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Rédutions dépendantes de la propriétépour le mu-alul modalRésumé : Lorsqu'on analyse le omportement des systèmes onurrents à espae d'états�ni par model heking, une manière de lutter ontre l'explosion d'états est de réduire lemodèle le plus possible tout en préservant les propriétés à véri�er. Nous onsidérons leadre des systèmes basés sur ations, dont les omportements peuvent être représentés pardes systèmes de transitions étiquetées (Stes), et dont les propriétés temporelles d'intérêtpeuvent être formulées en µ-alul modal (Lµ). D'abord, nous déterminons, pour touteformule de Lµ, l'ensemble maximal des ations qui peuvent être masquées dans le Ste sanshanger l'interprétation de la formule. Ensuite, nous dé�nissons Ldsbr
µ , un fragment de Lµqui est ompatible ave la bisimulation de branhement sensible à la divergene. Cei permetd'appliquer le masquage maximal et de réduire le Ste à la volée en utilisant la τ -on�uenesensible à la divergene pendant la véri�ation de la formule Ldsbr

µ . Les expérienes quenous avons e�etuées sur di�érents exemples de protooles de ommuniation et de systèmesdistribués montrent que ette approhe de rédution peut améliorer de manière signi�ativeles performanes de la véri�ation à la volée.Mots-lés : bisimulation de branhement sensible à la divergene, système de transitionsétiquetées, µ-alul modal, véri�ation basée sur les modèles, véri�ation à la volée



Property-Dependent Redutions for the Modal Mu-Calulus 31 IntrodutionModel heking [5℄ is a tehnique to systematially verify whether a system spei�ationmeets a given temporal property. Although suessfully applied in many ases, its usefulnessin pratie is still hampered by the state explosion phenomenon, whih may entail highmemory and Cpu requirements in order to arry out the veri�ation.One way to improve the performane of model heking is to hek the property at a higherlevel of abstration; by abstrating parts of the system behavior away from the spei�ation,its orresponding state spae will be smaller, thereby easier to hek. This an either be doneglobally, i.e., before verifying the property, or on-the-�y, i.e., during veri�ation. However,one needs to be areful not to abstrat away any details ruial for the outome of the hek,i.e., relevant for the property. This is known as ation abstration in ation-based formalisms,where state spaes are represented by Labeled Transition Systems (Ltss), spei�ations arewritten using some �avor of proess algebra [2℄, and temporal properties are desribed usinga temporal logi suh as the µ-alulus (Lµ) [18, 28℄. Abstrated behavior is then representedby some prede�ned ation, denoted τ in proess algebras. In the past, the main fous inthis area has been on devising µ-alulus variants adequate with spei� relations, suh as
µAtl\X [9℄, whih is adequate w.r.t. divergene-sensitive branhing bisimulation [15, 14℄,or weak µ-alulus [28℄, whih is adequate w.r.t. weak bisimulation [25℄. For suh fragments,the minimization of an Lts modulo the spei� relation preserves the truth value of allformulas written in the adequate µ-alulus. Other works foused on devising redutionstargeted to spei� formulas, suh as those written in the seletive µ-alulus [3℄. For eahseletive µ-alulus formula, it is possible to hide all ations not ourring in the formula, andsubsequently minimize the Lts modulo τ∗.a bisimulation [10℄ before verifying the formula.In this report, we propose two enhanements with respet to existing work. Firstly, startingfrom an arbitrary Lµ formula, we determine automatially the maximal set of ations whihan be hidden in an Lts without a�eting the outome of the veri�ation of that formula. Thisyields the maximum potential for redution, and therefore for improving the performane ofmodel heking. After hiding, the Lts an be minimized modulo strong bisimulation withoutdisturbing the truth value of the formula. This method is not intrusive, in the sense that itdoes not fore the user to write formulas in a ertain way. Seondly, we identify a fragment of
Lµ, alled Ldsbr

µ , whih is ompatible with divergene-sensitive branhing bisimulation. Weshow that this fragment subsumes µAtl\X, the modalities of seletive µ-alulus, and theweak µ-alulus. Compared to these µ-aluli, whih require that ation formulas ontainonly names of visible ations, our Ldsbr
µ fragment also allows the presene of the invisibleation τ , therefore providing additional �exibility in the spei�ation of properties.The redution approah for Ldsbr

µ is now supported within the Cadp1 veri�ation toolbox [13℄.The model heking of a Ldsbr
µ formula an be optimized generally in two ways: globally, bygenerating the Lts, then hiding the maximal set of ations aording to the formula, and min-imizing the Lts modulo strong or divergene-sensitive branhing bisimulation before hekingthe formula; and on-the-�y, by applying maximal hiding and redution modulo divergene-1http://www.inrialpes.fr/vasy/adpRR n° 7690



4 Mateesu & Wijssensitive τ -on�uene simultaneously with the veri�ation. The experiments we arried outon several examples of protools and distributed systems show that these optimizations anlead to signi�ant performane improvements.Setion 2 de�nes the formalisms and relations onsidered in this report. Setion 3 studiesthe maximal hiding of ations in an Lts w.r.t. a given Lµ formula. Setion 4 introdues the
Ldsbr

µ fragment, shows its ompatibility with divergene-sensitive branhing bisimulation, andompares its expressiveness with other logis. Setion 5 desribes and illustrates experimen-tally the model heking optimizations obtained by applying maximal hiding and redutionsfor Ldsbr
µ formulas. Setion 6 gives onluding remarks and diretions of future work.2 BakgroundLabeled transition system. We onsider as interpretation model the lassial Lts, whihunderlies proess algebras and related ation-based desription languages. An Lts is a tuple

〈S,A, T, s0〉, where S is the set of states, A is the set of ations (inluding the invisible ation
τ), T ⊆ S × A × S is the transition relation, and s0 ∈ S is the initial state. The visibleations in A \ {τ} are noted a and the ations in A are noted b. A transition 〈s1, b, s2〉 ∈ T(also noted s1 b

→ s2) means that the system an move from state s1 to state s2 by performingation b. The re�exive transitive losure of τ
→ is denoted by =⇒ . A �nite path is denoted by

s0
b0···bk−1
→ sk, whih is a �nite sequene s0, s1, . . . , sk, suh that there exist ations b0, . . . , bk−1with ∀0 ≤ i < k.si

bi→ si+1. We assume below the existene of an Lts M = 〈S,A, T, s0〉 onwhih temporal formulas will be interpreted.Modal µ-alulus. The variant of Lµ that we onsider here onsists of ation formulas(noted α) and state formulas (noted ϕ), whih haraterize subsets of Lts ations and states,respetively. The syntax and semantis of these formulas are de�ned in Figure 1. Ationformulas are built over the set of ations by using Boolean onnetors in a way similar to Atl(Ation-based Ctl) [26℄, whih is a slight extension w.r.t. the original de�nition of Lµ [18℄.Derived ation operators an be de�ned as usual: true = ¬false, α1 ∧ α2 = ¬(¬α1 ∨ ¬α2),et. State formulas are built from Boolean onnetors, the possibility modality (〈 〉), and theminimal �xed point operator (µ) de�ned over propositional variables X belonging to a set
X . Derived state operators an be de�ned as usual: true = ¬false, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2),
[α]ϕ = ¬ 〈α〉 ¬ϕ is the neessity modality, and νX.ϕ = ¬µX.¬ϕ[¬X/X] is the maximal �xedpoint operator (ϕ[¬X/X] stands for ϕ in whih all free ourrenes of X have been negated).The interpretation [[α]]A of an ation formula on the set of ations of an Lts denotes thesubset of ations satisfying α. An ation b satis�es a formula α (also noted b |=A α) ifand only if b ∈ [[α]]A. A transition s1 b

→ s2 suh that b |=A α is alled an α-transition. Apropositional ontext ρ : X → 2S is a partial funtion mapping propositional variables tosubsets of states. The notation ρ ⊘ [U/X] stands for a propositional ontext idential to ρexept for variable X, whih is mapped to the state subset U . The interpretation [[ϕ]]M ρ ofa state formula on an Lts M and a propositional ontext ρ (whih assigns a set of statesINRIA



Property-Dependent Redutions for the Modal Mu-Calulus 5Ation formulas:
α ::= b

| false

| ¬α1

| α1 ∨ α2

[[b]]
A

= {b}
[[false]]

A
= ∅

[[¬α1]]A = A \ [[α1]]A
[[α1 ∨ α2]]A = [[α1]]A ∪ [[α2]]AState formulas:

ϕ ::= false

| ¬ϕ1

| ϕ1 ∨ ϕ2

| 〈α〉ϕ1

| X
| µX.ϕ1

[[false]]
M
ρ = ∅

[[¬ϕ1]]M ρ = S \ [[ϕ1]]M ρ
[[ϕ1 ∨ ϕ2]]M ρ = [[ϕ1]]M ρ ∪ [[ϕ2]]M ρ

[[〈α〉ϕ1]]M ρ = {s ∈ S | ∃s
b
→ s′ ∈ T.b ∈ [[α]]

A
∧ s′ ∈ [[ϕ1]]M ρ}

[[X ]]
M
ρ = ρ(X)

[[µX.ϕ1]]M ρ =
⋂

{U ⊆ S | [[ϕ1]]M (ρ⊘ [U/X ]) ⊆ U}Figure 1: Syntax and semantis of Lµto eah propositional variable ourring free in ϕ) denotes the subset of states satisfying ϕin that ontext. The Boolean onnetors are interpreted as usual in terms of set operations.The possibility modality 〈α〉ϕ1 (resp. the neessity modality [α]ϕ1) denotes the states forwhih some (resp. all) of their outgoing transitions labeled by ations satisfying α lead tostates satisfying ϕ1. The minimal �xed point operator µX.ϕ1 (resp. the maximal �xedpoint operator νX.ϕ1) denotes the least (resp. greatest) solution of the equation X = ϕ1interpreted over the omplete lattie 〈

2S , ∅, S,∩,∪,⊆
〉. A state s satis�es a losed formula

ϕ (also noted s |=M ϕ) if and only if s ∈ [[ϕ]]M (the propositional ontext ρ an be omittedsine ϕ does not ontain free variables).Propositional Dynami Logi with Looping. In addition to plain Lµ operators, wewill use the modalities of Pdl-∆ (Propositional Dynami Logi with Looping) [29℄, whihharaterize �nite (resp. in�nite) sequenes of transitions whose onatenated ations formwords belonging to regular (resp. ω-regular) languages. The syntax and semantis of Pdl-∆(de�ned by translation to Lµ) are given in Figure 2. Regular formulas (noted β) are builtfrom ation formulas and the testing (?), onatenation (.), hoie (|), and transitive re�exivelosure (∗) operators. Apart from Boolean onnetors, state formulas are built from thepossibility modality (〈 〉) and the in�nite looping operator (〈 〉@), both ontaining regularformulas. Derived state operators are de�ned as follows: [β]ϕ = ¬ 〈β〉 ¬ϕ is the neessitymodality, and [β] ⊣ = ¬ 〈β〉@ is the saturation operator.A transition sequene satis�es a formula β if the word obtained by onatenating all ationsof the sequene belongs to the regular language de�ned by β. The testing operator makes itpossible to speify state formulas that must hold in the intermediate states of a transitionsequene. The possibility modality 〈β〉ϕ1 (resp. the neessity modality [β]ϕ1) denotes thestates for whih some (resp. all) of their outgoing transition sequenes satisfying β leadto states satisfying ϕ1. The in�nite looping operator 〈β〉@ (resp. the saturation operatorRR n° 7690



6 Mateesu & Wijs
β ::= α | ϕ? | β1.β2 | β1|β2 | β∗1
ϕ ::= false | ¬ϕ1 | ϕ1 ∨ ϕ2 | 〈β〉ϕ1 | 〈β〉@

〈ϕ′?〉ϕ = ϕ′ ∧ ϕ
〈β1.β2〉ϕ = 〈β1〉 〈β2〉ϕ
〈β1|β2〉ϕ = 〈β1〉ϕ ∨ 〈β2〉ϕ

〈β∗〉ϕ = µX.(ϕ ∨ 〈β〉X)
〈β〉@ = νX. 〈β〉XFigure 2: Syntax and semantis of Pdl-∆

[β] ⊣) denotes the states having some (resp. no) outgoing transition sequene onsisting ofan in�nite onatenation of sub-sequenes satisfying β.The operators of Pdl-∆ an be freely mixed with those of Lµ, and in pratie they allow amuh more onise and intuitive desription of properties. The variant of Lµ extended withPdl-∆ operators, noted Lreg
µ , has been onsidered and e�iently implemented in [21℄ (infat, the syntax used for Pdl-∆ operators in Fig. 2 is that of Lreg

µ and not the original one).In the remainder of the report, we will use Lreg
µ whenever possible for speifying properties.Divergene-sensitive branhing bisimulation. As equivalene relation between Ltss,we onsider divergene-sensitive branhing bisimulation [15, 14℄, whih preserves branhing-time properties suh as inevitable reahability and also the existene of divergenes (τ -yles),while still making possible substantial redutions of Ltss. This relation is �ner than plainbranhing bisimulation and weak bisimulation [25℄ (none of whih preserves divergenes),therefore being a good andidate for omparing the behaviour of onurrent systems.De�nition 1 (Divergene-Sensitive Branhing Bisimulation [15℄) A binary relation

R on the set of states S is a divergene-sensitive branhing bisimulation if R is symmetriand s R t implies that� if s b
→ s′ then� either b = τ with s′ R t;� or t=⇒ t̂

b
→ t′ with s R t̂ and s′ R t′.� if for all k ≥ 0 and s = s0, sk

τ
→ sk+1 then for all ℓ ≥ 0 and t = t0, tℓ τ

→ tℓ+1 and
sk R tℓ for all k, ℓ.Two states s and t are divergene-sensitive branhing bisimilar, noted s ≈ds

br t, if there is adivergene-sensitive branhing bisimulation R with s R t. INRIA



Property-Dependent Redutions for the Modal Mu-Calulus 7When expressing ertain properties (e.g., inevitable reahability), it is neessary to harater-ize deadlok states in the Lts, i.e., states from whih the exeution annot progress anymore.From the ≈ds
br point of view, deadlok states are preisely those states leading eventually tosink states (i.e., states without suessors) after a �nite number of τ -transitions. These statesan be haraterized by the Pdl-∆ formula below:

deadlock = [true
∗.¬τ ] false ∧ [τ ] ⊣where the box modality forbids the reahability of visible ations and the saturation operatorforbids the presene of divergenes.3 Maximal HidingWhen heking a state formula ϕ over an Lts, some ations of the Lts an be hidden (i.e.,renamed into τ) without disturbing the interpretation of ϕ.De�nition 2 (Hiding Set) Let α be an ation formula interpreted over a set of ations A.The hiding set of α w.r.t. A is de�ned as follows:

hA(α) =

{

[[α]]A if τ |= α
A \ [[α]]A if τ 6|= αThe hiding set of a state formula ϕ w.r.t. A, noted hA(ϕ), is de�ned as the intersetion of

hA(α) for all ation subformulas α of ϕ.De�nition 3 (Hiding) Let A be a set of ations and B ⊆ A. The hiding of an ation b ∈ Aw.r.t. B is de�ned as follows:
hideB(b) =

{

b if b 6∈ B
τ if b ∈ BThe hiding of an Lts M = 〈S,A, T, s0〉 w.r.t. B is de�ned as follows:

hideB(〈S,A, T, s0〉) =

〈

S, (A \B) ∪ {τ}, {s1
hideB(b)
→ s2 | s1

b
→ s2 ∈ T}, s0

〉

.The following lemma states that hiding an ation b w.r.t. the hiding set of an ation formula
α does not disturb the satisfation of α by b.Lemma 1 Let α be an ation formula interpreted over a set of ations A. Then, the hidingset hA(α) is the maximal set B ⊆ A suh that:

b |=A α⇔ hideB(b) |=A αfor any ation b ∈ A.RR n° 7690



8 Mateesu & WijsProof. We show �rst that hA(α) satis�es the statement in the lemma. Let b ∈ hA(α).By De�nition 3, this means hidehA(α)(b) = τ . Two ases are possible. If τ |= α, then
hA(α) = [[α]]A by De�nition 2, and therefore b |=A α. If τ 6|= α, then hA(α) = A \ [[α]]A byDe�nition 2, and therefore b 6|=A α.To show the maximality of hA(α), suppose there exists b ∈ A \ hA(α) suh that b |=A α ⇔
τ |=A α. Two ases are possible, both leading to a ontradition. If τ |= α, then hA(α) = [[α]]Aby De�nition 2, and sine b 6∈ hA(α), this means b 6|= α. If τ 6|= α, then hA(α) = A \ [[α]]A byDe�nition 2, and sine b 6∈ hA(α), this means b |= α. 2To enable Lts redutions prior to (or simultaneously with) the veri�ation of a state formula
ϕ, it is desirable to hide as many ations as possible in the Lts, i.e., all ations in hA(ϕ).The following proposition ensures that this hiding preserves the interpretation of ϕ.Proposition 1 (Maximal Hiding) Let M = 〈S,A, T, s0〉 be an Lts, ϕ be a state formula,and B ⊆ hA(ϕ). Then:

[[ϕ]]M ρ = [[ϕ]]hideB(M) ρfor any propositional ontext ρ.Proof. We proeed by strutural indution on ϕ. We give here the most interesting ase
ϕ ::= 〈α〉ϕ1, the other ases being handled in Appendix A. Sine B ⊆ hA(〈α〉ϕ1) byhypothesis and hA(〈α〉ϕ1) = hA(α) ∩ hA(ϕ1) by De�nition 2, it follows that B ⊆ hA(α) and
B ⊆ hA(ϕ1). Therefore, we an apply the indution hypothesis for ϕ1, B and Lemma 1 for
α, B, whih yields:
[[〈α〉ϕ1]]hideB(M) ρ = by de�nition of [[ ]] and hideB(M)

{s ∈ S | ∃s
hideB(b)
→ s′.hideB(b) |=A α ∧

s′ ∈ [[ϕ1]]hideB(M) ρ} = by indution hyp. and Lemma 1
{s ∈ S | ∃s

b
→ s′.b |=A α ∧ s′ ∈ [[ϕ1]]M ρ} = by de�nition of [[ ]]

[[〈α〉ϕ1]]M ρ.

2In general, for a given property, there are several µ-alulus formulas ϕ speifying it, withdi�erent hiding sets hA(ϕ). To take advantage of Proposition 1, one must hoose a formula ϕwith a hiding set as large as possible. Intuitively, in suh well-spei�ed formula ϕ, all ationsubformulas are relevant for the interpretation of ϕ on an Lts. For example, the followingformula is not well-spei�ed:
ϕ = µX.(〈a1〉 true ∨ (([a2] false ∨ 〈a2〉 true) ∧ 〈a3〉X))beause its subformula [a2] false∨〈a2〉 true is a tautology and ould be deleted from ϕ withouthanging its meaning. The presene of this subformula yields the hiding set hA(ϕ) = A \

{a1, a2, a3}, whereas deleting it yields a larger hiding set hA(ϕ) = A \ {a1, a3}. We do notattempt here to hek well-spei�edness automatially, and will assume below that stateformulas are well-spei�ed. INRIA



Property-Dependent Redutions for the Modal Mu-Calulus 9For instane, onsider the Lreg
µ formula below, expressing the inevitable reahability of a revation after every send ation:

ϕ = [true
∗.send ]µX.(¬deadlock ∧ [¬recv ]X)When heking ϕ on an Lts, one an hide all ations in hA(ϕ) = hA(send) ∩ hA(¬recv ) =

(A \ [[send ]]A) ∩ [[¬recv ]]A = (A \ {send}) ∩ (A \ {recv}) = A \ {send , recv}, i.e., all ationsother than send and rev, without hanging the interpretation of the formula.4 Mu-Calulus Fragment Compatible with ≈
dsbrWhen minimizing an Lts modulo a weak bisimulation relation, suh as ≈ds

br [15℄, the degree ofredution ahieved is often diretly proportional to the perentage of τ -transitions ontainedin the original Lts. Therefore, Proposition 1 provides, for a given Lµ formula, the highestpotential for redution, by enabling as many ations as possible to be hidden in the Lts.However, this proposition does not indiate whih Lµ formulas are ompatible with ≈ds
br ,i.e., are preserved by redution modulo this relation. We propose below a fragment of Lµsatisfying this property.4.1 Mu-alulus fragment Ldsbr

µThe Lµ fragment we onsider here, alled Ldsbr
µ , is de�ned in Figure 3. Compared to standard

Lµ, this fragment di�ers in two respets:1. It introdues two new weak operators 〈(ϕ1?.α1)
∗〉ψ and 〈ϕ1?.α1〉@ expressed in Pdl-∆,where the ation formulas α1 must apture the invisible ation. The weak possibilitymodality 〈(ϕ1?.α1)

∗〉ψ haraterizes the states having an outgoing sequene of (0 ormore) α1-transitions whose intermediate states satisfy ϕ1 and whose terminal statesatis�es ψ. The weak in�nite looping operator 〈ϕ1?.α1〉@ haraterizes the stateshaving an in�nite outgoing sequene of α1-transitions whose intermediate states satisfy
ϕ1. When the ϕ1 subformula ourring in a weak operator is true, it an be omitted,beause in this ase the operator beomes 〈α∗

1〉ψ or 〈α1〉@.2. The ourrene of strong modalities 〈α2〉ϕ and [α2]ϕ is restrited syntatially suhthat these modalities must ontain ation formulas α2 denoting visible ations only,and that they an appear only after a weak possibility modality 〈(ϕ1?.α1)
∗〉 or weakneessity modality [(ϕ1?.α1)

∗]. The intuition is that visible transitions mathed by astrong modality will remain in the Lts after maximal hiding and ≈ds
br minimization,and the transition sequenes preeding them an beome invisible or even disappear inthe minimized Lts without a�eting the interpretation of the formula, beause thesesequenes are still aptured by the weak modality immediately preeding the urrentstrong modality.RR n° 7690



10 Mateesu & Wijs
ϕ ::= 〈(ϕ1?.α1)

∗〉ψ | 〈ϕ1?.α1〉@ | false | ¬ϕ1 | ϕ1 ∨ ϕ2 | X | µX.ϕ1

ψ ::= ϕ | 〈α2〉ϕ | ¬ψ1 | ψ1 ∨ ψ2where τ ∈ [[α1]]A and τ 6∈ [[α2]]A

[[〈(ϕ1?.α1)
∗〉ψ]]M ρ = {s ∈ S | ∃m ≥ 0.s = s0 ∧ (∀0 ≤ i < m.si

bi+1

→ si+1 ∈ T
∧ bi+1 ∈ [[α1]]A ∧ si ∈ [[ϕ1]]M ρ) ∧ sm ∈ [[ψ]]M ρ}

[[〈ϕ1?.α1〉@]]M ρ = {s ∈ S | s = s0 ∧ ∀i ≥ 0.(si
bi+1
→ si+1 ∈ T ∧ bi+1 ∈ [[α]]A

∧ si ∈ [[ϕ1]]M ρ)}Figure 3: Syntax and semantis of the Ldsbr
µ fragmentThe deadlok formula de�ned in Setion 2 belongs to Ldsbr

µ , sine it an be rewritten asfollows by eliminating the onatenation operator:
deadlock = [true

∗.¬τ ] false ∧ [τ ] ⊣ = [true
∗] [¬τ ] false ∧ [τ ] ⊣The response formula given in Setion 3 an also be reformulated in Ldsbr

µ :
[true∗.send ]µX.(¬deadlock ∧ [¬recv ]X) =
[true∗] [send ] ([(¬recv )∗]¬deadlock ∧ [¬recv ] ⊣)The subformula stating the inevitable reahability of a rev ation, initially expressed usinga minimal �xed point operator, was replaed by the onjuntion of a weak neessity modalityforbidding the ourrene of deadloks before a rev ation has been reahed, and a weaksaturation operator forbidding the presene of yles not passing through a rev ation.In [14, Corollary 4.4℄, it was shown that ≈ds

br is an equivalene with the so-alled stutteringproperty :De�nition 4 (Stuttering) Let M = 〈S,A, T, s0〉 be an Lts and let s1, s2 ∈ S suh that
s1 ≈ds

br s2. If s1 τ
→ s11

τ
→ · · ·

τ
→ sm

1
τ
→ s′1 (m ≥ 0) and s′1 ≈ds

br s2, then ∀1 ≤ i ≤ m.si
1 ≈ds

br s2.Using the stuttering property, we an prove the following lemma.Lemma 2 Let M = 〈S,A, T, s0〉 be an Lts and let A′ ⊆ A with τ ∈ A′ and s1, s2 ∈ S suhthat s1 ≈ds
br s2. Then for all m ≥ 0 with s1 = s01 and ∀0 ≤ i < m.si

1
bi→ si+1

1 ∈ T (bi ∈ A′),there exists k ≥ 0 suh that s2 = s02 and ∀0 ≤ j < k.(sj
2

b′j
→ sj+1

2 ∈ T (b′j ∈ A′) ∧ ∃0 ≤ i <

m.si
1 ≈ds

br s
j
2), and sm

1 ≈ds
br s

k
2.Proof. We proeed by indution on m.1. Base ase: m = 0, hene s1 = s01 = sm

1 . Clearly, we an hoose k = 0 and s2 = s02 = sk
2.INRIA



Property-Dependent Redutions for the Modal Mu-Calulus 112. Indutive ase: s01 b1→ s11 · · · s
m−1
1

bm→ sm
1

bm+1

→ sm+1
1 . By the indution hypothesis, thereexists k ≥ 0 suh that s2 = s02 and ∀0 ≤ j < k.(sj

2

b′j
→ sj+1

2 ∈ T (b′j ∈ A′) ∧ ∃0 ≤ i <

m.si
1 ≈ds

br s
j
2), and sm

1 ≈ds
br s

k
2. We show that it also holds for m + 1. We distinguishtwo ases for sm

1

bm+1

→ sm+1
1 :(a) bm+1 = τ . Sine sm
1 ≈ds

br s
k
2 , by De�nition 1, also sm+1

1 ≈ds
br s

k
2.(b) bm+1 6= τ . Sine sm

1 ≈ds
br s

k
2, by De�nition 1, sk

2 =⇒ ŝ2
bm+1

→ s′2, with sm
1 ≈ds

br ŝ2, and
sm+1
1 ≈ds

br s
′
2. Say that sk

2 =⇒ ŝ2 onsists of c τ -steps sk
2

τ1→ sk+1
2 · · · sk+c−1

2
τc→ sk+c

2with sk+c
2 = ŝ2. By De�nition 4, for all k ≤ i ≤ k + c, we have sm

1 ≈ds
br s

i
2. Hene,there exists a mathing sequene from s2 of length k + c + 1 with sk+c+1

2 = s′2.Note that τ1, . . . , τc ∈ A′.
2A propositional ontext ρ : X → 2S is said to be ≈ds

br -losed if for all states s1, s2 ∈ S suhthat s1 ≈ds
br s2 and for any propositional variable X ∈ X , s1 ∈ ρ(X) ⇔ s2 ∈ ρ(X). Now wean state the main result about Ldsbr

µ , namely that this fragment is ompatible with the ≈ds
brrelation.Proposition 2 (Compatibility with ≈

dsbr) Let M = 〈S,A, T, s0〉 be an Lts and let
s1, s2 ∈ S suh that s1 ≈ds

br s2. Then:
s1 ∈ [[ϕ]]M ρ⇔ s2 ∈ [[ϕ]]M ρfor any state formula ϕ of Ldsbr

µ and any ≈ds
br -losed propositional ontext ρ.Proof. We proeed by strutural indution on ϕ. We give here the most interesting ases,the other ases being handled in Appendix A.Case ϕ ::= 〈(ϕ1?.α1)

∗〉ψ. Let s1, s2 ∈ S suh that s1 ≈ds
br s2 and assume that s1 ∈

[[〈(ϕ1?.α1)
∗〉ψ]]M ρ, i.e., s1 ∈ {s ∈ S | ∃m ≥ 0.s = s0 ∧ (∀0 ≤ i < m.si

bi+1
→ si+1 ∈

T ∧ bi+1 ∈ [[α1]]A ∧ si ∈ [[ϕ1]]M ρ) ∧ sm ∈ [[ψ]]M ρ}. This means that:
∃m ≥ 0.s1 = s′0 ∧ (∀0 ≤ i < m.s′i

bi+1
→ s′i+1 ∈ T (1)

∧ bi+1 ∈ [[α1]]A ∧ s′i ∈ [[ϕ1]]M ρ) ∧ s′m ∈ [[ψ]]M ρ}We have to prove that s2 ∈ [[〈(ϕ1?.α1)
∗〉ψ]]M ρ, whih means that:

∃k ≥ 0.s2 = s′′0 ∧ (∀0 ≤ j < k.s′′i
b′j+1

→ s′′i+1 ∈ T (2)
∧ b′j+1 ∈ [[α1]]A ∧ s′′i ∈ [[ϕ1]]M ρ) ∧ s′′k ∈ [[ψ]]M ρ}First, sine s1 ≈ds

br s2, τ ∈ [[α1]]A, and (1), by Lemma 2 with A′ = [[α1]]A, there exists k ≥ 0with s2 = s′′0 suh that ∀0 ≤ j < k.(s′′j
b′j+1

→ s′′j+1 ∈ T (b′j+1 ∈ [[α1]]A) ∧ ∃0 ≤ i < m.s′i ≈
ds
br s

′′
j )RR n° 7690



12 Mateesu & Wijsand s′m ≈ds
br s′′k. Furthermore, for all 0 ≤ j < k, sine there exists 0 ≤ i < m.s′i ≈ds

br s′′jand s′i ∈ [[ϕ1]]M ρ, by the indution hypothesis, it follows that s′′j ∈ [[ϕ1]]M ρ. Finally, sine
s′m ≈ds

br s
′′
k and s′m ∈ [[ψ]]M ρ, we will show that s′′k ∈ [[ψ]]M ρ by indution on the struture of

ψ. First, we an assume that there is no ŝ′′ ∈ S suh that s′′k τ
→ ŝ′′ ∈ T . If this is not true,sine τ ∈ [[α1]]A, we an hoose s′′k+1 = ŝ′′ and inrease k by one. This an be repeated untilthere is no ŝ′′ ∈ S suh that s′′k τ

→ ŝ′′ ∈ T . For ψ, we distinguish four ases:� ψ ::= ϕ. By the indution hypothesis, s′′k ∈ [[ψ]]M ρ.� ψ ::= 〈α2〉ϕ. Sine s′m ∈ [[〈α2〉ϕ]]M ρ, we have s′m ∈ {s ∈ S | ∃s
a
→ s′ ∈ T.a ∈

[[α2]]A∧ s′ ∈ [[ϕ]]M ρ}, hene there exists s′m a
→ s′ ∈ T with a ∈ [[α2]]A. Sine s′m ≈ds

br s
′′
k,

τ 6∈ [[α2]]A, and s′′k
τ
→ ŝ′′ 6∈ T , by De�nition 1, there must exist s′′k a

→ ŝ′′ ∈ T with
s′ ≈ds

br ŝ
′′. Sine s′ ∈ [[ϕ]]M ρ, by the indution hypothesis, ŝ′′ ∈ [[ϕ]]M ρ, hene s′′k ∈

{s ∈ S | ∃s
a
→ s′ ∈ T.a ∈ [[α2]]A ∧ s′ ∈ [[ϕ]]M ρ}, i.e., s′′k ∈ [[ψ]]M ρ.� ψ ::= ¬ψ1. Sine s′m ∈ [[¬ψ1]]M ρ, we have s′m ∈ S \ [[ψ1]]M ρ. By the indutionhypothesis for ψ, also s′′k ∈ S \ [[ψ1]]M ρ, hene s′′k ∈ [[¬ψ1]]M ρ.� ψ ::= ψ1 ∨ ψ2. Sine s′m ∈ [[ψ1 ∨ ψ2]]M ρ, i.e., s′m ∈ [[ψ1]]M ρ ∪ [[ψ2]]M ρ, i.e., s′m ∈

[[ψ1]]M ρ∨s′m ∈ [[ψ2]]M ρ, by the indution hypothesis for ψ, we have s′′k ∈ [[ψ1]]M ρ∨s′′k ∈
[[ψ2]]M ρ, i.e., s′′k ∈ [[ψ1]]M ρ ∪ [[ψ2]]M ρ, i.e., s′′k ∈ [[ψ1 ∨ ψ2]]M ρ.Hene, (2) holds. The onverse impliation (by onsidering s2 ∈ [[〈(ϕ1?.α1)

∗〉ψ]]M ρ) holdsby a symmetri argument.Case ϕ ::= 〈ϕ1?.α1〉@. Let s1, s2 ∈ S suh that s1 ≈ds
br s2 and assume that s1 ∈

[[〈ϕ1?.α1〉@]]M ρ, i.e., s1 ∈ {s ∈ S | s = s0 ∧ ∀i ≥ 0.(si
bi→ si+1 ∧ bi ∈ [[α1]]A ∧ si ∈ [[ϕ1]]M ρ)}.This means that:

s1 = s′0 ∧ ∀i ≥ 0.(s′i
bi→ s′i+1 ∧ bi ∈ [[α1]]A ∧ s′i ∈ [[ϕ1]]M ρ) (3)We have to prove that s2 ∈ [[〈ϕ1?.α1〉@]]M ρ, whih means that:

s2 = s′′0 ∧ ∀j ≥ 0.(s′′j
b′j
→ s′′j+1 ∧ b

′
j ∈ [[α1]]A ∧ s′′j ∈ [[ϕ1]]M ρ) (4)Sine s1 ≈ds

br s2, τ ∈ [[α1]]A, and (3), by Lemma 2 with A′ = [[α1]]A, for any �nite pre�x oflength m ≥ 0 of the in�nite path π from s1, there exists a �nite path of length k ≥ 0 from
s2 suh that s2 = s′′0 ∧ ∀0 ≤ j < k.(s′′j

b′j
→ s′′j+1 ∧ b′j ∈ [[α1]]A ∧ ∃0 ≤ i < m.s′i ≈ds

br s
′′
j ) and

s′m ≈ds
br s

′′
k, hene, by the indution hypothesis, for all 0 ≤ j ≤ k, we have s′′j ∈ [[ϕ1]]M ρ. Wedistinguish two ases:1. π ontains an in�nite number of transitions with a label in [[α1]]A \ {τ}. Repeatedlyapplying the above reasoning for intermediate states in π yields that (4) holds for s2.INRIA



Property-Dependent Redutions for the Modal Mu-Calulus 132. π ontains a �nite number of transitions with a label in [[α1]]A \ {τ}. Then, thereexists an ŝ reahable from s1 suh that from ŝ, an in�nite τ -path exists. By the earlierreasoning, there exists an ŝ′ reahable from s2 suh that ŝ ≈ds
br ŝ′ and for all states

s′′j in the path from s2 to ŝ′, we have s′′j ∈ [[ϕ1]]M ρ. Finally, sine ŝ ≈ds
br ŝ

′, by theseond lause of De�nition 1, there also exists an in�nite τ -path π′ from ŝ′. Finally, byDe�nition 1 and repeated appliation of De�nition 4, it follows that for all states s′′j in
π′, ŝ ≈ds

br s
′′
j , hene by the indution hypothesis, s′′j ∈ [[ϕ1]]M ρ. Therefore, (4) holds for

s2.The onverse impliation (by onsidering s2 ∈ [[〈ϕ1?.α1〉@]]M ρ) holds by a symmetri argu-ment. 2Proposition 2 makes it possible to redue an Lts (after applying maximal hiding) modulo
≈ds

br before the veri�ation of a losed Ldsbr
µ formula. It follows that Ldsbr

µ is also ompatiblewith all equivalene relations weaker than ≈ds
br , suh as τ∗.a [10℄ and weak [25℄ bisimulations.For pratial purposes, it is desirable to use a temporal logi su�iently expressive to apturethe essential lasses of properties (safety, liveness, fairness). Thus, the question is whether

Ldsbr
µ subsumes the existing temporal logis ompatible with τ∗.a and weak bisimulations; inSubsetions 4.2 and 4.3, we show that this is indeed the ase.4.2 Subsuming µAtl\XAtl [26℄ is a branhing-time logi similar to Ctl [4℄, but interpreted on Ltss. It onsists ofation formulas (noted α) and state formulas (noted ϕ) expressing properties about ationsand states of an Lts, respetively. The temporal operators of Atl\X (the fragment of thelogi without the next-time operators) are de�ned in Table 1 by means of their enodingsin Lµ proposed in [9℄. The operator E[ϕ1αUϕ2] (resp. A[ϕ1αUϕ2]) denotes the states fromwhih some (resp. all) outgoing sequenes lead, after 0 or more α-transitions (or τ -transitions)whose soure states satisfy ϕ1, to a state satisfying ϕ2. The operator E[ϕ1α1

Uα2
ϕ2] (resp.

A[ϕ1α1
Uα2

ϕ2]) denotes the states from whih some (resp. all) outgoing sequenes lead, after0 or more α1-transitions (or τ -transitions) whose soure states satisfy ϕ1, to an α2-transitionwhose soure state satis�es ϕ1 and whose target state satis�es ϕ2. The ation subformulas
α, α1, and α2 denote visible ations only.Table 1: Syntax and semantis of the Atl\X temporal operatorsOperator Translation

E[ϕ1αUϕ2] µX.(ϕ2 ∨ (ϕ1 ∧ 〈α ∨ τ〉X))

E[ϕ1α1
Uα2

ϕ2] µX.(ϕ1 ∧ (〈α2〉ϕ2 ∨ 〈α1 ∨ τ〉X))

A[ϕ1αUϕ2] µX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X))

A[ϕ1α1
Uα2

ϕ2] µX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧
[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X)

RR n° 7690



14 Mateesu & WijsAtl\X was shown to be adequate with ≈ds
br [26℄. Moreover, this logi was extended in [9℄with �xed point operators, yielding a fragment of Lµ alled µAtl\X, whih is still adequatewith ≈ds

br . The temporal operators of Atl\X an be translated in Ldsbr
µ , as stated by thefollowing proposition.Proposition 3 (Translation from Atl\X to Ldsbr

µ
) The following identities relatingformulas of Lµ and formulas of Ldsbr

µ hold:
µX.(ϕ2 ∨ (ϕ1 ∧ 〈α ∨ τ〉X)) = 〈(ϕ1?.α ∨ τ)∗〉ϕ2

µX.(ϕ1 ∧ (〈α2〉ϕ2 ∨ 〈α1 ∨ τ〉X)) = 〈(ϕ1?.α ∨ τ)∗〉 (ϕ1 ∧ 〈α2〉ϕ2)

µX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X)) =
[(¬ϕ2?.α ∨ τ)∗] (ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false)) ∧ [¬ϕ2?.α ∨ τ ] ⊣

µX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧
[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) =

νX. [(¬α2)
∗] (ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧

[α1 ∧ α2] (ϕ2 ∨X) ∧X) ∧
νX.([¬α2] ⊣ ∧ [(¬α2)

∗] [α1 ∧ α2] (ϕ2 ∨X)) ∧ µX. [(¬α2)
∗] [α1 ∧ α2] (ϕ2 ∨X).Proposition 3 (proven in Appendix A) also ensures that µAtl\X is subsumed by Ldsbr

µ , sinethe �xed point operators are present in both logis. The Ldsbr
µ formulas orresponding to the

A[ϕ1αUϕ2] and A[ϕ1α1
Uα2

ϕ2] operators are omplex, and they serve solely for the purposeof establishing the translation to Ldsbr
µ . In pratie, we will use the simpler Lµ enodings ofthe Atl\X operators given in Table 1.The response formula given in Setion 3 an also be expressed in Atl\X:

AGtrue,sendA[truetrueUrecv true]where AGα1,α2
ϕ = ¬EFα1,α2

¬ϕ = ¬E[trueα1
Uα2

¬ϕ] is the Atl ounterpart of the AG oper-ator of Ctl.Finally, we laim that Ldsbr
µ is more powerful than µAtl\X. Indeed, the formula

〈(¬a)∗〉 (〈b〉 true ∧ 〈c〉 true) does not seem to be expressible in µAtl\X beause the our-renes of strong modalities expressing the existene of neighbor b- and c-transitions annot beoupled individually with the preeding weak modality in order to use only the four temporaloperators given in Table 1.4.3 Subsuming seletive and weak µ-alulusThe seletive µ-alulus [3℄ introdues modalities indexed by sets of ations (represented hereas ation formulas) speifying the reahability of ertain ations after sequenes of (0 or more)INRIA



Property-Dependent Redutions for the Modal Mu-Calulus 15ations not belonging to the indexing set. The seletive possibility modality an be enodedin Ldsbr
µ as follows:

〈α1〉α ϕ = 〈(¬(α1 ∨ α))∗〉 〈α1〉ϕwhere α, α1 denote visible ations only. Seletive µ-alulus is adequate w.r.t. the τ∗.abisimulation: for eah seletive formula ϕ, one an hide all Lts ations other than thoseourring in the modalities of ϕ and their index sets, and then minimize the Lts modulo τ∗.awithout hanging the interpretation of ϕ.Seletive µ-alulus was shown to be equivalent to Lµ, beause the strong possibility modalityof Lµ an be expressed in terms of the seletive one: 〈α〉ϕ = 〈α〉
true

ϕ. However, this wayof translating would yield no possibility of hiding ations, beause the index sets wouldontain all ations of the Lts. For instane, the response formula given in Setion 3 an bereformulated in seletive µ-alulus as follows:
[send ]

false
µX.(〈true〉

true
true ∧ [¬recv ]

true
X)The minimal �xed point subformula expressing the inevitable reahability of a rev ationannot be mapped to seletive µ-alulus modalities, whih fores the use of strong modalities(represented by seletive modalities indexed by true). Therefore, the set of ations thatan be hidden aording to [3℄ without disturbing the interpretation of this formula is A \

({send , recv} ∪ A) = ∅, i.e., no hiding of ations prior to veri�ation would be possible inthat setting.The weak (or observational) µ-alulus [28℄ is a fragment of Lµ adequate w.r.t. weak bisimu-lation. It introdues weak modalities speifying the reahability of ertain ations preededand followed by 0 or more τ -transitions. These weak modalities an be enoded in Ldsbr
µ asfollows:

〈〈α〉〉ϕ = 〈τ∗〉 〈α〉 〈τ∗〉ϕ 〈〈〉〉ϕ = 〈τ∗〉ϕwhere α denotes visible ations only. The weak µ-alulus is able to express only weak safetyand liveness properties; in partiular, it does not apture the inevitable reahability of revations present in the example above.5 Implementation and ExperimentsWe have implemented the maximal hiding and assoiated on-the-�y redution mahinerywithin the Cadp veri�ation toolbox [13℄. We experimented on the e�et of these optimiza-tions on the Evaluator [21, 22℄ model heker, whih evaluates formulas of the alternation-free fragment of Lreg
µ on Ltss on-the-�y. The tool works by �rst translating the Lreg

µ formulasinto plain Lµ by eliminating the Pdl regular operators, and then reformulating the veri�-ation problem as the resolution of a Boolean equation system (Bes) [1℄, whih is solvedloally using the algorithms of the Cæsar_Solve library [20℄ of Cadp. Evaluator makespossible the de�nition of reusable libraries of derived operators (e.g., those of Atl) andproperty patterns (e.g., the pattern system of [8℄).RR n° 7690



16 Mateesu & WijsFor the sake of e�ieny, we fous on Ldsbr
µ formulas having a linear-time model hekingomplexity, namely the alternation-free fragment [6℄ extended with the in�nite looping andsaturation operators of Pdl-∆ [29℄, whih an be evaluated in linear time using the algorithmsproposed in [22℄. In the formulas below, we use the operators of Pdl and Atl\X, andthe Ldsbr

µ formula inev(a) = [(¬a)∗]¬deadlock ∧ [¬a] ⊣ as a shorthand for expressing theinevitable exeution of an ation a. For eah veri�ation experiment, we applied maximalhiding as stated in Proposition 1, and then arried out Lts redutions either prior to, orsimultaneously with, the veri�ation of the formula.Strong bisimulation redution. We onsidered �rst global veri�ation, whih onsistsin generating the Lts, applying maximal hiding, minimizing the Lts modulo strong bisim-ulation, and then verifying the properties on the minimized Lts. Ltss are represented as�les in the ompat Bg (Binary Coded Graphs) format of Cadp. Hiding and minimizationwere arried out using the Bg_Labels and Bg_Min tools [7℄, the whole proess beingautomated using Svl [12℄ sripts.We onsidered the alternating bit protool, implemented in Lotos (demo 02 of Cadp),and heked the following property, stating that the protool behaves as a one-plae bu�er(initially empty) regarding the emission and reeption of messages:
[true∗] (

[get ] (A[true¬putU〈τ〉@] ∧ [(¬put)∗.get ] false)
∧
[put ] (A[true¬getU〈τ〉@] ∧ [(¬get)∗.put ] false))
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Figure 4: E�et of strong bisimulation minimization (Alternating Bit Protool)This formula allows hiding of every ation other than put and get. The subformulas 〈τ〉@apture the divergenes due to unreliable ommuniation hannels. INRIA



Property-Dependent Redutions for the Modal Mu-Calulus 17The overall time and peak memory needed for veri�ation are shown in Figure 4 for inreas-ingly larger on�gurations of the protool. When strong bisimulation minimization is arriedout before veri�ation, we observe gains both in speedup and memory (fators 4 and 2 for theLts orresponding to 1000 messages, having 12, 196, 201 states and 46, 639, 612 transitions),whih beome larger with the size of the Lts.We also onsidered a token ring leader eletion protool, implemented in Lotos (experi-ment 6 in demo 17 of Cadp), and heked the following property, stating that eah station
i on the ring aesses a shared resoure (ations open i and closei) in mutual exlusion withthe other stations and eah aess is reahable (modulo the divergenes due to unreliableommuniation hannels):

[true∗] ([open i.(¬closei)
∗.openj ]false ∧ A[truetrueU〈(〈true∗.open i〉 true)?.τ〉@])This formula belongs to Ldsbr

µ (after eliminating the onatenation operators and expandingthe A[U] operator) and allows hiding of every ation other than open and lose. The �〈...〉@�subformula of A[U] expresses the existene of in�nite τ -sequenes whose intermediate statesenable the potential reahability of an open i ation.
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Figure 5: E�et of strong bisimulation minimization (Token Ring Protool)The overall time and peak memory needed for veri�ation are shown in Figure 5 for inreas-ingly larger on�gurations of the protool. When strong bisimulation minimization is arriedout before veri�ation, we observe gains both in speedup and memory (fators 2.8 and 2.5 forthe Lts orresponding to 7 stations, having 53, 848, 492 states and 214, 528, 176 transitions),whih beome larger with the size of the Lts.Divergene-sensitive branhing bisimulation redution. To study the e�et of ≈ds
brminimization, we onsidered Philips' Bounded Retransmission Protool, implemented inLotos (demo 16 of Cadp), and heked the following response property, expressing thatRR n° 7690



18 Mateesu & Wijsevery emission of a data hunk from a paket is eventually followed by the reeption of aon�rmation:
[true

∗.in_data ]A[true¬in_dataUin_conf true]This formula belongs to Ldsbr
µ (after eliminating the onatenation operator and expandingthe A[U] operator) and allows hiding of every ation other than in_data and in_onf.
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Figure 6: E�et of ≈ds
br minimization (Bounded Retransmission Protool)The overall time and peak memory needed for veri�ation are shown in Figure 6 for inreas-ingly larger on�gurations of the protool. For this example, the presene of ≈ds

br bisimulationminimization yields mainly memory redutions (fator 1.6 for the Lts orresponding to datapakets of length 550 and two retransmissions, having 12, 450, 383 states and 14, 880, 828transitions).On-the-�y τ -on�uene redution. Lastly, we examined the e�et of τ -on�uene re-dution [16℄ arried out on-the-�y during the veri�ation of formulas. This redution, whihpreserves branhing bisimulation, onsists in identifying on�uent τ -transitions (i.e., whoseexeution does not alter the observable behavior of the system), and giving them priority overtheir neighbors during the Lts traversal. The detetion of on�uent τ -transitions is done on-the-�y by reformulating the problem as a Bes resolution [27, 23℄, whih is performed loallyusing the algorithms of Cæsar_Solve. In order to make the redution ompatible with ≈ds
br ,we enhaned the τ -on�uene detetion with the bookkeeping of divergene, by exploitingthe τ -yle ompression algorithm proposed in [19℄.We onsidered the distributed version of Erathosthene's sieve, implemented using Lotosproesses and Exp networks of automata (demo 36 of Cadp). We heked the followingformula, expressing that eah prime number p fed as input to the sieve will be eventuallydelivered as output and eah non-prime number q will be �ltered:

[true
∗] ([genp]inev(outputp) ∧ [genq.true

∗.¬outputq]false) INRIA



Property-Dependent Redutions for the Modal Mu-Calulus 19This formula belongs to Ldsbr
µ (after eliminating the onatenation operators) and allowshiding of every ation other than gen and output.
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Figure 7: E�et of on-the-�y τ -on�uene redution (Erathostene's sieve)The overall time and peak memory needed for veri�ation are shown in Figure 7 for inreas-ingly larger on�gurations of the sieve. We observe a substantial inrease in speed in thepresene of τ -on�uene redution (about one order of magnitude for a sieve with 10 units).The redution in memory usage beomes apparent one the size of the system beomes suf-�iently large, suh that the memory overhead indued by the presene of the on-the-�yredution mahinery is ompensated by the memory required for verifying the formula.6 Conlusion and Future WorkWe have presented two automati tehniques to improve the e�etiveness of Lts redutions,both before and during system veri�ation. The �rst tehnique involves maximal hidingof Ltss based on given Lµ formulas, suh that the Ltss an be minimized modulo strongbisimulation. This tehnique is not intrusive, meaning that the user is not fored to writeformulas in a spei� way. In the seond tehnique, formulas written in a spei� fragment of
Lµ, alled Ldsbr

µ , are used to maximally hide Ltss suh that they an be minimized modulo
≈ds

br . Experimental results show the e�etiveness of these tehniques.In future work, we plan to study whih property patterns of the system [8℄ an be translatedin Ldsbr
µ , so as to provide useful information about the possible redutions modulo ≈ds

br . Wealso plan to ontinue experimenting with maximal hiding and on-the-�y redution by usingweak forms of divergene-sensitive τ -on�uene implemented in a distributed setting [24℄,i.e., by employing lusters of mahines for both Lts redution and veri�ation.
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[[false]]hideB(M) ρ = by de�nition of [[ ]]

∅ = by de�nition of [[ ]]
[[false]]M ρ.Case ϕ ::= ¬ϕ1. Sine B ⊆ hA(¬ϕ1) by hypothesis and hA(¬ϕ1) = hA(ϕ1) by De�nition 2,it follows that B ⊆ hA(ϕ1). Therefore, we an apply the indution hypothesis for ϕ1 and B,whih yields:
[[¬ϕ1]]hideB(M) ρ = by de�nition of [[ ]]

S \ [[ϕ1]]hideB(M) ρ = by indution hypothesis
S \ [[ϕ1]]M ρ = by de�nition of [[ ]]
[[¬ϕ1]]M ρ.Case ϕ ::= ϕ1∨ϕ2. Sine B ⊆ hA(ϕ1∨ϕ2) by hypothesis and hA(ϕ1∨ϕ2) = hA(ϕ1)∩hA(ϕ2)by De�nition 2, it follows that B ⊆ hA(ϕ1) and B ⊆ hA(ϕ2). Therefore, we an apply theindution hypothesis for ϕ1, ϕ2, and B, whih yields: INRIA



Property-Dependent Redutions for the Modal Mu-Calulus 23
[[ϕ1 ∨ ϕ2]]hideB(M) ρ = by de�nition of [[ ]]

[[ϕ1]]hideB(M) ρ ∪ [[ϕ2]]hideB(M) ρ = by indution hypothesis
[[ϕ1]]M ρ ∪ [[ϕ2]]M ρ = by de�nition of [[ ]]
[[ϕ1 ∨ ϕ2]]M ρ.Case ϕ ::= X.
[[X]]hideB(M) ρ = by de�nition of [[ ]]

ρ(X) = by de�nition of [[ ]]
[[X]]M ρ.Case ϕ ::= µX.ϕ1. Sine B ⊆ hA(µX.ϕ1) by hypothesis and hA(µX.ϕ1) = hA(ϕ1) byDe�nition 2, it follows that B ⊆ hA(ϕ1). Therefore, we an apply the indution hypothesisfor ϕ1 and B, whih yields:
[[µX.ϕ1]]hideB(M) ρ = by de�nition of [[ ]]
⋂

{U ⊆ S | [[ϕ1]]hideB(M) (ρ⊘ [U/X]) ⊆ U} = by indution hypothesis
⋂

{U ⊆ S | [[ϕ1]]M (ρ⊘ [U/X]) ⊆ U} = by de�nition of [[ ]]
[[µX.ϕ1]]M ρ.

2Proof (Proposition 2). We proeed by strutural indution on ϕ.Case ϕ ::= false. Sine [[false]]M ρ = ∅ by de�nition of [[ ]], none of s1, s2 belong to theinterpretation of false.Case ϕ ::= ¬ϕ1. Let s1, s2 ∈ S suh that s1 ≈ds
br s2 and assume that s1 ∈ [[¬ϕ1]]M ρ,i.e., s1 6∈ [[ϕ1]]M ρ by de�nition of [[ ]]. By the indution hypothesis, this is equivalent to

s2 6∈ [[ϕ1]]M ρ, i.e., s2 ∈ [[¬ϕ1]]M ρ.Case ϕ ::= ϕ1 ∨ ϕ2. Let s1, s2 ∈ S suh that s1 ≈ds
br s2 and assume that s1 ∈ [[ϕ1 ∨ ϕ2]]M ρ.By de�nition of [[ ]], this means s1 ∈ [[ϕ1]]M ρ ∪ [[ϕ2]]M ρ, i.e., s1 ∈ [[ϕ1]]M ρ ∨ s1 ∈ [[ϕ2]]M ρ.By the indution hypothesis, this is equivalent to s2 ∈ [[ϕ1]]M ρ ∨ s2 ∈ [[ϕ2]]M ρ, i.e., s2 ∈

[[ϕ1]]M ρ ∪ [[ϕ2]]M ρ. By de�nition of [[ ]], this means s2 ∈ [[ϕ1 ∨ ϕ2]]M ρ.Case ϕ ::= X. Let s1, s2 ∈ S suh that s1 ≈ds
br s2 and assume that s1 ∈ [[X]]M ρ, i.e.,

s1 ∈ ρ(X) by de�nition of [[ ]]. Sine s1 ≈ds
br s2 and ρ is ≈ds

br -losed by hypothesis, thisis equivalent to s2 ∈ ρ(X), i.e., s2 ∈ [[X]]M ρ. The onverse impliation (by onsidering
s2 ∈ [[X]]M ρ) holds by a symmetri argument.Case ϕ ::= µX.ϕ1. Sine we onsider �nite Ltss, we an use the alternative haraterizationRR n° 7690



24 Mateesu & Wijsof minimal �xed point formulas [17℄:
[[µX.ϕ1]]M ρ =

⋃

k≥0

Φk
M,ρ(∅), Φ0

M,ρ(∅) = ∅where ΦM,ρ : 2S → 2S , ΦM,ρ(U) = [[ϕ1]]M (ρ⊘ [U/X]).We show �rst the following statement by indution on k:
∀s1, s2 ∈ S.∀k ≥ 0.s1 ≈ds

br s2 ⇒ (s1 ∈ Φk
M,ρ(∅) ⇔ s2 ∈ Φk

M,ρ(∅)) (5)1. Base ase: k = 0. We have s1 ∈ Φ0
M,ρ(∅), i.e., s1 ∈ ∅, whih is equivalent to false. Thisis equivalent in turn to s2 ∈ ∅, i.e., s2 ∈ Φ0

M,ρ(∅).2. Indutive ase: Let s1 ∈ Φk+1
M,ρ(∅), i.e., s1 ∈ ΦM,ρ(Φ

k
M,ρ(∅)), whih is equivalent to

s1 ∈ [[ϕ1]]M (ρ ⊘ [Φk
M,ρ(∅)/X]) by de�nition of ΦM,ρ. We show that the ontext ρ ⊘

[Φk
M,ρ(∅)/X] is ≈ds

br -losed. Sine ρ is ≈ds
br -losed by hypothesis, it is su�ient to showthe losedness of ρ ⊘ [Φk

M,ρ(∅)/X] for variable X. Let s′1, s′2 ∈ S suh that s′1 ≈ds
br s

′
2and s′1 ∈ (ρ⊘ [Φk

M,ρ(∅)/X])(X), i.e., s′1 ∈ Φk
M,ρ(∅). By the indution hypothesis of (5),this is equivalent to s′2 ∈ Φk

M,ρ(∅), i.e., s′2 ∈ (ρ⊘ [Φk
M,ρ(∅)/X])(X).Sine ρ⊘[Φk

M,ρ(∅)/X] is ≈ds
br -losed, we an apply the indution hypothesis of the propo-sition to s1, ϕ, and ρ⊘ [Φk
M,ρ(∅)/X], and onlude that s2 ∈ [[ϕ1]]M (ρ⊘ [Φk

M,ρ(∅)/X]),i.e., s2 ∈ Φk+1
M,ρ(∅). The onverse impliation (by onsidering s2 ∈ Φk+1

M,ρ(∅)) holds by asymmetri argument.Let s1, s2 ∈ S suh that s1 ≈ds
br s2 and assume s1 ∈ [[µX.ϕ1]]M ρ, i.e., s1 ∈

⋃

k≥0 Φk
M,ρ(∅).This means there exists k ≥ 0 suh that s1 ∈ Φk

M,ρ(∅) and by applying (5), this is equivalentto s2 ∈ Φk
M,ρ(∅). This implies s2 ∈

⋃

k≥0 Φk
M,ρ(∅), i.e., s2 ∈ [[µX.ϕ1]]M ρ. The onverseimpliation (by onsidering s2 ∈ [[µX.ϕ1]]M ρ) holds by a symmetri argument.

2In order to prove Proposition 3, we show �rst two lemmas.Lemma 3 Let X ∈ X be a propositional variable and let ϕ be a state formula of Lµ, whihmay ontain free ourrenes of X. Then:
νX.(ϕ ∧ [β]X) = νX. [β∗] (ϕ ∧X)for any regular formula β of Pdl.Proof. The right-hand side of the identity an be rewritten by applying the Pdl identity

[β∗]ψ = ψ ∧ [β] [β∗]ψ [11℄:
νX. [β∗] (ϕ ∧X) = νX.(ϕ ∧X ∧ [β] [β∗] (ϕ ∧X)) INRIA



Property-Dependent Redutions for the Modal Mu-Calulus 25The �rst ourrene of X an be replaed with true by applying absorption, whih yields theidentity below:
νX. [β∗] (ϕ ∧X) = νX.(ϕ ∧ [β] [β∗] (ϕ ∧X)) (6)Consider an Lts M = 〈S,A, T, s0〉 and a propositional ontext ρ. The funtionals ΦM,ρ :

2S → 2S and ΨM,ρ : 2S → 2S are de�ned as follows:
ΦM,ρ(U) = [[ϕ ∧ [β]X]]M (ρ⊘ [U/X])
ΨM,ρ(U) = [[ϕ ∧ [β] [β∗] (ϕ ∧X)]]M (ρ⊘ [U/X])Let θ, θ′ ⊆ S be the minimal �xed points of ΦM,ρ,ΨM,ρ, respetively. We must show that
θ = θ′. We show �rst that θ ⊆ θ′ by using Tarski's theorem, whih requires to hek that
θ ⊆ ΨM,ρ(θ). By de�nition, θ satis�es the �xed point equation θ = [[ϕ ∧ [β]X]]M (ρ⊘ [θ/X]),whih implies that θ ⊆ [[ϕ]]M (ρ⊘ [θ/X]) and θ ⊆ [[[β]X]]M (ρ⊘ [θ/X]).
ΨM,ρ(θ) = by de�nition of ΨM,ρ and (6)
[[[β∗] (ϕ ∧X)]]M (ρ⊘ [θ/X]) = by introduing Y
[[[β∗]Y ]]M (ρ⊘ [θ/X, [[ϕ ∧X]]M (ρ⊘ [θ/X])/Y ]) = by de�nition of [[ ]]
[[[β∗]Y ]]M (ρ⊘ [θ/X, [[ϕ]]M (ρ⊘ [θ/X]) ∩ [[X]]M (ρ⊘ [θ/X])/Y ]) = by def. of [[ ]]
[[[β∗]Y ]]M (ρ⊘ [θ/X, [[ϕ]]M (ρ⊘ [θ/X]) ∩ θ/Y ]) = by θ ⊆ [[ϕ]]M (ρ⊘ [θ/X])
[[[β∗]Y ]]M (ρ⊘ [θ/X, θ/Y ]) = by replaing Y with X
[[[β∗]X]]M (ρ⊘ [θ/X]).It remains to show that θ ⊆ [[[β∗]X]]M (ρ⊘ [θ/X]). Let ΓM,ρ : 2S → 2S be the funtional as-soiated to the formula [β∗]X, de�ned as follows: ΓM,ρ(U) = [[X ∧ [β]Y ]]M (ρ⊘ [U/Y ]). Thesemantis of this formula when X is replaed by θ is haraterized iteratively as follows [17℄:

[[[β∗]X]]M (ρ⊘ [θ/X]) = [[νY.(X ∧ [β]Y )]]M (ρ⊘ [θ/X]) =
⋂

k≥0

Γk
M,ρ⊘[θ/X](S)To show the desired inlusion, we prove that θ ⊆ Γk

M,ρ⊘[θ/X](S) by indution on k.1. Base ase: θ ⊆ S = Γ0
M,ρ⊘[θ/X](S).2. Indutive ase:

Γk+1
M,ρ⊘[θ/X](S) = by de�nition of ΓM,ρ

ΓM,ρ⊘[θ/X](Γ
k
M,ρ⊘[θ/X](S)) = by de�nition of ΓM,ρ

[[X ∧ [β]Y ]]M (ρ⊘ [θ/X,Γk
M,ρ⊘[θ/X](S)/Y ] ⊇ by indution hypothesis

[[X ∧ [β]Y ]]M (ρ⊘ [θ/X, θ/Y ]) = by de�nition of [[ ]]
θ ∩ [[[β]Y ]]M (ρ⊘ [θ/Y ]) = by θ ⊆ [[[β]Y ]]M (ρ⊘ [θ/Y ])
θ.To show that θ′ ⊆ θ, we hek that θ′ satis�es the �xed point equation of ΦM,ρ:RR n° 7690



26 Mateesu & Wijs
θ′ = by �xed point def.
ΨM,ρ(θ

′) = by def. of ΨM,ρ

[[ϕ ∧ [β] [β∗] (ϕ ∧X)]]M (ρ⊘ [θ′/X]) = by introduing Y
[[ϕ ∧ [β]Y ]]M (ρ⊘ [θ′/X, [[[β∗] (ϕ ∧X)]]M (ρ⊘ [θ′/X])/Y ]) = by (6)
[[ϕ ∧ [β]Y ]]M (ρ⊘ [θ′/X, θ′/Y ]) = by removing Y
[[ϕ ∧ [β]X]]M (ρ⊘ [θ′/X]) = by def. of ΦM,ρ

ΦM,ρ(θ
′).

2Lemma 4 Let β1, β2 be regular formulas of Pdl suh that they denote one-step sequenes(i.e., β1 and β2 are satis�ed by transition sequenes ontaining only one transition) and theyare disjoint (i.e., no transition an satisfy both β1 and β2). Then:
〈β1|β2〉@ = 〈(β∗1 .β2)

∗〉 〈β1〉@ ∨ 〈β∗1 .β2〉@.Proof. Impliation �⇐�. Both disjunts in the right-hand side of the equality are inluded inthe left-hand side term beause the ω-regular languages (β∗1 .β2)
∗.βω

1 and (β∗1 .β2)
ω are bothinluded in (β1|β2)

ω, whih onsists of all in�nite sequenes made from transitions satisfying
β1 or β2.Impliation �⇒�. By expanding the in�nite looping operators in terms of maximal �xedpoints, this impliation beomes:

νX. 〈β1|β2〉X ⇒ 〈(β∗1 .β2)
∗〉 νY. 〈β1〉Y ∨ νZ. 〈β∗1 .β2〉ZLet M = 〈S,A, T, s0〉 be an Lts. The funtionals ΦM ,ΨM ,ΓM : 2S → 2S assoiated to thethree maximal �xed point operators are de�ned as follows:

ΦM (U) = [[〈β1|β2〉X]]M [U/X]
ΨM (U) = [[〈β1〉Y ]]M [U/Y ]
ΓM (U) = [[〈β∗1 .β2〉Z]]M [U/Z]Using the interpretation of �xed point formulas, the impliation to show is equivalent to theinlusion below:

νΦM ⊆ [[〈(β∗1 .β2)
∗〉Y ]]M [νΨM/Y ] ∪ νΓMSine we onsider �nite Ltss, we an rewrite this inlusion as follows using the alternativeharaterization of maximal �xed point formulas [17℄:

⋂

k≥0

Φk
M(S) ⊆ [[〈(β∗1 .β2)

∗〉Y ]]M [
⋂

k≥0

Ψk
M (S)/Y ] ∪

⋂

k≥0

Γk
M (S)We show this inlusion by reasoning in two omplementary ases, depending on the fat thatthe relation below holds or not:

∀k ≥ 0.∃n ≥ k.Φn
M (S) ⊆ Γk

M (S) (7)INRIA



Property-Dependent Redutions for the Modal Mu-Calulus 271. Case when (7) holds. The limit of the series Φk
M (S) is alulated as follows:

⋂

k≥0 Φk
M (S) =

⋂

k≥0

⋂

n≥k Φn
M (S) ⊆ by (7)

⋂

k≥0 Γk
M (S)and therefore the desired inlusion holds.2. Case when (7) fails. By using the de�nition of ΓM , the negation of (7) an be writtenas follows:

∃k ≥ 0.∀n ≥ k.Φn
M (S) 6⊆ [[

〈

(β∗1 .β2)
k
〉

Y ]]M [S/Y ]where the notation βk stands for the onatenation β . . . β k times. From the de�nitionof ΦM , it follows that Φn
M (S) = [[〈(β1|β2)

n〉X]]M [S/X], i.e., Φn
M (S) denotes the stateshaving an outgoing transition sequene of length n whose transitions satisfy β1 or β2.Let k ≥ 0 satisfying the negation of (7) above. This means that for all n ≥ k, theoutgoing transition sequene annot ontain more than k transitions satisfying β2, andtherefore there exists 0 < j ≤ k suh that the pre�x of the sequene ontains at most

k − j transitions satisfying β2:
Φn

M(S) = [[〈(β∗1 .β2)
k−j.βn−k+j

1 〉Y ]]M [S/Y ]By expanding the last onatenation operator in the modality above and introduingthe auxiliary variable X, this implies the following inlusion:
Φn

M(S) ⊆ [[〈(β∗1 .β2)
k−j〉X]]M [[[〈βn−k+j

1 〉Y ]]M [S/Y ]/X]whih an in turn be rewritten using the de�nition of ΨM and the fat that the series
Ψk

M(S) is dereasing:
Φn

M (S) ⊆ [[〈(β∗1 .β2)
∗〉X]]M [Ψn−k

M (S)/X] (8)Now we an alulate the limit of the series Φn
M (S) as follows:

⋂

n≥0 Φn
M (S) = sine Φn

M (S) is dereasing
⋂

n≥k Φn
M (S) ⊆ by (8)

⋂

n≥k[[〈(β
∗
1 .β2)

∗〉X]]M [Ψn−k
M (S)/X] = by replaing n− k by l

⋂

l≥0[[〈(β
∗
1 .β2)

∗〉X]]M [Ψl
M (S)/X] = sine Ψl

M (S) is dereasing to νΨM

[[〈(β∗1 .β2)
∗〉X]]M [νΨM/X]and therefore the desired inlusion holds.

2Proof (Proposition 3). Starting from the Ldsbr
µ formulations of the Atl\X temporal oper-ators stated in the proposition, we expand the weak modalities to obtain plain Lµ formulas,and then we show that these formulas are equivalent to the Lµ formulas given in Table 1.Operator E[ϕ1αUϕ2].RR n° 7690
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E[ϕ1αUϕ2] = by hypothesis
〈(ϕ1?.α ∨ τ)∗〉ϕ2 = by expansion of the ∗ operator
µX.(ϕ2 ∨ 〈ϕ1?.α ∨ τ〉X) = by expansion of the . operator
µX.(ϕ2 ∨ 〈ϕ1?〉 〈α ∨ τ〉X) = by expansion of the ? operator
µX.(ϕ2 ∨ (ϕ1 ∧ 〈α ∨ τ〉X)).Operator E[ϕ1α1

Uα2
ϕ2].

E[ϕ1α1
Uα2

ϕ2] = by hypothesis
〈(ϕ1?.α1 ∨ τ)

∗〉 (ϕ1 ∧ 〈α2〉ϕ2) = by expansion of the ∗ operator
µX.((ϕ1 ∧ 〈α2〉ϕ2) ∨ 〈ϕ1?.α1 ∨ τ〉X) = by expansion of the . operator
µX.((ϕ1 ∧ 〈α2〉ϕ2) ∨ 〈ϕ1?〉 〈α1 ∨ τ〉X) = by expansion of the ? operator
µX.((ϕ1 ∧ 〈α2〉ϕ2) ∨ (ϕ1 ∧ 〈α1 ∨ τ〉X)) = by propositional alulus
µX.(ϕ1 ∧ (〈α2〉ϕ2 ∨ 〈α1 ∨ τ〉X)).Operator A[ϕ1αUϕ2].
A[ϕ1αUϕ2] = by hypothesis
[(¬ϕ2?.α ∨ τ)∗] (ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false)) ∧

[¬ϕ2?.α ∨ τ ] ⊣ = by expansion of the * operator
νX.((ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false)) ∧

[¬ϕ2?.α ∨ τ ]X) ∧ [¬ϕ2?.α ∨ τ ] ⊣ = by expansion of the . operator
νX.((ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false)) ∧

[¬ϕ2?] [α ∨ τ ]X) ∧ [¬ϕ2?.α ∨ τ ] ⊣ = by expansion of the ? operator
νX.((ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false)) ∧

(ϕ2 ∨ [α ∨ τ ]X)) ∧ [¬ϕ2?.α ∨ τ ] ⊣ = by propositional alulus
νX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X)) ∧

[¬ϕ2?.α ∨ τ ] ⊣ = by expansion of the [ ] ⊣ operator
νX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X)) ∧
µX. [¬ϕ2?.α ∨ τ ]X = by expansion of the . operator
νX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X)) ∧

µX. [¬ϕ2?] [α ∨ τ ]X = by expansion of the ? operator
νX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X)) ∧

µX.(ϕ2 ∨ [α ∨ τ ]X).To show the equivalene between the last formula above and the translation of A[ϕ1αUϕ2] in
Lµ given in Table 1, it remains to show the following equality:
µX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X)) =
νX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X)) ∧ µX.(ϕ2 ∨ [α ∨ τ ]X)The �⇒� impliation follows immediately by monotoniity. For the onverse impliation,we onsider an Lts M = 〈S,A, T, s0〉 and we show the following inequality between theinterpretations on M of the formulas in the left- and right-hand sides (note that ϕ1, ϕ2 arelosed and therefore there is no need for a propositional ontext ρ): INRIA
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[[νX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X))]]M ∩
[[µX.(ϕ2 ∨ [α ∨ τ ]X)]]M ⊆
[[µX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X))]]MLet ΦM ,ΨM : 2S → 2S the funtionals de�ned below:
ΦM (U) = [[ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X)]]M [U/X]
ΨM (U) = [[ϕ2 ∨ [α ∨ τ ]X]]M [U/X]Using the iterative haraterization of �xed point operators [17℄, the inequality above an bereformulated in terms of these funtionals as follows:
⋂

n≥0 Φn
M (S) ∩

⋃

n≥0 Ψn
M (∅) ⊆

⋃

n≥0 Φn
M (∅)or, equivalently:

⋃

k≥0

((

⋂

n≥0 Φn
M (S)

)

∩ Ψk
M (∅)

)

⊆
⋃

k≥0 Φk
M (∅)To prove the last inequality, we �rst show the relation below by indution on k:

∀k ≥ 0.





⋂

n≥0

Φn
M(S)



 ∩ Ψk
M(∅) ⊆ Φk

M(∅) (9)1. Base ase: (
⋂

n≥0 Φn
M (S)) ∩ Ψ0

M (∅) = (
⋂

n≥0 Φn
M(S)) ∩ ∅ = ∅ ⊆ Φ0

M(∅).2. Indutive ase:
Φk+1

M (∅) =
ΦM (Φk

M (∅)) ⊇ by indution hypothesis
ΦM ((

⋂

n≥0 Φn
M(S)) ∩ Ψk

M (∅)) = by de�nition of ΦM

[[ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X)]]M
[(
⋂

n≥0 Φn
M(S)) ∩ Ψk

M (∅)/X] = by introduing Y
[[ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ] (X ∧ Y ))]]M

[
⋂

n≥0 Φn
M (S)/X,Ψk

M (∅)/Y ] = by modal alulus
[[(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X)) ∧ (ϕ2 ∨ [α ∨ τ ]Y )]]M

[
⋂

n≥0 Φn
M (S)/X,Ψk

M (∅)/Y ] = by de�nition of [[ ]]

[[ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ ]X)]]M
[
⋂

n≥0 Φn
M (S)/X] ∩

[[ϕ2 ∨ [α ∨ τ ]Y ]]M [Ψk
M (∅)/Y ] = by de�nition of ΦM ,ΨM

ΦM (
⋂

n≥0 Φn
M (S)) ∩ ΨM (Ψk

M (∅)) = by de�nition of νΦM

(
⋂

n≥0 Φn
M(S)) ∩ Ψk+1

M (∅).RR n° 7690



30 Mateesu & WijsBy applying union for all k ≥ 0 on the left- and right-hand sides of (9), we obtain the desiredinequality.Operator A[ϕ1α1
Uα2

ϕ2].
A[ϕ1α1

Uα2
ϕ2] = by hypothesis

νX. [(¬α2)
∗] (ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧

[α1 ∧ α2] (ϕ2 ∨X) ∧X) ∧
νX.([¬α2] ⊣ ∧ [(¬α2)

∗] [α1 ∧ α2] (ϕ2 ∨X)) ∧
µX. [(¬α2)

∗] [α1 ∧ α2] (ϕ2 ∨X) = by Lemma 3
νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧

[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧
νX.([¬α2] ⊣ ∧ [(¬α2)

∗] [α1 ∧ α2] (ϕ2 ∨X)) ∧
µX. [(¬α2)

∗] [α1 ∧ α2] (ϕ2 ∨X) = by Pdl semantis
νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧

[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧
[((¬α2)

∗.(α1 ∧ α2.¬ϕ2?))
∗] [¬α2] ⊣ ∧

[(¬α2)
∗.(α1 ∧ α2.¬ϕ2?)] ⊣ = by negation of Lemma 4

νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧
[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧

[¬α2|(α1 ∧ α2.¬ϕ2?)] ⊣ = by Pdl semantis
νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧

[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧
µX. [¬α2|(α1 ∧ α2.¬ϕ2?)]X = by Pdl semantis
νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧

[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧
µX.([¬α2]X ∧ [α1 ∧ α2.¬ϕ2?]X) = by Pdl semantis
νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧

[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧
µX.([α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X).To show the equivalene between the last formula above and the translation of A[ϕ1α1

Uα2
ϕ2]in Lµ given in Table 1, it remains to show the following equality:

µX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧
[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) =

νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧
[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧ µX.([α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X)The proof of this last equality is very similar to the proof of the orresponding equality forthe A[ϕ1αUϕ2] operator above, and is omitted here. 2
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