve the best compromise between the amount of reduction and the computational
effort, one can proceed as follows: for each τ -transition encountered, first try to detect
whether it is strongly confluent (R1), then try a weaker variant of τ -confluence (e.g., R2),
then a weaker one (e.g., R6), and finally try the weak τ -confluence itself (R8). This reduces
the average complexity of the τ -confluence detection by allowing a local Bes resolution
algorithm to stop as soon as it has established that the τ -transition under analysis matches
some τ -confluence variant among R1-R8. In practice, this hierarchical detection of weak τ -
confluence can be achieved by means of a Bes allowing the resolution algorithms to consider
in turn the desired τ -confluence variants, which amounts to follow a particular path in the
diagram hierarchy shown in Figure 1.

We construct below the Bes corresponding to the path R1-R2-R6-R8. Using the fact that
the local Bes resolution algorithms scan the right-hand sides of equations from left to right,
it is sufficient to put in the right-hand sides of the equations defining Xs1,s2

the boolean
formulas corresponding to the four diagrams R1, R2, R6, R8 in this order:
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It is worth noticing that this Bes is equivalent to (i.e., yields the same solution for the Xs1,s2

variables) the Bes given in Section 3.1 for the individual encoding of weak τ -confluence,
because the first three disjuncts in the right-hand side formula are absorbed by (i.e., are
particular cases of) the last disjunct, which corresponds to R8. Upon simplification and
factorization of common disjunctive subformulas, the Bes above takes the following form
(note that s4 was renamed into s′′2 in the first disjunct):
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The equation defining Ys2,s3,a can be simplified by absorbing the disjunct
∨

s3
τc→s4

true into
∨

s3
τ∗c→s4

true. Such simplifications can be applied as long as they do not perturbate the

evaluation order of the four cases R1, R2, R6, R8, which correspond to the disjuncts present
in the right-hand side of the equation defining Ys2,s3,a. Finally, after factoring τ -closures apart
and encoding them using additional equations using the same scheme as in Section 3.1, we
obtain the Bes corresponding to the hierarchical encoding of weak τ -confluence:
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a ∈ A

We also devised the hierarchical encodings for the five other paths from R1 to R8, and simi-
larly for the other variants R2-R7 in the hierarchy (see Annex A.2). Some of these encodings
led to identical Bess, ending up with only eight different hierarchical Bes encodings instead
of fifteen.

4 Implementation

The Bes encodings of the weak τ -confluence variants proposed in Section 3 provide the basis
for an on-the-fly Lts reduction procedure. We implemented this procedure as a reductor
module within the Cadp1 verification toolbox [8] using the generic Open/Cæsar environ-
ment [7] for Lts exploration. This environment is centered around an implicit representation
of Ltss defined by an Api in C allowing to manipulate the transition relation as a “successor
function” enumerating the transitions going out of a given state. Open/Cæsar provides a
rich set of primitives dedicated to graph exploration (stacks, edge lists, hash tables, etc.). It
also contains the generic Cæsar Solve library [17] for local Bes resolution, which operates
on Bess given as boolean graphs [1] represented implicitly in a way similar to Ltss. This
library currently offers nine resolution algorithms based on various exploration strategies
(depth-first, breadth-first, etc.), each of them being able to generate diagnostics (boolean
subgraphs) illustrating the truth value of a boolean variable. Cæsar Solve serves as veri-
fication engine for several on-the-fly Lts analysis tools of Cadp, such as the model checker
Evaluator 3.x [18, 17] and the equivalence checker Bisimulator 2.0 [19].

1See http://www.inrialpes.fr/vasy/cadp
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The architecture of the reductor module is shown in Figure 4. It takes as input an implicit
Lts (represented by its successor function) and produces as output the implicit Lts reduced
modulo weak τ -confluence. The input Lts is first processed on-the-fly by the τ -compression
module proposed in [16], which produces the implicit τ -convergent Lts obtained after col-
lapsing the τ -Sccs and replacing them by their representative states, namely their roots in
Tarjan’s terminology [23]. This τ -convergent Lts serves as input both for an encoder module
(this newly added module is about 13, 300 lines of C), which translates the weak τ -confluence
into an implicit Bes as described in Section 3, and for an explorer module, which actually
performs the detection of weakly confluent τ -transitions s1

τ
→ s2 by calling the Bes resolu-

tion engine Cæsar Solve to obtain the value of the boolean variables Xs1,s2
of the Bes.

Besides prioritizing confluent τ -transitions as described in [11], the explorer module also com-
presses the sequences of confluent τ -transitions using the on-the-fly algorithm given in [16],
which achieves additional reduction by exploiting the fact that the source and target states
of each such transition are branching bisimilar. The explorer module provides as output the
successor function of the reduced Lts obtained after applying these transformations.

τ -confluence
reductor

τ
-c

o
m

p
re

ss
io

n

〈S, A, T, s0〉
ex

p
lo

re
r

implicit τ -convergent Lts

τ
-c

o
n
fl
u
en

ce
en

co
d
er

Bes

y/n

(boolean

solverBes

graph)

Lts

implicit

reduced by
τ -confluence

implicit

Lts

confluent?)
(s1

τ

→ s2

variable

Figure 2: Architecture of the τ -confluence reductor

Currently the τ -confluence reductor module covers all the weak τ -confluence variants of
the hierarchy considered in Section 2 by implementing the sixteen different Bes encodings
identified in Section 3 (eight individual encodings and eight hierarchical ones). Since this
module acts as a filter on implicit Ltss, it can be easily plugged in the architecture of various
on-the-fly verification tools of Cadp in order to improve their performance by reducing the
Lts simultaneously with the verification. In the next section, we show the application of this
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module for Lts generation only, which transforms an implicit Lts into a (reduced) explicit
one, represented as a file in the Bcg (Binary Coded Graphs) format of Cadp.

5 Experimental Results

We studied the performance of all the individual and hierarchical Bes encodings extensively.
For this, we used around 30 Ltss from the Vlts benchmark suite2 stemming from industrial
case studies and 7 communication protocols taken from the Cadp demo examples3. All
experiments were run on a Linux machine with a 2.2 GHz Cpu and 16 Gb of memory.
Here, we present in several graphs the most interesting results obtained, concerning the
individual encodings of R1 and R8, and four hierarchical encodings, namely R1-2-4, R1-3-7,
R1-5-7-8, and R1-3-4-8.

In the graph at the top of Figure 5, the different sizes of the output Ltss are compared to
the usual sizes without any confluence checking (“full”) and the minimal sizes obtainable by
reducing the full Ltss modulo branching bisimulation (“min”). We observe that for many
of the Vlts cases displayed, there are no big differences between the sizes, while for the case
studies there are. Most of the Vlts examples do not stem from communication protocols,
and they seem less sensitive to which encoding we use.

The graphs at the middle and the bottom of Figure 5 show the execution times of the differ-
ent encodings when using two different resolution algorithms available in the Cæsar Solve
library [17, 19] of Cadp, namely A5 and A8, which exhibit the best performance for solv-
ing Bess encoding τ -confluence detection. Clearly, besides R1, which produces the worst
reduction, encodings R1-2-4 and R1-3-7 are on average the fastest. The experiments point out
that incorporating R8 into a hierarchical encoding can be particularly costly with respect to
time, hence it should only be done if the gain in reduction of the output Lts justifies it. The
performance of the other two hierarchical encodings excluding R8 tends to be in between the
performance of these two.

The last two graphs shown in Figure 5 display the number of boolean variables created in
memory in order to solve the Bess using algorithms A5 and A8, respectively. Algorithm A8
tends to be more economic in memory, which comes at the price of longer execution times.

Based on these results, we conclude that on average the performance of Ri, with i ∈ {4, 7, 8},
is worse than any hierarchical encoding incorporating Ri. Concerning R8, encoding R1-3-4-8

is often most efficient, but usually still very costly, and the same or slightly worse results
can be obtained more efficiently using an encoding to R7, particularly R1-3-7. Looking at
Figure 1, our experiments point out that if we want to incrementally check for confluences
weaker than strong, we should first try to detect strong confluence, then try to detect a
sequence of confluent τ -transitions starting at s2, i.e., the difference between R3 and R1,
then if desired try to detect a sequence of confluent τ -transitions after the following a, as

in R4, and finally extend the check of s3
τc→ s4 to s3

τ∗

c→ s4 (encoding R1-3-4, not shown in

2See http://www.inrialpes.fr/vasy/cadp/resources/benchmark bcg.html
3See http://www.inrialpes.fr/vasy/cadp/demos/demo XX.html
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Figure 3: Performance of weak τ -confluence reductions (I)
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the graphs, is usually faster than encoding R1-2-4). Furthermore, it seems that leaving out

either the check for s3
τ∗

c→ s4 or s′′2
τ∗

c→ s4 speeds the resolution up considerably, the first
being a better check to perform concerning the size of the output Lts. This is supported
by the fact that particularly encodings R4 and R8 are expensive to perform, while R5 and

R7 provide a better tradeoff between time and Lts size. Leaving s′′2
τ∗

c→ s4 out, as is done
in hierarchical encodings of R7, tends to produce slightly bigger Ltss, but does so several
orders of magnitude faster.

Figure 4: Performance of weak τ -confluence reductions (II)
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14 Mateescu & Wijs

6 Conclusion and Future Work

The possibility of efficiently reducing an Lts on-the-fly while preserving branching bisim-
ulation is a useful feature for equivalence checkers and model checkers. In this report we
studied a hierarchy of weak τ -confluence variants and proposed new (individual and hierar-
chical) encodings of these variants in terms of alternation-free Bess, which provided the basis
of a reduction procedure based on local Bes resolution. The resulting reductor module, built
using the Open/Cæsar [7] environment of Cadp [8] and the Cæsar Solve [17] boolean
resolution library, can be used as accelerator for various on-the-fly verification tools. The
experiments we carried out on benchmark Ltss coming from real-life case-studies enabled us
to identify the combinations of weak τ -confluence variants and Bes encodings that provide
the best compromise between the amount of reduction achieved and the complexity of its
computation. This improves over existing results in this setting, which concerned mainly
strong τ -confluence and (to a limited extent only) weak τ -confluence.

We plan to continue our work by first experimenting the new reductor module in conjunc-
tion with other on-the-fly verification tools of Cadp, such as the (sequential) model checker
Evaluator 3.x [18, 17] and equivalence checker Bisimulator 2.0 [17, 19] in order to de-
termine the most appropriate weak τ -confluent variant suitable for these tools. Another line
of work concerns the combination of the reductor module with the Distributor tool [9] for
distributed state space generation, which currently provides only τ -compression and strong
τ -confluence as reduction features. Finally, we will seek to devise Bes encodings for other
forms of τ -confluence, such as those defined in [12].
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A Encodings of the τ-confluence variants

A.1 Individual encodings

Encoding of R1 A direct encoding of the diagram R1 yields the Bes below:










Xs1,s2

ν
=

∧

s1
a
→s3

∨

s2
a
→s4

∨

s3
τc→s4

true











s1,s2∈S,a∈A

Simplifying the Bes such that every equation has a single boolean operator in its right-hand
side yields the following Bes:
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=
∧
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s1,s2,s3,s4∈S,a∈A

Encoding the τ -closures using maximal fixed point variables produces the following Bes:
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s1,s2,s3,s4∈S,a∈A

Encoding of R2 A direct encoding of the diagram R2 yields the Bes below:
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Simplifying the Bes such that every equation has a single boolean operator in its right-hand
side yields the following Bes:
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Encoding the τ -closures using maximal fixed point variables produces the following Bes:
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Encoding of R3 A direct encoding of the diagram R3 yields the Bes below:
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Simplifying the Bes such that every equation has a single boolean operator in its right-hand
side yields the following Bes:
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Encoding the τ -closures using maximal fixed point variables produces the following Bes:
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Encoding of R4 A direct encoding of the diagram R4 yields the Bes below:
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Simplifying the Bes such that every equation has a single boolean operator in its right-hand
side yields the following Bes:



































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

τ
∗
c

→s
′

2

Zs
′

2
,s3,a

Zs
′

2
,s3,a

ν

=
∨

s
′

2

a

→s
′′

2

Us
′′

2
,s3

Us
′′

2
,s3

ν

=
∨

s
′′

2

τ
∗
c

→s4

Vs3,s4

Vs3,s4

ν

=
∨

s3

τc

→s4

true



































s1,s2,s′2,s′′2 ,s3,s4∈S,a∈A

INRIA



Efficient On-the-Fly Computation of Weak Tau-Confluence 19

Encoding the τ -closures using maximal fixed point variables produces the following Bes:
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Encoding of R5 A direct encoding of the diagram R5 yields the Bes below:
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Simplifying the Bes such that every equation has a single boolean operator in its right-hand
side yields the following Bes:
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Encoding the τ -closures using maximal fixed point variables produces the following Bes:
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Encoding of R6 A direct encoding of the diagram R6 yields the Bes below:
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Simplifying the Bes such that every equation has a single boolean operator in its right-hand
side yields the following Bes:
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Encoding the τ -closures using maximal fixed point variables produces the following Bes:
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2
,s3,s4

ν

= Xs
′′

2
,s4

∧ Zs4,s3

Us3,s4

ν

= (s3 = s4) ∨
∨

s3

τ

→s
′

3

U ′

s3,s
′

3
,s4

U ′

s3,s
′

3
,s4

ν

= Xs3,s
′

3
∧ Us

′

3
,s4







































s1,s2,s′′2 ,s3,s′3,s4∈S,a∈A

Encoding of R7 A direct encoding of the diagram R7 yields the Bes below:















Xs1,s2

ν
=

∧

s1
a
→s3

∨

s2

τ∗c→s′2
a
→s4

∨

s3

τ∗c→s4

true















s1,s2∈S,a∈A

Simplifying the Bes such that every equation has a single boolean operator in its right-hand
side yields the following Bes:























Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

τ
∗
c

→s
′

2

Zs
′

2
,s3,a

Zs
′

2
,s3,a

ν

=
∨

s
′

2

a

→s4

Us3,s4

Us3,s4

ν

=
∨

s3

τ
∗
c

→s4

true























s1,s2,s′2,s3,s4∈S,a∈A

Encoding the τ -closures using maximal fixed point variables produces the following Bes:







































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= Zs2,s3,a ∨
∨

s2

τ

→s
′

2

Y ′

s2,s
′

2
,s3,a

Y ′

s2,s
′

2
,s3,a

ν

= Xs2,s
′

2
∧ Ys

′

2
,s3,a

Zs
′

2
,s3,a

ν

= (a = τ ∧ Us3,s
′

2
) ∨

∨

s
′

2

a

→s4

Us3,s4

Us3,s4

ν

= (s3 = s4) ∨
∨

s3

τ

→s
′

3

U ′

s3,s
′

3
,s4

U ′

s3,s
′

3
,s4

ν

= Xs3,s
′

3
∧ Us

′

3
,s4
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A.2 Hierarchical encodings

Encoding of the path R1-R2-R4-R8 Combining the boolean formulas corresponding to
the four diagrams R1, R2, R4, R8 yields the following:



































Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τ
∗
c

→s4

true

))



































s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows (note that s4 was renamed into s′′2 in the first disjunct):



















Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s
′′

2

(

∨

s3

τc

→s
′′

2

true ∨
∨

s
′′

2
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∗
c

→s4

∨

s3

τc

→s4

true

)

∨

∨

s2

τ
∗
c
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′

2

∨

s
′

2

a

→s
′′

2

∨

s
′′

2

τ
∗
c

→s4

(

∨

s3

τc

→s4

true ∨
∨

s3

τ
∗
c

→s4

true

)



















s1,s2,s3∈S,a∈A

Further simplifications (absorption of the disjunct
∨

s3
τc→s4

true by
∨

s3

τ∗c→s4

true and factoring

τ -closures apart into equations) yield the following Bes:























































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
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∨

s2

a

→s
′′

2
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′′

2
,s3

)

∨ Us2,s3,a
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′′

2
,s3

ν

= Vs3,s
′′

2
∨

∨

s
′′

2

τ
∗
c

→s4

Vs3,s4

Vs3,s4

ν

=
∨

s3

τc

→s4

true

Us2,s3,a

ν

=
∨

s2

τ
∗
c
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∨
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′

2

a

→s
′′

2
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′′
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,s3

Ws
′′
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,s3
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∨
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∗
c

→s4

Ss3,s4

Ss3,s4
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∨
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∗
c

→s4
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Finally, after encoding τ -closures using boolean equations, we obtain the Bes below:























































































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= (a = τ ∧ Zs2,s3
) ∨
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∨

s2

a

→s
′′

2

Zs
′′

2
,s3

)

∨ Us2,s3,a

Zs
′′

2
,s3

ν

= Vs3,s
′′

2
∨

∨

s
′′

2
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→s4

Z ′

s
′′

2
,s4,s3

Z ′

s
′′

2
,s4,s3

ν

= Xs
′′

2
,s4

∧ Zs4,s3

Vs3,s
′′

2

ν

= (s3 = s′′
2
) ∨

∨

s3

τ
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′′

2

Xs3,s
′′

2
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ν

= (a = τ ∧ Ws2,s3
) ∨
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∨
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2
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′′
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∨
∨
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2

U ′
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′

2
,s3,a
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′

2
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ν
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′
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2
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Ws
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2
,s3
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′′

2
∨

∨
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2
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W ′
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′′

2
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2
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s1, s2, s′2, s′′2 ,
s3, s′3, s4 ∈ S,
a ∈ A

Encoding of the path R1-R5-R6-R8 Combining the boolean formulas corresponding to
the four diagrams R1, R5, R6, R8 yields the following:



































Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

a

→s4

∨

s3

τ
∗
c

→s4

true

)

∨
(

∨

s2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τ
∗
c

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τ
∗
c

→s4

true

))



































s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows (note that s4 was renamed into s′′2 in the first and second disjunct):















Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s
′′

2

(

∨

s3

τc
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′′

2

true ∨
∨

s3

τ
∗
c
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′′

2

true ∨
∨

s
′′

2
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∗
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→s4

∨

s3

τ
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→s4

true

)

∨
∨
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∗
c

→s
′

2

∨
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′

2

a
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′′
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∨

s
′′

2

τ
∗
c

→s4

∨

s3

τ
∗
c

→s4

true















s1,s2,s3∈S,a∈A

Further simplifications (absorption of the disjunct
∨

s3
τc→s′′2

true by
∨

s3

τ∗c→s′′2

true and factoring

τ -closures apart into equations) yield the following Bes:



































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= Zs2,s3,a ∨
∨

s2

τ
∗
c
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′

2

Zs
′

2
,s3,a

Zs
′

2
,s3,a

ν

=
∨

s
′

2

a

→s
′′

2

Us
′′

2
,s3

Us
′′

2
,s3

ν

= Vs3,s
′′

2
∨

∨

s
′′

2

τ
∗
c

→s4

Vs3,s4

Vs3,s4

ν

=
∨

s3

τ
∗
c

→s4

true
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Finally, after encoding τ -closures using boolean equations, we obtain a Bes identical to the
encoding of R8:























































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= Zs2,s3,a ∨
∨

s2

τ
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′

2

Y ′

s2,s
′

2
,s3,a

Y ′

s2,s
′

2
,s3,a

ν

= Xs2,s
′

2
∧ Ys

′

2
,s3,a

Zs
′

2
,s3,a

ν

= (a = τ ∧ Us
′

2
,s3

) ∨
∨

s
′

2

a

→s
′′

2

Us
′′

2
,s3

Us
′′

2
,s3

ν

= Vs3,s
′′

2
∨

∨

s
′′

2

τ

→s4

U ′

s
′′

2
,s4,s3

U ′

s
′′

2
,s4,s3

ν

= Xs
′′

2
,s4
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Vs3,s4

ν

= (s3 = s4) ∨
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s3
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→s
′
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′

3
,s4
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′

3
,s4

ν

= Xs3,s
′
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∧ Vs

′

3
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s1,s2,s′2,s′′2 ,s3,s′3,s4∈S,a∈A

Encoding of the path R1-R5-R7-R8 Combining the boolean formulas corresponding to
the four diagrams R1, R5, R7, R8 yields the following:



































Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

a

→s4

∨

s3

τ
∗
c

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s4

∨
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∗
c

→s4

true
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∨
(

∨

s2

τ
∗
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→s
′

2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τ
∗
c

→s4

true

))



































s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows (note that s4 was renamed into s′′2 in the first and second disjunct):



















Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s
′′

2

(

∨

s3

τc
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′′

2

true ∨
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∗
c
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′′
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true
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∨
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′

2

∨
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′

2
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τ
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2

true ∨
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→s4

∨

s3
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→s4

true
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∨



















s1,s2,s3∈S,a∈A

Further simplifications (absorption of the disjunct
∨

s3
τc→s′′2

true by
∨

s3
τ∗c→s′′2

true and factoring

τ -closures apart into equations) yield the following Bes:
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ν
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a
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Ys2,s3,a
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ν
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′′

2

Zs3,s
′′

2

)

∨ Us2,s3,a

Zs3,s
′′

2

ν

=
∨

s3

τ
∗
c

→s
′′

2

true

Us2,s3,a

ν

=
∨

s2

τ
∗
c

→s
′

2

∨

s
′

2

a

→s
′′

2

Vs
′′

2
,s3

Vs
′′

2
,s3

ν

= Zs3,s
′′

2
∨

∨

s
′′

2

τ
∗
c

→s4
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Finally, after encoding τ -closures using boolean equations, we obtain the Bes below:



























































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= (a = τ ∧ Zs3,s2
) ∨
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a
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s1,s2,s′2,s′′2 ,s3,s′3,s4∈S,a∈A

Encoding of the path R1-R3-R4-R8 Combining the boolean formulas corresponding to
the four diagrams R1, R3, R4, R8 yields the following:



































Xs1,s2
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→s4

true
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s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows (note that s4 was renamed into s′′2 in the second disjunct):
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))















s1, s2,
s3 ∈ S,
a ∈ A

Further simplifications (absorption of the disjunct
∨

s3
τc→s4

true by
∨

s3

τ∗c→s4

true and factoring

τ -closures apart into equations) yield the following Bes:
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Finally, after encoding τ -closures using boolean equations, we obtain the Bes below (note
that on the right hand side of Vs′′2 ,s3

, the disjunct Zs3,s′′2
is absorbed by Ws3,s′′2

):
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,s

′′

2

W ′

s3,s
′

3
,s

′′

2

ν

= Xs3,s
′

3
∧ Ws

′

3
,s

′′

2



































































s1,s2,s′2,s′′2 ,s3,s′3,s4∈S,a∈A

Encoding of the path R1-R3-R7-R8 Combining the boolean formulas corresponding to
the four diagrams R1, R3, R7, R8 yields the following:



































Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s4

∨

s3

τ
∗
c

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τ
∗
c

→s4

true

))



































s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows (note that s4 was renamed into s′′2 in the second and third disjunct):















Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
(

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨

∨

s2

τ
∗
c

→s
′

2

∨

s
′

2

a

→s
′′

2

(

∨

s3

τc

→s
′′

2

true ∨
∨

s3

τ
∗
c

→s
′′

2

true ∨
∨

s
′′

2

τ
∗
c

→s4

∨

s3

τ
∗
c

→s4

true

)















s1, s2,
s3 ∈ S,
a ∈ A

Further simplifications (absorption of the disjunct
∨

s3
τc→s′′2

true by
∨

s3

τ∗c→s′′2

true and factoring

τ -closures apart into equations) yield the following Bes:











































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
(

∨

s2

a

→s4

Zs3,s4

)

∨ Us2,s3,a

Zs3,s4

ν

=
∨

s3

τc

→s4

true

Us2,s3,a

ν

=
∨

s2

τ
∗
c

→s
′

2

∨

s
′

2

a

→s
′′

2

Vs
′′

2
,s3

Vs
′′

2
,s3

ν

= Ws3,s
′′

2
∨

∨

s
′′

2

τ
∗
c

→s4

Ws3,s4

Ws3,s4

ν

=
∨

s3

τ
∗
c

→s4

true











































s1,s2,s′′2 ,s3,s4∈S,a∈A

RR n° 7000
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Finally, after encoding τ -closures using boolean equations, we obtain a Bes identical to the
one for R1-R3-R4-R8:


































































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= (a = τ ∧ Zs3,s2
) ∨

(

∨

s2

a

→s4

Zs3,s4

)

∨ Us2,s3,a

Zs3,s4

ν

= (s3 = s4) ∨
∨

s3

τ

→s4

Xs3,s4

Us2,s3,a

ν

= (a = τ ∧ Vs2,s3
) ∨

(

∨

s2

a

→s
′′

2

Vs
′′

2
,s3

)

∨
∨

s2

τ

→s
′

2

U ′

s2,s
′

2
,s3,a

U ′

s2.s
′

2
,s3,a

ν

= Xs2,s
′

2
∧ Us

′

2
,s3,a

Vs
′′

2
,s3

ν

= Ws3,s
′′

2
∨

∨

s
′′

2

τ

→s4

V ′

s
′′

2
,s4,s3

V ′

s
′′

2
,s4,s3

ν

= Xs
′′

2
,s4

∧ Vs4,s3

Ws3,s
′′

2

ν

= (s3 = s′′
2
) ∨

∨

s3

τ

→s
′

3

W ′

s3,s
′

3
,s

′′

2

W ′

s3,s
′

3
,s

′′

2

ν

= Xs3,s
′

3
∧ Ws

′

3
,s

′′

2



































































s1,s2,s′2,s′′2 ,s3,s′3,s4∈S,a∈A

Encoding of the path R1-R2 Combining the boolean formulas corresponding to the two
diagrams R1, R2 yields the following:







Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τc

→s4

true

))







s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows (note that s4 was renamed into s′′2 in the first disjunct):







Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s
′′

2

(

∨

s3

τc

→s
′′

2

true ∨
∨

s
′′

2

τ
∗
c

→s4

∨

s3

τc

→s4

true

)







s1,s2,s3∈S,a∈A

Further simplifications (factoring τ -closures apart into equations) yield the following Bes:























Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s
′′

2

Zs
′′

2
,s3

Zs
′′

2
,s3

ν

= Us3,s
′′

2
∨

∨

s
′′

2

τ
∗
c

→s4

Us3,s4

Us3,s
′′

2

ν

=
∨

s3

τc

→s
′′

2

true























s1,s2,s′′2 ,s3,s4∈S,a∈A

Finally, after encoding τ -closures using boolean equations, we obtain a Bes identical to the
one for R2:































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= (a = τ ∧ Zs2,s3
) ∨

(

∨

s2

a

→s
′′

2

Zs
′′

2
,s3

)

Zs
′′

2
,s3

ν

= Us3,s
′′

2
∨

∨

s
′′

2

τ

→s4

Z ′

s
′′

2
,s4,s3

Z ′

s
′′

2
.s4,s3

ν

= Xs
′′

2
,s4

∨ Zs4,s3

Us3,s
′′

2

ν

= (s3 = s′′2 ) ∨
∨

s3

τ

→s
′′

2

Xs3,s
′′

2































s1,s2,s′′2 ,s3,s4∈S,a∈A
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Encoding of the path R1-R5 Combining the boolean formulas corresponding to the two
diagrams R1, R5 yields the following:







Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

a

→s4

∨

s3

τ
∗
c

→s4

true

))







s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows:







Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s4

(

∨

s3

τc

→s4

true ∨
∨

s3

τ
∗
c

→s4

true

)







s1,s2,s3∈S,a∈A

Further simplifications (absorption of the disjunct
∨

s3
τc→s4

true by
∨

s3

τ∗c→s4

true and factoring

τ -closures apart into equations) yield the following Bes:











Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s4

Zs3,s4

Zs3,s4

ν

=
∨

s3

τ
∗
c

→s4

true











s1,s2,s3,s4∈S,a∈A

Finally, after encoding τ -closures using boolean equations, we obtain a Bes identical to the
one for R5:



















Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= (a = τ ∧ Zs3,s2
) ∨

∨

s2

a

→s4

Zs3,s4

Zs3,s4

ν

= (s3 = s4) ∨
∨

s3

τ

→s
′

3

Z ′

s3,s
′

3
,s4

Z ′

s3,s
′

3
,s4

ν

= Xs3,s
′

3
∧ Zs

′

3
,s4



















s1,s2,s3,s′3,s4∈S,a∈A

Encoding of the path R1-R3 Combining the boolean formulas corresponding to the two
diagrams R1, R3 yields the following:







Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s4

∨

s3

τc

→s4

true

))







s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows:











Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
(

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
∨

s2

τ
∗
c

→s
′

2

∨

s
′

2

a

→s4

∨

s3

τc

→s4

true











s1,s2,s3∈S,a∈A

RR n° 7000
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Further simplifications (factoring τ -closures apart into equations) yield the following Bes:























Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= Zs2,s3,a ∨
∨

s2

τ
∗
c

→s
′

2

Zs
′

2
,s3,a

Zs
′

2
,s3,a

ν

=
∨

s
′

2

a

→s4

Us3,s4

Us3,s4

ν

=
∨

s3

τc

→s4

true























s1,s2,s′2,s3,s4∈S,a∈A

Finally, after encoding τ -closures using boolean equations, we obtain a Bes identical to the
encoding of R3:



























Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= Zs2,s3,a ∨
∨

s2

τ

→s
′

2

Y ′

s2,s
′

2
,s3,a

Y ′

s2,s
′

2
,s3,a

ν

= Xs2,s
′

2
∧ Ys

′

2
,s3,a

Zs
′

2
,s3,a

ν

= (a = τ ∧ Us3,s
′

2
) ∨

∨

s
′

2

a

→s4

Us3,s4

Us3,s4

ν

= (s3 = s4) ∨
∨

s3

τ

→s4

Xs3,s4



























s1,s2,s′2,s3,s4∈S,a∈A

Encoding of the path R1-R2-R6 Combining the boolean formulas corresponding to the
three diagrams R1, R2, R6 yields the following:























Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τ
∗
c

→s4

true

))























s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows (note that s4 was renamed into s′′2 in the first disjunct):







Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s
′′

2

(

∨

s3

τc

→s
′′

2

true ∨
∨

s
′′

2

τ
∗
c

→s4

(

∨

s3

τc

→s4

true ∨
∨

s3

τ
∗
c

→s4

true

))







s1,s2,s3∈S,a∈A

Further simplifications (absorption of the disjunct
∨

s3
τc→s4

true by
∨

s3

τ∗c→s4

true and factoring

τ -closures apart into equations) yield the following Bes:



































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s
′′

2

Zs
′′

2
,s3

Zs
′′

2
,s3

ν

= Vs3,s
′′

2
∨

∨

s
′′

2

τ
∗
c

→s4

Us3,s4

Us3,s4

ν

=
∨

s3

τ
∗
c

→s4

true

Vs3,s
′′

2

ν

=
∨

s3

τc

→s
′′

2

true



































s1,s2,s′′2 ,s3,s4∈S,a∈A
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Finally, after encoding τ -closures using boolean equations, we obtain a Bes identical to the
encoding of R6 (note that on the right hand side of Zs′′2 ,s3

, the disjunct Vs3,s′′2
is absorbed by

Us3,s′′2
):







































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= (a = τ ∧ Zs2,s3
) ∨

∨

s2

a

→s
′′

2

Zs
′′

2
,s3

Zs
′′

2
,s3

ν

= Us3,s
′′

2
∨

∨

s
′′

2

τ

→s4

Z ′

s
′′

2
,s4,s3

Z ′

s
′′

2
,s4,s3

ν

= Xs
′′

2
,s4

∧ Zs4,s3

Us3,s
′′

2

ν

= (s3 = s4) ∨
∨

s3

τ

→s
′

3

U ′

s3,s
′

3
,s

′′

2

U ′

s3,s
′

3
,s

′′

2

ν

= Xs3,s
′

3
∧ Us

′

3
,s

′′

2







































s1,s2,s′′2 ,s′3,s4∈S,a∈A

Encoding of the path R1-R5-R6 Combining the boolean formulas corresponding to the
three diagrams R1, R5, R6 yields the following:























Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

a

→s4

∨

s3

τ
∗
c

→s4

true

)

∨
(

∨

s2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τ
∗
c

→s4

true

))























s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows (note that s4 was renamed into s′′2 in the first and second disjunct):







Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s
′′

2

(

∨

s3

τc

→s
′′

2

true ∨
∨

s3

τ
∗
c

→s
′′

2

true ∨
∨

s
′′

2

τ
∗
c

→s4

∨

s3

τ
∗
c

→s4

true

)







s1,s2,s3∈S,a∈A

Further simplifications (absorption of the disjunct
∨

s3
τc→s′′2

true by
∨

s3
τ∗c→s′′2

true and factoring

τ -closures apart into equations) yield the following Bes:






















Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s
′′

2

Zs
′′

2
,s3

Zs
′′

2
,s3

ν

= Us3,s
′′

2
∨

∨

s
′′

2

τ
∗
c

→s4

Us3,s4

Us3,s4

ν

=
∨

s3

τ
∗
c

→s4

true























s1,s2,s′′2 ,s3,s4∈S,a∈A

Finally, after encoding τ -closures using boolean equations, we obtain a Bes identical to the
encoding of R6:







































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= (a = τ ∧ Zs2,s3
) ∨

∨

s2

a

→s
′′

2

Zs
′′

2
,s3

Zs
′′

2
,s3

ν

= Us3,s
′′

2
∨

∨

s
′′

2

τ

→s4

Z ′

s
′′

2
,s4,s3

Z ′

s
′′

2
,s4,s3

ν

= Xs
′′

2
,s4

∧ Zs4,s3

Us3,s
′′

2

ν

= (s3 = s4) ∨
∨

s3

τ

→s
′

3

U ′

s3,s
′

3
,s

′′

2

U ′

s3,s
′

3
,s

′′

2

ν

= Xs3,s
′

3
∧ Us

′

3
,s

′′

2







































s1,s2,s′′2 ,s′3,s4∈S,a∈A
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Encoding of the path R1-R2-R4 Combining the boolean formulas corresponding to the
three diagrams R1, R2, R4 yields the following:























Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τc

→s4

true

))























s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows (note that s4 was renamed into s′′2 in the first disjunct):















Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s
′′

2

(

∨

s3

τc

→s
′′

2

true ∨
∨

s
′′

2

τ
∗
c

→s4

∨

s3

τc

→s4

true

)

∨
∨

s2

τ
∗
c

→s
′

2

∨

s
′

2

a

→s
′′

2

∨

s
′′

2

τ
∗
c

→s4

∨

s3

τc

→s4

true















s1,s2,s3∈S,a∈A

Further simplifications (factoring τ -closures apart into equations) yield the following Bes:











































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
(

∨

s2

a

→s
′′

2

Zs
′′

2
,s3

)

∨ Us2,s3,a

Zs
′′

2
,s3

ν

= Vs3,s
′′

2
∨ Ws

′′

2
,s3

Vs3,s
′′

2

ν

=
∨

s3

τc

→s
′′

2

true

Us2,s3,a

ν

=
∨

s2

τ
∗
c

→s
′

2

∨

s
′

2

a

→s
′′

2

Ws
′′

2
,s3

Ws
′′

2
,s3

ν

=
∨

s
′′

2

τ
∗
c

→s4

Vs3,s4











































s1,s2,s′′2 ,s3,s4∈S,a∈A

Finally, after encoding τ -closures using boolean equations, we obtain the Bes below:



























































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= (a = τ ∧ Zs2,s3
) ∨

(

∨

s2

a

→s
′′

2

Zs
′′

2
,s3

)

∨ Us2,s3,a

Zs
′′

2
,s3

ν

= Vs3,s
′′

2
∨ Ws

′′

2
,s3

Vs3,s
′′

2

ν

= (s3 = s′′
2
) ∨

∨

s3

τ

→s
′′

2

Xs3,s
′′

2

Us2,s3,a

ν

= (a = τ ∧ Ws2,s3
) ∨

(

∨

s2

a

→s
′′

2

Ws
′′

2
,s3

)

∨
∨

s2

τ

→s
′

2

U ′

s2,s
′

2
,s3,a

U ′

s2,s
′

2
,s3,a

ν

= Xs2,s
′

2
∧ Us

′

2
,s3,a

Ws
′′

2
,s3

ν

= Vs3,s
′′

2
∨

∨

s
′′

2

τ

→s4

W ′

s
′′

2
,s4,s3

W ′

s
′′

2
,s4,s3

ν

= Xs
′′

2
,s4

∧ Ws4,s3
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Encoding of the path R1-R3-R4 Combining the boolean formulas corresponding to the
three diagrams R1, R3, R4 yields the following:























Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s
′′

2

τ
∗
c

→s4

∨

s3

τc

→s4

true

))























s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows (note that s4 was renamed into s′′2 in the second disjunct):















Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
(

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨

∨

s2

τ
∗
c

→s
′

2

∨

s
′

2

a

→s
′′

2

(

∨

s3

τc

→s
′′

2

true ∨
∨

s
′′

2

τ
∗
c

→s4

∨

s3

τc

→s4

true

)















s1,s2,s3∈S,a∈A

Further simplifications (factoring τ -closures apart into equations) yield the following Bes:



































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
(

∨

s2

a

→s4

Zs3,s4

)

∨ Us2,s3,a

Zs3,s4

ν

=
∨

s3

τc

→s4

true

Us2,s3,a

ν

=
∨

s2

τ
∗
c

→s
′

2

∨

s
′

2

a

→s
′′

2

Vs
′′

2
,s3

Vs
′′

2
,s3

ν

= Zs3,s
′′

2
∨

∨

s
′′

2

τ
∗
c

→s4

Zs3,s4



































s1,s2,s′′2 ,s3,s4∈S,a∈A

Finally, after encoding τ -closures using boolean equations, we obtain the Bes below:



















































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= (a = τ ∧ Zs3,s2
) ∨

(

∨

s2

a

→s4

Zs3,s4

)

∨ Us2,s3,a

Zs3,s4

ν

= (s3 = s4) ∨
∨

s3

τ

→s4

Xs3,s4

Us2,s3,a

ν

= (a = τ ∧ Vs2,s3
) ∨

(

∨

s2

a

→s
′′

2

Vs
′′

2
,s3

)

∨
∨

s2

τ

→s
′

2

U ′

s2,s
′

2
,s3,a

U ′

s2.s
′

2
,s3,a

ν

= Xs2,s
′

2
∧ Us

′

2
,s3,a

Vs
′′

2
,s3

ν

= Zs3,s
′′

2
∨

∨

s
′′

2

τ

→s4

V ′

s
′′

2
,s4,s3

V ′

s
′′

2
,s4,s3

ν

= Xs
′′

2
,s4

∧ Vs4,s3
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Encoding of the path R1-R3-R7 Combining the boolean formulas corresponding to the
three diagrams R1, R3, R7 yields the following:























Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s4

∨

s3

τ
∗
c

→s4

true

))























s1,s2∈S
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Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows:















Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
(

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨

∨

s2

τ
∗
c

→s
′

2

∨

s
′

2

a

→s4

(

∨

s3

τc

→s4

true ∨
∨

s3

τ
∗
c

→s4

true

)















s1,s2,s3∈S,a∈A

Further simplifications (absorption of the disjunct
∨

s3
τc→s4

true by
∨

s3

τ∗c→s4

true and factoring

τ -closures apart into equations) yield the following Bes:



































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
(

∨

s2

a

→s4

Zs3,s4

)

∨ Us2,s3,a

Zs3,s4

ν

=
∨

s3

τc

→s4

true

Us2,s3,a

ν

=
∨

s2

τ
∗
c

→s
′

2

∨

s
′

2

a

→s4

Vs3,s4

Vs3,s4

ν

=
∨

s3

τ
∗
c

→s4

true



































s1,s2,s3,s4∈S,a∈A

Finally, after encoding τ -closures using boolean equations, we obtain the Bes below:



















































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= (a = τ ∧ Zs3,s2
) ∨

(

∨

s2

a

→s4

Zs3,s4

)

∨ Us2,s3,a

Zs3,s4

ν

= (s3 = s4) ∨
∨

s3

τ

→s4

Xs3,s4

Us2,s3,a

ν

= (a = τ ∧ Vs3,s2
) ∨

(

∨

s2

a

→s4

Vs3,s4

)

∨
∨

s2

τ

→s
′

2

U ′

s2,s
′

2
,s3,a

U ′

s2,s
′

2
,s3,a

ν

= Xs2,s
′

2
∧ Us

′

2
,s3,a

Vs3,s4

ν

= (s3 = s4) ∨
∨

s3

τ

→s
′

3

V ′

s3,s
′

3
,s4

V ′

s3,s
′

3
,s4

ν

= Xs3,s
′

3
∧ Vs

′

3
,s4



















































s1,s2,s′2,s3,s′3,s4∈S,a∈A

Encoding of the path R1-R5-R7 Combining the boolean formulas corresponding to the
three diagrams R1, R5, R7 yields the following:























Xs1,s2

ν

=
∧

s1

a

→s3

((

∨

s2

a

→s4

∨

s3

τc

→s4

true

)

∨
(

∨

s2

a

→s4

∨

s3

τ
∗
c

→s4

true

)

∨
(

∨

s2

τ
∗
c

→s
′

2

a

→s4

∨

s3

τ
∗
c

→s4

true

))























s1,s2∈S

Upon simplification and factorization of common disjunctive subformulas, the Bes above
becomes as follows:















Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
∨

s2

a

→s4

(

∨

s3

τc

→s4

true ∨
∨

s3

τ
∗
c

→s4

true

)

∨
∨

s2

τ
∗
c

→s
′

2

∨

s
′

2

a

→s4

∨

s3

τ
∗
c

→s4

true
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Further simplifications (absorption of the disjunct
∨

s3
τc→s4

true by
∨

s3
τ∗c→s4

true and factoring

τ -closures apart into equations) yield the following Bes:























Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

=
(

∨

s2

a

→s4

Zs3,s4

)

∨ Us2,s3,a

Zs3,s4

ν

=
∨

s3

τ
∗
c

→s4

true

Us2,s3,a

ν

=
∨

s2

τ
∗
c

→s
′

2

∨

s
′

2

a

→s4

Zs3,s4























s1,s2,s3,s4∈S,a∈A

Finally, after encoding τ -closures using boolean equations, we obtain the Bes below:







































Xs1,s2

ν

=
∧

s1

a

→s3

Ys2,s3,a

Ys2,s3,a

ν

= (a = τ ∧ Zs3,s2
) ∨

(

∨

s2

a

→s4

Zs3,s4

)

∨ Us2,s3,a

Zs3,s4

ν

= (s3 = s4) ∨
∨

s3

τ

→s
′

3

Z ′

s3,s
′

3
,s4

Z ′

s3,s
′

3
,s4

ν

= Xs3,s
′

3
∧ Zs

′

3
,s4

Us2,s3,a

ν

= (a = τ ∧ Zs3,s2
) ∨

(

∨

s2

a

→s4

Zs3,s4

)

∨
∨

s2

τ

→s
′

2

U ′

s2,s
′

2
,s3,a

U ′

s2,s
′

2
,s3,a

ν

= Xs2,s
′

2
∧ Us

′

2
,s3,a







































s1,s2,s′2,s3,s′3,s4∈S,a∈A
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B Proofs of the BES Encodings

We prove in the sequel the correctness of our Bes encoding for weak τ -confluence (R8

in Figure 1). The correctness proofs for encodings of τ -confluences R1, . . . , R7 and the
hierarchical encodings are very similar to the one for R8 and are therefore left as exercise for
the interested reader.

A few additional notions are needed in order to proceed. Let M = 〈S,A,T , s0〉 be an Lts.

Consider the two lattices 〈Bool
|S|2,⊑, false|S|

2

, true
|S|2,⊔,⊓〉 and 〈2S

2

,⊆, ∅,S2,∪,∩〉, where
the relation ⊑ and the operations ⊔, ⊓ are defined as the pointwise extensions of the boolean
connectors ⇒, ∨, and ∧, respectively. These lattices are isomorphic, being related by the
function Γ : Bool

|S|2 → 2S
2

defined below:

Γ(〈bs1,s2
〉s1,s2∈S) = {〈s1, s2〉 | bs1,s2

= true}.

It is straightforward to show that Γ is an isomorphism, i.e., it is a bijection preserving the
compatibility of operations (b ⊑ b

′ ⇔ Γ(b) ⊆ Γ(b′), Γ(false|S|
2

) = ∅, Γ(true
|S|2) = S2,

Γ(b ⊔ b
′) = Γ(b) ∪ Γ(b′), and Γ(b ⊓ b

′) = Γ(b) ∩ Γ(b′)).

Furthermore, we define that bs1,s2
= true iff s1

τc→ s2, i.e. bs1,s2
expresses whether there exists

a confluent τ -transition between states s1 and s2.

We provide below a definition of weak τ -confluence, based on the definitions of τ -confluence
by [20] and ultra weak confluence by [3], and recall two corresponding Bes encodings given
in Section 3.1, namely the direct encoding of diagram R8, and the encoding such that each
equation contains a single boolean operator, and τ -closures are encoded using maximal fixed
point variables.

Definition 2 (Weak τ-confluence) Given an Lts M = 〈S,A,T , s0〉, and S ⊆ S2, we
say that S is weak τ -confluent in M if for every 〈s1, s2〉 ∈ S and s1

a
→ s3, we have s1

τ
→ s2,

and for some n,m, p > 0 there exist s2,0, . . . , s2,n, s′2,0, . . . , s
′
2,m, s4 ∈ S with s2,0 = s2, and

s3,0, . . . , s3,p ∈ S with s3,0 = s3 such that s2,i
τ
→ s2,i+1 and 〈s2,i, s2,i+1〉 ∈ S for 0 ≤ i < n,

s2,n
a
→ s′2,0, s′2,j

τ
→ s′2,j+1 and 〈s′2,j, s

′
2,j+1〉 ∈ S for 0 ≤ j < m, s′2,m

τ
→ s4 and 〈s′2,m, s4〉 ∈ S,

s3,k
τ
→ s3,k+1 and 〈s3,k, s3,k+1〉 ∈ S for 0 ≤ k < p, and s3,p

τ
→ s4 and 〈s3,p, s4〉 ∈ S.

The maximal τ -confluent set T(S) ⊆ S2 is the union of all τ -confluent sets of M.

Definition 3 (Directly encoded weak τ-confluence BES) Let (S,A,T , s0) be a τ -convergent
Lts. The weak τ -confluent set T(S) ⊆ S2 is directly encoded by the maximal fixed point Bes
below:

Bwtc1 =















Xs1,s2

ν
=

∧

s1
a
→s3

∨

s2

τ∗c→s′2
a
→s′′2

τ∗c→s4

∨

s3

τ∗c→s4

true















s1,s2∈S,a∈A
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The interpretation [[Bwtc1]] is defined as the maximal fixed point νΦwtc1, where Φwtc1 :

Bool
|S|2 → Bool

|S|2 is the (monotonic) functional associated to Bwtc1:

Φwtc1(〈bs1,s2
〉s1,s2∈S) = 〈[[

∧

s1
a
→s3

∨

s2

τ∗c→s′2
a
→s′′2

τ∗c→s4

∨

s3

τ∗c→s4

true]][bs1,s2
/Xs1,s2

]〉s1,s2∈S .

Definition 4 (Weak τ-confluence BES) Let M = 〈S,A,T , s0〉 be a τ -convergent Lts.
The weak τ -confluent set T(S) ⊆ S2 is encoded by the maximal fixed point Bes below:

Bwtc =



































































Xs1,s2

ν
=

∧

s1
a
→s3

Ys2,s3,a

Ys2,s3,a
ν
= Zs2,s3,a ∨

∨

s2
τ
→s′2

Y ′
s2,s′2,s3,a

Y ′
s2,s′2,s3,a

ν
= Xs2,s′2

∧ Ys′2,s3,a

Zs′2,s3,a
ν
= (a = τ ∧ Us′2,s3

) ∨
∨

s′2
a
→s′′2

Us′′2 ,s3

Us′′2 ,s3

ν
= Vs3,s′′2

∨
∨

s′′2
τ
→s4

U ′
s′′2 ,s4,s3

U ′
s′′2 ,s4,s3

ν
= Xs′′2 ,s4

∧ Us4,s3

Vs3,s4

ν
= (s3 = s4) ∨

∨

s3
τ
→s′3

V ′
s3,s′3,s4

V ′
s3,s′3,s4

ν
= Xs3,s′3

∧ Vs′3,s4



































































s1,s2,s′2,s′′2 ,s3,s′3,s4∈S,a∈A

We first define some notations, and then we prove the correctness of the Bes encodings for
weak τ -confluence.

Definition 5 Let X be a set of boolean variables including X1, ...,Xn,Xn+1. Let B = {Xi
ν
=

ϕi}1≤i≤n and B′ = {Xi
ν
= ϕi}1≤i≤n+1 be two Bess having their first n equations identical

(ϕi are boolean formulas built from disjunctions and conjunctions) and δ : X → Bool be
a context. Let Φδ : Bool

n → Bool
n and Φ′

δ : Bool
n+1 → Bool

n+1 be the two functionals
associated to B and B′ in the context δ:

Φδ(〈bi〉1≤i≤n) = 〈[[ϕi]](δ ⊘ [bj/Xj ]1≤j≤n)〉1≤i≤n

Φ′
δ(〈bi〉1≤i≤n+1) = 〈[[ϕi]](δ ⊘ [bj/Xj ]1≤j≤n+1)〉1≤i≤n+1

where δ⊘ [bj/Xj ]1≤j≤n denotes a context identical to δ except for variables X1, ...,Xn, which
are assigned values b1, ..., bn. According to Kleene’s theorem [14], the maximal fixed points
of the functionals Φδ and Φ′

δ can be computed as follows:

νΦδ = ⊓k≥0Φ
k
δ (true

n) νΦ′
δ = ⊓k≥0Φ

′
δ
k
(true

n+1).

The notation 〈ei, e〉1≤i≤n, where ei and e are boolean expressions, is a shorthand for 〈e1, ..., en,
e〉. We define the series Uk ∈ Bool

n+1 associated to B, B′, and δ as follows:

U0 = true
n+1, Uk+1 = 〈(νΦδ⊘[(Φ′

δ
(Uk))n+1/Xn+1])i, (Φ

′
δ(Uk))n+1〉1≤i≤n.

We are now ready to show the correctness of the Bes encodings for weak τ -confluence. We
start by proving the correctness of Bwtc1.
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From Tarski’s theorem [25], the maximal fixed point νΦwtc1 can be computed as follows:

νΦwtc1 =
⊔

{b ∈ Bool
|S|2 | b ⊑ Φwtc1(b)}.

The following lemma provides a link between sets of confluent transitions and the functional
associated to the Bes Bwtc1.

Lemma 1 Let (S,A,T , s0) be an Lts, and let b ∈ Bool
|S|2. Then:

b ⊑ Φwtc1(b) iff Γ(b) is weak τ -confluent.

Proof If. Let b = 〈bs1,s2
〉s1,s2∈S such that Γ(b) is weak τ -confluent. We must show that

b ⊑ Φwtc1(b).

Let s1, s2 ∈ S such that bs1,s2
= true. From the definition of Γ, this implies 〈s1, s2〉 ∈ Γ(b).

Since Γ(b) is weak τ -confluent, from Definition 2 this implies that for all s1
a
→ s3, we

have s1
τ
→ s2, and for some n,m, p > 0 there exist s2,0, . . . , s2,n, s′2,0, . . . , s

′
2,m, s4 ∈ S with

s2,0 = s2, and s3,0, . . . , s3,p ∈ S with s3,0 = s3 such that s2,i
τ
→ s2,i+1 and 〈s2,i, s2,i+1〉 ∈ S

for 0 ≤ i < n, s2,n
a
→ s′2,0, s′2,j

τ
→ s′2,j+1 and 〈s′2,j , s

′
2,j+1〉 ∈ S for 0 ≤ j < m, s′2,m

τ
→ s4

and 〈s′2,m, s4〉 ∈ S, s3,k
τ
→ s3,k+1 and 〈s3,k, s3,k+1〉 ∈ S for 0 ≤ k < p, and s3,p

τ
→ s4 and

〈s3,p, s4〉 ∈ S.

Let s1
a
→ s3 be a transition. From the condition above, for some n,m, p > 0 there exist

s2,0, . . . , s2,n, s′2,0, . . . , s
′
2,m, s4 ∈ S with s2,0 = s2, and s3,0, . . . , s3,p ∈ S with s3,0 = s3 such

that s2,i
τ
→ s2,i+1 for 0 ≤ i < n, s2,n

a
→ s′2,0, s′2,j

τ
→ s′2,j+1 for 0 ≤ j < m, s′2,m

τ
→ s4,

s3,k
τ
→ s3,k+1 for 0 ≤ k < p, and s3,p

τ
→ s4.

This means that 〈s2,i, s2,i+1〉 ∈ Γ(b), which from the definition of Γ implies bs2,i,s2,i+1
= true,

for 0 ≤ i < n, 〈s′2,j, s
′
2,j+1〉 ∈ Γ(b), which implies bs′2,j ,s′2,j+1

= true, for 0 ≤ j < m, 〈s′2,m, s4〉 ∈

Γ(b), which implies bs′2,m,s4
= true, 〈s3,k, s3,k+1〉 ∈ Γ(b), which implies bs3,k,s3,k+1

= true, for

0 ≤ k < p, and 〈s3,p, s4〉 ∈ Γ(b), which implies bs3,p,s4
= true. Furthermore, it means that

〈s3,k, s3,k+1〉 ∈ Γ(b), which from the definition of Γ implies bs3,k,s3,k+1
= true, for 0 ≤ k < p,

and 〈s3,p, s4〉 ∈ Γ(b), which implies bs3,p,s4
= true. By definition of bs1,s2

, this means that
the boolean formula

∧

s1
a
→s3

∨

s2
τ∗c→s′2

a
→s′′2

τ∗c→s4

∨

s3
τ∗c→s4

true is also true. From the interpretation

of boolean formulas given in Definition 3, this implies:

〈[[
∧

s1
a
→s3

∨

s2
τ∗c→s′2

a
→s′′2

τ∗c→s4

∨

s3
τ∗c→s4

true]][bs1,s2
/Xs1,s2

]〉s1,s2∈S = true

meaning that (Φwtc1(b)) = true. Therefore, b ⊑ Φwtc1(b).

Only if. Let b = 〈bs1,s2
〉s1,s2∈S such that b ⊑ Φwtc1(b). We must show that Γ(b) is weak

τ -confluent, i.e., it satisfies Definition 2.

Let 〈s1, s2〉 ∈ Γ(b). From the definition of Γ, this implies bs1,s2
= true. Since b ⊑ Φwtc1(b),

from Definition 3 and the interpretation of boolean formulas, this implies:

〈[[
∧

s1
a
→s3

∨

s2

τ∗c→s′2
a
→s′′2

τ∗c→s4

∨

s3

τ∗c→s4

true]][bs1,s2
/Xs1,s2

]〉s1,s2∈S = true.
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Let s1
a
→ s3 be a transition. From the condition above, each conjunct associated to such

a transition must be true, i.e.,
∨

s2
τ∗c→s′2

a
→s′′2

τ∗c→s4

∨

s3
τ∗c→s4

true = true. This means that some

disjunct corresponding to transitions s2,i
τc→ s2,i+1 for some n > 0 with 0 ≤ i < n, s2,0 = s2

and s2,n = s′2, s2,n
a
→ s′2,0, s′2,j

τc→ s′2,j+1 for some m > 0 with 0 ≤ j < m and s′2,0 = s′′2,

s′2,m
τc→ s4, s3,k

τc→ s3,k+1 for some p > 0, with 0 ≤ k < p and s3,0 = s3, and s3,p
τc→ s4,

must be true. From the definition of bs1,s2
, this implies that for 0 ≤ i < n, 0 ≤ j < m, and

0 ≤ k < p, we have bs2,i,s2,i+1
= true, bs′2,j ,s′2,j+1

= true, and bs3,k,s3,k+1
= true. Besides that,

bs′2,m,s4
= true and bs3,p,s4

= true. This, by the definition of Γ, implies that 〈s2,i, s2,i+1〉 ∈ Γ(b)

for 0 ≤ i < n, 〈s′2,j , s
′
2,j+1〉 ∈ Γ(b) for 0 ≤ j < m, 〈s3,k, s3,k+1〉 ∈ Γ(b) for 0 ≤ k < p,

〈s′2,m, s4〉 ∈ Γ(b), and 〈s3,p, s4〉 ∈ Γ(b), which means that Γ(b) satisfies Definition 2, and
therefore Γ(b) is a weak τ -confluent set. 2

A useful property of weak τ -confluent sets is that they are closed under union, i.e., the union
of two weak τ -confluent sets is also weak τ -confluent. This property can be easily shown for
our notion of weak τ -confluence in the same way it was shown for τ -confluence in [11]. The
proposition below states the correctness of the direct Bes encoding of weak τ -confluence.

Proposition 1 (Correctness of directly encoded weak τ-confluence BES) Let M =
(S,A,T , s0) be an Lts, and let Bwtc1 be the Bes directly encoding a weak τ -confluent set of
M. Then:

Γ([[Bwtc1]]) = T(S).

Proof
Γ([[Bwtc1]]) = Γ(νΦwtc1) by Definition 3

= Γ(
⊔

{b | b ∈ Bool
|S|2 ∧ b ⊑ Φwtc1(b)}) by Tarski’s theorem

=
⋃

{Γ(b) | b ∈ Bool
|S|2 ∧ b ⊑ Φwtc1(b)} by Γ isomorphism

=
⋃

{Γ(b) | b ∈ Bool
|S|2 ∧ Γ(b) is confluent} by Lemma 1

=
⋃

{U ⊆ S2 | U is confluent} by Γ bijection
= T(S) by closure under union.

2

Before proving the correctness of Bwtc, we show first a lemma concerning the computation
of τ -closures using boolean equations, and then we show the main proposition.

Lemma 2 Let M = 〈S,A,T , s0〉 be a τ -convergent Lts, and consider the Bess:

B =



















Ys2,s3,a
ν
=

∨

s2

τ∗c→s′2

Zs′2,s3,a

Us′′2 ,s3

ν
=

∨

s′′2
τ∗c→s4

Vs3,s4

Vs3,s4

ν
=

∨

s3
τ∗c→s4

true



















s2,s′′2 ,s3,s4∈S,a∈A
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and

B′ =















Ys2,s3,a
ν
= Zs2,s3,a ∨

∨

s2
τ
→s′2

(Xs2,s′2
∧ Ys′2,s3,a)

Us′′2 ,s3

ν
= Vs3,s′′2

∨
∨

s′′2
τ
→s4

(Xs′′2 ,s4
∧ Us4,s3

)

Vs3,s4

ν
= (s3 = s4) ∨

∨

s3
τ
→s′3

(Xs3,s′3
∧ Vs′3,s4

)















s2,s′′2 ,s3,s4∈S,a∈A

Then:
[[B]]δ = [[B′]]δ

for any context δ : X → Bool, where the set X contains the variables Ys2,s3,a, Us′′2 ,s3
, Vs3,s4

and Xs1,s2
, and for all s1, s2 ∈ S, δ(Xs1,s2

) = true iff s1
τc→ s2.

Proof Let δ : X → Bool be a context and Φδ,Φ
′
δ : Bool

|S|2·|A| × Bool
|S|2 × Bool

|S|2 →

Bool
|S|2·|A| × Bool

|S|2 × Bool
|S|2 be the functionals associated to B and B′ in the context δ

(for simplicity, we omit the subscript domains when their meaning is clear):

Φδ(〈ys2,s3,a, us′′2 ,s3
, vs3,s4

〉) = 〈[[
∨

s2

τ∗c→s′2

Zs′2,s3,a]]

(δ ⊘ [ys2,s3,a/Ys2,s3,a, us′′2 ,s3
/Us′′2 ,s3

, vs3,s4
/Vs3,s4

]),

[[
∨

s′′2
τ∗c→s4

Vs3,s4
]]

(δ ⊘ [ys2,s3,a/Ys2,s3,a, us′′2 ,s3
/Us′′2 ,s3

, vs3,s4
/Vs3,s4

]),

[[
∨

s3
τ∗c→s4

true]](δ ⊘ [ys2,s3,a/Ys2,s3,a, us′′2 ,s3
/Us′′2 ,s3

, vs3,s4
/Vs3,s4

])〉

= 〈
∨

s2
τ∗c→s′2

δ(Zs′2,s3,a),
∨

s′′2
τ∗c→s4

vs3,s4
,
∨

s3
τ∗c→s4

true〉

Φ′
δ(〈ys2,s3,a, us′′2 ,s3

, vs3,s4
〉) = 〈[[Zs2,s3,a ∨

∨

s2
τ
→s′2

(Xs2,s′2
∧ Ys′2,s3,a)]]

(δ ⊘ [ys2,s3,a/Ys2,s3,a, us′′2 ,s3
/Us′′2 ,s3

, vs3,s4
/Vs3,s4

]),

[[Vs3,s′′2
∨

∨

s′′2
τ
→s4

(Xs′′2 ,s4
∧ Us4,s3

)]]

(δ ⊘ [ys2,s3,a/Ys2,s3,a, us′′2 ,s3
/Us′′2 ,s3

, vs3,s4
/Vs3,s4

]),

[[(s3 = s4) ∨
∨

s3
τ
→s′3

(Xs3,s′3
∧ Vs′3,s4

)]]

(δ ⊘ [ys2,s3,a/Ys2,s3,a, us′′2 ,s3
/Us′′2 ,s3

, vs3,s4
/Vs3,s4

])〉

= 〈δ(Zs2,s3,a) ∨
∨

s2
τ
→s′2

(δ(Xs2,s′2
) ∧ ys′2,s3,a),

vs3,s′′2
∨

∨

s′′2
τ
→s4

(δ(Xs′′2 ,s4
) ∧ us4,s3

),

(s3 = s4) ∨
∨

s3
τ
→s′3

(δ(Xs3,s′3
) ∧ vs′3,s4

)〉

To prove that νΦδ = νΦ′
δ, we show first that νΦδ ⊑ νΦ′

δ and then we show that the strict
inclusion νΦδ < νΦ′

δ does not hold. It is clear that the functional Φδ of B is constant
after two iterations; the equation for Ys2,s3,a is only dependent on δ, the equation for Vs3,s4

contains no variables on the right-hand side, and the equation for Us′′2 ,s3
only depends on

Vs3,s4
, which is constant after the first iteration. Because of this, the maximal fixed point of

Φδ is obtained simply by evaluating the functional on some arbitrary arguments:

νΦδ = 〈(
∨

s2
τ∗c→s′2

δ(Zs′2,s3,a))s2,s3,a, (
∨

s′′2
τ∗c→s4

((
∨

s3
τ∗c→s4

true)s3,s4
))s′′2 ,s3

, (
∨

s3
τ∗c→s4

true)s3,s4
〉
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By applying Φ′
δ on this fixed point, we obtain:

Φ′
δ(νΦδ) = Φ′

δ(〈
∨

s2
τ∗c→s′2

δ(Zs′2,s3,a),
∨

s′′2
τ∗c→s4

((
∨

s3
τ∗c→s4

true)s3,s4
),

∨

s3
τ∗c→s4

true〉)

by definition of νΦδ

= 〈δ(Zs2,s3,a) ∨
∨

s2
τ
→s′2

(δ(Xs2,s′2
) ∧ (

∨

s2
τ∗c→s′2

δ(Zs′2,s3,a))s′2,s3,a),

(
∨

s3
τ∗c→s4

true)s3,s′′2
∨

∨

s′′2
τ
→s4

(δ(Xs′′2 ,s4
) ∧ (

∨

s′′2
τ∗c→s4

((
∨

s3
τ∗c→s4

true)s3,s4
))s4,s3

),

(s3 = s4) ∨
∨

s3
τ
→s′3

(δ(Xs3,s′3
) ∧ (

∨

s3
τ∗c→s4

true)s′3,s4
)〉

by definition of Φ′
δ

= 〈δ(Zs2,s3,a) ∨
∨

s2
τ
→s′2

(δ(Xs2,s′2
) ∧

∨

s′2
τ∗c→s′′2

δ(Zs′′2 ,s3,a)),
∨

s3
τ∗c→s′′2

true ∨
∨

s′′2
τ
→s4

(δ(Xs′′2 ,s4
) ∧

∨

s4
τ∗c→s′4

∨

s3
τ∗c→s′4

true),

(s3 = s4) ∨
∨

s3
τ
→s′3

(δ(Xs3,s′3
) ∧

∨

s′3
τ∗c→s4

true)〉

by subscript substitution
= 〈δ(Zs2,s3,a) ∨

∨

s2
τc→s′2

∨

s′2
τ∗c→s′′2

δ(Zs′′2 ,s3,a),
∨

s3
τ∗c→s′′2

true ∨
∨

s′′2
τc→s4

∨

s4
τ∗c→s′4

∨

s3
τ∗c→s′4

true,

(s3 = s4) ∨
∨

s3
τc→s′3

∨

s′3
τ∗c→s4

true〉

by definition of τc and the assumption about δ concerning Xs1,s2

= 〈(
∨

s2

τ∗c→s′2

δ(Zs′2,s3,a))s2,s3,a, (
∨

s′′2
τ∗c→s4

((
∨

s3

τ∗c→s4

true)s3,s4
))s′′2 ,s3

, (
∨

s3

τ∗c→s4

true)s3,s4
〉

by definition of τ -closure
= νΦδ by definition of νΦδ.

From Tarski’s theorem [25], this implies νΦδ ⊑ νΦ′
δ. It remains to show that the strict

inclusion νΦδ < νΦ′
δ does not hold. Suppose that νΦδ < νΦ′

δ, meaning that:

〈(νΦδ)s2,s3,a, (νΦδ)s′′2 ,s3
, (νΦδ)s3,s4

〉 < 〈(νΦ′
δ)s2,s3,a, (νΦ′

δ)s′′2 ,s3
, (νΦ′

δ)s3,s4
〉

Three cases are possible, depending on whether the first, the second, or the third component
of νΦδ is smaller than the corresponding component of νΦ′

δ. We begin by considering the
first case. Let s2, s3 ∈ S and a ∈ A such that (νΦδ)s2,s3,a = false and (νΦ′

δ)s2,s3,a = true.

From the definition of Φδ, we infer that
∨

s2
τ∗c→s′2

δ(Zs′2,s3,a) = false, meaning that there is no

τ -sequence going out of s2 and leading to a state s′2 such that δ(Zs′2,s3,a) = true.

From the definition of Φ′
δ and the fact that νΦ′

δ is a fixed point, we infer that δ(Zs2,s3,a) ∨
∨

s2
τ
→s′2

(δ(Xs2,s′2
) ∧ (νΦ′

δ)s′2,s3,a) = true. But the disjunct δ(Zs2,s3,a) cannot be true be-

cause this would imply the existence of a zero-step τ -sequence going out of s2 such that
δ(Zs2,s3,a) = true, which is forbidden by the condition above. So the other disjunct must be

true, meaning that there exists a transition s2
τ
→ s′2 such that (δ(Xs2,s′2

) ∧ (νΦ′
δ)s′2,s3,a) =

true. By assumption, we know that δ(Xs2,s′2
) = true, hence it remains to be shown that

(νΦ′
δ)s′2,s3,a = true.

By repeating the above reasoning, we can construct an infinite sequence (s =)s2,0
τ
→ s2,1

τ
→

s2,2
τ
→ · · · with s2,0 = s2 and s2,1 = s′2 such that (νΦ′

δ)s2,i,s3,a = true for all i ≥ 0. This
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contradicts the hypothesis of M being τ -convergent, and therefore concludes the proof for
the first case.

Next, we look at the third case. Let s3, s4 ∈ S and a ∈ A such that (νΦδ)s3,s4
= false and

(νΦ′
δ)s3,s4

= true.

From the definition of Φδ, we infer that
∨

s3
τ∗c→s4

true = false, meaning that there is no τ -

sequence going out of s3, leading to state s4.

From the definition of Φ′
δ and the fact that νΦ′

δ is a fixed point, we infer that (s3 = s4) ∨
∨

s3
τ
→s′3

(δ(Xs3,s′3
)∧ (νΦ′

δ)s3,s4
) = true. But the disjunct (s3 = s4) cannot be true because this

would imply the existence of a zero-step τ -sequence going from s3 to s4, which is forbidden
by the condition above. So the other disjunct must be true, meaning that there exists a
transition s3

τ
→ s′3 such that (δ(Xs3,s′3

) ∧ (νΦ′
δ)s3,s4

) = true. By assumption, we know that
δ(Xs3,s′3

) = true, hence it remains to be shown that (νΦ′
δ)s3,s4

= true.

By repeating the above reasoning, we can construct an infinite sequence (s =)s3,0
τ
→ s3,1

τ
→

s3,2
τ
→ · · · with s3,0 = s3 and s3,1 = s′3 such that (νΦ′

δ)s3,i,s4
= true for all i ≥ 0. This

contradicts the hypothesis of M being τ -convergent, and therefore concludes the proof for
the third case.

For the second case, let s′′2, s3 ∈ S and a ∈ A such that (νΦδ)s′′2 ,s3
= false and (νΦ′

δ)s′′2 ,s3
=

true.

From the definition of Φδ and the fact that νΦδ is a fixed point, we infer that
∨

s′′2
τ∗c→s4

(νΦδ)s3,s4

= false, i.e.
∨

s′′2
τ∗c→s4

∨

s3

τ∗c→s4

true = false, meaning that there is no τ -sequence going out of s′′2,

leading to a state s4 such that there exists a τ -sequence from s3 to s4.

From the definition of Φ′
δ and the fact that νΦ′

δ is a fixed point, we infer that δ(νΦ′
δ)s3,s′′2

∨
∨

s′′2
τ
→s4

(δ(Xs′′2 ,s4
) ∧ (νΦ′

δ)s4,s3
) = true. Based on the definition of Φ′

δ, we distinguish two

possibilities:

1. δ(νΦ′
δ)s3,s′′2

= true. In this possibility, by definition of the third component of Φ′
δ,

and the fact that νΦ′
δ is a fixed point, we infer that (s3 = s′′2) ∨

∨

s3
τ
→s′3

(δ(Xs3,s′3
) ∧

(νΦ′
δ)s′3,s′′2

) = true. But the disjunct (s3 = s′′2) cannot be true because this would imply
the existence of zero-step τ -sequences going from s′′2 and s3 to s4, which is forbidden
by the condition above. So the other disjunct must be true, meaning that there exists
a transition s3

τ
→ s′3 such that (δ(Xs3,s′3

)∧ (νΦ′
δ)s′3,s′′2

) = true. By assumption, we know
that δ(Xs3,s′3

) = true, hence it remains to be shown that (νΦ′
δ)s′3,s′′2

= true.

By repeating the above reasoning, we can construct an infinite sequence (s =)s3,0
τ
→

s3,1
τ
→ s3,2

τ
→ · · · with s3,0 = s3 and s3,1 = s′3 such that (νΦ′

δ)s3,i,s′′2
= true for all i ≥ 0.

This contradicts the hypothesis of M being τ -convergent, and therefore concludes the
proof for this possibility of the third case.

2. δ(νΦ′
δ)s3,s′′2

= false. In this possibility,
∨

s′′2
τ
→s4

(δ(Xs′′2 ,s4
) ∧ (νΦ′

δ)s4,s3
) = true should

hold, meaning that there exists a transition s′′2
τ
→ s4 such that (δ(Xs′′2 ,s4

)∧(νΦ′
δ)s4,s3

) =
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true. By assumption, we know that δ(Xs′′2 ,s4
) = true, hence it remains to be shown

that (νΦ′
δ)s4,s3

= true.

By repeating the above reasoning, each time, we can distinguish two possibilities;
since the first possibility always infers an infinite τ -sequence from s3, contradicting the
hypothesis of M being τ -convergent, we have to consider the second possibility every
time. By this, we can construct an infinite sequence (s =)s2,0

τ
→ s2,1

τ
→ s2,2

τ
→ · · ·

with s2,0 = s′′2 and s2,1 = s4 such that (νΦ′
δ)s2,i,s3

= true for all i ≥ 0. This contradicts
the hypothesis of M being τ -convergent, and therefore concludes the proof for this
possibility of the third case.

2

Proposition 2 (Correctness of weak τ-confluence BES) Let M = 〈S,A,T , s0〉 be a
τ -convergent Lts, and let Bwtc be the Bes encoding the weak τ -confluent set of M. Then:

Γ([[Bwtc]]) = T(S).

Proof By Proposition 1, we have [[Bwtc1]] = T(S). Note that this proof is valid for arbitrary
Ltss, and therefore also for τ -convergent Ltss. From this, we progressively refine Bwtc1 until
obtaining the full Bes encoding given by Definition 4.

We now refine the Bes Bwtc1 into a Bes Bwtc2 by replacing certain subformulas with new
variables defined by additional equations, such that the right-hand side of each equation of
Bwtc2 contains a single type of boolean operator:

Bwtc2 =











































Xs1,s2

ν
=

∧

s1
a
→s3

Ys2,s3,a

Ys2,s3,a
ν
=

∨

s2
τ∗c→s′2

Zs′2,s3,a

Zs′2,s3,a
ν
=

∨

s′2
a
→s′′2

Us′′2 ,s3

Us′′2 ,s3

ν
=

∨

s′′2
τ∗c→s4

Vs3,s4

Vs3,s4

ν
=

∨

s3

τ∗c→s4

true











































s1,s2,s′2,s′′2 ,s3,s4∈S,a∈A

This transformation into a simple Bes Bwtc2 does not change the interpretation of the
variables Xs1,s2

of the original Bes, i.e., ([[Bwtc1]])Xs1,s2
= ([[Bwtc2]])Xs1,s2

for all s1, s2 ∈ S.

The final step towards the Bes Bwtc given in Definition 4 is to get rid of the τ -closures present
in the right-hand sides of the equations defining Ys2,s3,a, Us′2,s3

, and Vs3,s4
. To achieve this,

we consider the following Bes:

B =



















Ys2,s3,a
ν
=

∨

s2

τ∗c→s′2

Zs′2,s3,a

Us′′2 ,s3

ν
=

∨

s′′2
τ∗c→s4

Vs3,s4

Vs3,s4

ν
=

∨

s3
τ∗c→s4

true



















s2,s′′2 ,s3,s4∈S,a∈A
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Since Lts M is τ -convergent, Lemma 2 ensures that [[B]]δ = [[B′]]δ, where B′ is defined as
follows:

B′ =















Ys2,s3,a
ν
= Zs2,s3,a ∨

∨

s2
τ
→s′2

(Xs2,s′2
∧ Ys′2,s3,a)

Us′′2 ,s3

ν
= Vs3,s′′2

∨
∨

s′′2
τ
→s4

(Xs′′2 ,s4
∧ Us4,s3

)

Vs3,s4

ν
= (s3 = s4) ∨

∨

s3
τ
→s′3

(Xs3,s′3
∧ Vs′3,s4

)















s2,s′′2 ,s3,s4∈S,a∈A

Starting with the Bess B and B′, which have the same interpretation in any context δ, we
can apply Lemma 4 of the full version of [19] repeatedly in order to add all the equations of
Bwtc2 defining variables Xs1,s2

and Zs′2,s3,a for all s1, s2, s
′
2, s3 ∈ S and a ∈ A, still ensuring

that the resulting Bess have the same interpretation. Furthermore, we can add additional
equations Ys2,s′2,s3,a, Us′2,s4,a, and Vs3,s′3,s4

for all s2, s
′
2, s3, s

′
3, s4 ∈ S and a ∈ A in order to

remove the conjunctions from Ys2,s3,a, Us′2,s3
, and Vs3,s4

in B′, respectively. Upon completion
of this process, the Bes derived from B is Bwtc2 and the Bes derived from B′ is Bwtc (note
that we can permute freely the equations of a Bes without changing the interpretation of
its variables):

Bwtc =



































































Xs1,s2

ν
=

∧

s1
a
→s3

Ys2,s3,a

Ys2,s3,a
ν
= Zs2,s3,a ∨

∨

s2
τ
→s′2

Y ′
s2,s′2,s3,a

Y ′
s2,s′2,s3,a

ν
= Xs2,s′2

∧ Ys′2,s3,a

Zs′2,s3,a
ν
= (a = τ ∧ Us′2,s3

) ∨
∨

s′2
a
→s′′2

Us′′2 ,s3

Us′′2 ,s3

ν
= Vs3,s′′2

∨
∨

s′′2
τ
→s4

U ′
s′′2 ,s4,s3

U ′
s′′2 ,s4,s3

ν
= Xs′′2 ,s4

∧ Us4,s3

Vs3,s4

ν
= (s3 = s4) ∨

∨

s3
τ
→s′3

V ′
s3,s′3,s4

V ′
s3,s′3,s4

ν
= Xs3,s′3

∧ Vs′3,s4



































































s1,s2,s′2,s′′2 ,s3,s′3,s4∈S,a∈A

By virtue of Lemma 4 of the full version of [19], these Bess have the same interpretation (the
context δ becomes useless since both Bess are closed), meaning that Bwtc has in turn the
same interpretation as Bwtc1, and thus it reflects the weak τ -confluent set of the τ -convergent
Lts M correctly. 2

INRIA



Centre de recherche INRIA Grenoble – Rhône-Alpes
Inovallée, 655, avenue de l’Europe, Montbonnot - 38334 Saint Ismier Cedex (France)

Centre de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes, 4, rue Jacques Monod - Bât. G - 91893 Orsay Cedex (France)
Centre de recherche INRIA Nancy – Grand Est : 615, rue du Jardin Botanique - 54600 Villers-lès-Nancy (France)

Centre de recherche INRIA Rennes – Bretagne Atlantique : Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399


	Introduction
	Hierarchy of Weak Tau-Confluence Variants
	BES Encodings of Weak Tau-Confluence
	Individual encodings
	Hierarchical encodings

	Implementation
	Experimental Results
	Conclusion and Future Work
	Encodings of the -confluence variants
	Individual encodings
	Hierarchical encodings

	Proofs of the BES Encodings

