
A Schedulerless Semantics of

TLM Models Written in SystemC

via Translation into LOTOS

Olivier Ponsini and Wendelin Serwe

INRIA, 655, avenue de l’Europe, 38334 Saint-Ismier Cedex, France,
{olivier.ponsini,wendelin.serwe}@inria.fr

Abstract. TLM (Transaction-Level Modeling) was introduced to cope
with the increasing complexity of Systems-on-Chip designs by raising
the modeling level. Currently, TLM is primarily used for system-level
functional testing and simulation using the SystemC C++ API widely
accepted in industry. Nevertheless, TLM requires a careful handling of
asynchronous concurrency. In this paper, we give a semantics to TLM
models written in SystemC via a translation into the process algebra
LOTOS, enabling the verification of the models with the CADP toolbox
dedicated to asynchronous systems. Contrary to other works on formal
verification of TLM models written in SystemC, our approach targets
fully asynchronous TLM without the restrictions imposed by the Sys-
temC simulation semantics. We argue that this approach leads to more
dependable models.

1 Introduction

Systems-on-Chip combine several hardware components with embedded software
in a single integrated circuit. TLM (Transaction-Level Modeling) was introduced
to cope with the increasing complexity and time-to-market pressure of Systems-
on-Chip by using reference descriptions closer to system-level. Compared to tra-
ditional RTL (Register Transfer Level) based design flows, TLM reduces both
the development time of virtual test platforms and the simulation time, allowing
to run the embedded software earlier and to perform functional testing of the
system.

TLM is still a rather informal concept. In this paper, we use the definition
given in [4]. TLM models describe both system architecture and behavior. The
hardware part of a system is not required to be completely detailed, but only to
be sufficient to develop and run the embedded software. A TLM model is a set
of interconnected modules, whose behavior is represented by asynchronous con-
current processes communicating only through transactions and events. Dealing
with asynchronous concurrency is known to be difficult due to the many possible
interleavings of concurrent tasks. TLM models are no exception: explicitly and
completely defining the synchronizations between processes is the key to ensure
model correctness; unfortunately, this is also very error prone, so that formal
validation techniques are required.

real system

simulation

TLM

SystemC

Fig. 1. Observable system behaviors

In general, TLM models are written in system-level design languages, among
which the SystemC standard [16] has become the most popular. SystemC is a
C++ library providing (1) types, methods, and macros to describe systems, in-
cluding hardware, at various abstraction levels and (2) a simulation kernel, in
particular a scheduler, to simulate the execution of the modeled systems. Simula-
tion greatly helps functional validation, yet it is well-known that testing cannot
prove the absence of errors, since exhaustiveness is impossible (at reasonable
cost). This holds all the more for asynchronous concurrent systems, where the
process interleaving space must be covered in addition to the data space. On the
other hand, formal methods and tools dedicated to concurrent systems have a
proper handling of asynchronous concurrency and can guarantee a property for
all possible executions of a system.

Moreover, and to the contrary of the nondeterministic and asynchronous na-
ture of TLM, the scheduler of the SystemC simulation kernel is nonpreemptive,
has synchronous features, and imposes that for the same input the order of pro-
cess execution does not vary from run to run. These properties of the scheduler
are useful for testing and debugging, since they allow to reproduce a simulation
run. However, they do not suit verification needs since they restrict the set of
executions. Thus, as will be shown in Sect. 3.3, one may miss executions leading
to erroneous states of the system.

Figure 1 compares the possible observable behaviors of different models and
the real system. A TLM model is an abstraction of the real system, thus its
behavior does not always exactly coincide with the behavior of the real sys-
tem; further differences might be introduced during synthesis, since the step
from TLM to hardware is not formally defined. A model based on the SystemC
scheduler can only exhibit a subset of the TLM model behaviors. We advocate
that verification over the increased number of behaviors of TLM leads to more
dependable models and thus to more dependable embedded software. Therefore,
we aim at a formal semantics of TLM models written in SystemC independent
from the SystemC scheduler and its simulation semantics.

The contribution of this paper is a formal semantics of TLM defined via
a translation from a TLM-subset of SystemC into the standard process alge-
bra LOTOS [8], so as to enable the use of CADP (Construction and Analysis
of Distributed Processes) [3], a rich formal verification toolbox that allows on
the fly, compositional model-checking and equivalence checking of asynchronous
systems. The translation has the following features:

– It regards SystemC as a description language for TLM and does not super-
impose the SystemC simulation semantics to TLM semantics. This allows
to exhibit behaviors that might occur if the embedded software were run on
hardware, but that would not be revealed by simulation with SystemC.

– It is parameterized to control asynchronous behaviors according to verifica-
tion needs; in particular, the SystemC scheduler semantics can be reproduced
if required.

– It preserves the architectural hierarchy (encapsulation of modules) of the
SystemC description, since TLM models are not flattened to an unstructured
set of processes. This facilitates compositional verification as well as going
back and forth from the formal model to the SystemC code.

The rest of the paper is organized as follows. Related work is presented in
Sect. 2. Section 3 surveys TLM and SystemC and discusses the limitations of the
SystemC simulation semantics. The translation itself and a brief introduction to
LOTOS are given in Sect. 4. Some experimental results are discussed in Sect. 5.
Section 6 concludes.

2 Related Work

Both TLM and SystemC lack an authoritative semantics to which formal ap-
proaches could refer. As for TLM, there is no standard definition: [17] is a pro-
posal seeking better interoperability between TLM models but it is still incom-
plete. The works addressing the issue of giving a formal semantics for TLM
and/or SystemC differ mainly as regards the formal methods used and level of
abstraction, e.g. cycle-accurate RTL, algorithmic level, or the so-called trans-
action levels, themselves divided into TLM PV (Programmer’s view) untimed
models and TLM PVT (PV + Timing) timed models. Focussing on a particular
level allows to optimize the formal model, but may require to choose a subset
of SystemC constructs. For instance, SystemC signals are important to RTL
but not to TLM. The chosen level may also determine the target formalism: for
instance, synchronous models seem adequate for RTL, whereas asynchronous
models seem appropriate for TLM.

We distinguish four main lines of work targeting either low-level SystemC,
full SystemC, TLM with SystemC, or TLM alone.

SystemC was initially designed as a language for modeling circuits, provid-
ing low-level hardware constructs such as hardware signals. A first line of work
targets this low-level SystemC. For instance, [5] addresses temporal property
checking for SystemC RTL level descriptions. [14] proposes an operational se-
mantics for low-level SystemC, which uses distributed Abstract State Machines
but limits asynchrony to two modules: the SystemC scheduler and the set of all
SystemC processes, i.e. there is no asynchrony between the SystemC processes.
[18, 6] define a denotational semantics for a restricted subset of SystemC. In this
paper, we are interested in modeling of systems above this low-level SystemC.

A second line of work targets full SystemC, i.e. low-level SystemC as well
as higher levels of abstraction. Various formalisms have been used to give a

semantics to full SystemC, e.g. labeled Kripke structures [10], synchronous lan-
guages [19], Petri nets [9] or process algebra [12]. Contrary to our proposal, these
approaches do not take advantage of the higher abstraction levels, in particular
they are tied to the synchronous features of low-level SystemC. Moreover, most
of these works flatten the hierarchical description allowed by SystemC.

A third line of work is interested in dedicated methods for TLM descriptions
written in SystemC. In [13], a verification tool chain for TLM is developed upon
synchronous communicating automata, with interfaces to synchronous languages
and their model checkers. Recently, [20] proposed an encoding of a TLM-subset
of SystemC in Promela, allowing a connection with verification tools based
on asynchronous formalisms. However, these works have in common with the
previous ones to integrate the SystemC scheduler as part of the formalized model,
either explicitly [9, 13] or implicitly [10, 12, 19, 20]. Whereas the problem of
covering more schedules is an active research direction (see [7] for instance), these
works do not depart from the SystemC simulation semantics and its restrictions
on the possible schedules, e.g. nonpreemption. Our work belongs to this third
line, since we give a formal semantics to a TLM-subset of SystemC: we translate
the PV level of TLM into the process algebra LOTOS. More importantly, we
aim at verification of TLM, and distinguish between SystemC as a description
language and SystemC as a simulation tool, i.e. we give a formal semantics to
TLM models written in SystemC, not to TLM models as simulated by SystemC.
Thus, in contrast to other works, our formal semantics of TLM does not integrate
the SystemC scheduler and the simulation semantics it implies.

The fourth line consists in relatively few works interested in formalizing TLM
models not written in SystemC. For instance, [21] presents the modeling of an
on-chip bus protocol in LOTOS at TLM level. Seeking more generality, [15]
gives first a formal definition of what a transaction should be (according to cri-
teria applying to transactions in databases) and then derives guidelines how to
implement complying transactions in SystemC, considering the SystemC sched-
uler specificities. Our approach is just the opposite: we start from a SystemC
implementation of a TLM model and translate it into a formal language.

3 TLM Subset of SystemC

Although TLM is in principle not tied to a particular language, the SystemC
standard [16] has gained wide acceptance for describing TLM models. In this
section, we first outline the SystemC subset relevant to TLM PV. Then, we
describe the SystemC scheduler and its limitations as regards verification.

3.1 TLM Principles

Basically, a TLM model is a set of components whose behavior and communica-
tion aspects are clearly separated. The behavior of a component is captured by
a set of concurrent processes. Communication between modules is captured by
transactions, which can transfer data and/or trigger events.

TLM models range over several abstraction subclasses whose boundaries de-
pend mainly on timing accuracy and data granularity. In this work, we focus
on PV models as this level is intended for embedded software development and
functional verification. PV models are untimed and the data granularity should
fit the intended application rather than the hardware micro-architecture (e.g. a
frame for a video processing unit, rather than the actual bus packets or hardware
signals).

The PV model of computation is summed up by four points [4, p. 34]:

1. concurrent execution of independent processes,
2. respect for causal dependencies between processes using system synchroniza-

tion,
3. bit-true behavior, and
4. bit-true communication.

Points (1) and (2) define an asynchronous model of computation where process
interleavings are only controlled by explicit synchronizations between processes;
points (3) and (4) ensure that functional verification is possible.

3.2 SystemC Description Language

The SystemC C++ library defines classes and convenience macros to describe
system architectures. The components of a system are modules (SC_MODULE)
whose behavior is specified by a set of processes. For simulation efficiency and
synthesis concerns, SystemC distinguishes several kinds of processes, but we
focus, without loss of generality, on threads (SC_THREAD). To our knowledge,
TLM models have a static number of processes; thus, we do not handle process
spawning.

Modules contain ports (sc_port) through which they communicate with
other modules. Ports are connected either to other ports or channels.

Channels are used to encapsulate communication protocols, they are either
primitive or hierarchical. Primitive channels, e.g. sc_signal, are only used in
modeling levels lower than PV. Hierarchical channels are not very different from
other modules.1 Hence, we will not make the distinction in the sequel.

A transaction is a call of a method in another module (through a port).
The calling process executes the code encapsulated in the other module. The
two involved modules exchange data through method parameters and return
value. Methods used for transactions are declared in interfaces (sc_interface)
inherited by the module implementing the transaction.

Processes can also synchronize via events (sc_event). A process can sus-
pend its execution waiting for a specific event e (wait(e)). When e is notified
(e.notify()), all suspended processes waiting for e resume their execution; if
there is no waiting process, the notification is lost.

1 The difference between hierarchical channels and ordinary modules is that the former
also inherit from interfaces specifying the implemented transactions.

«SC thread» run_m1()

«SC module»
m1

«SC module»
m2

− m_count:int
− m_set:bool

p
m2_if set()

read():int

«SC thread» run_m2()

«SC interface»
m2_if

Component2

Component1

Fig. 2. UML diagram of the set-counter example

Finally, SystemC has also constructs related to timing and to synchrony —
e.g. delayed wait and notification, update-request mechanism of primitive chan-
nels — implemented in its simulation kernel by the so-called delta-cycles. These
features are inherited from earlier versions, before the language was extended to
support TLM, and they are not relevant to our discussion of the PV level.

For illustration, we use the set-counter example depicted in Fig. 2. Its Sys-
temC code is:

SC_MODULE (M1) {

sc_port <m2_if > p;

SC_CTOR (M1) { SC_THREAD (run_m1); }

void run_m1 () { p->set (); cout << p->read (); }

};

class m2_if: virtual public sc_interface {

virtual void set () = 0;

virtual int read () = 0;

};

SC_MODULE (M2): public m2_if {

SC_CTOR (M2): m_set(false), m_count (0) {

SC_THREAD (run_m2);

}

void run_m2 () {

while(true) { wait (e); m_count ++; m_set=false; }

}

void set () { m_set=true ; e.notify (); }

int read () { return m_count; }

private:

sc_event e; bool m_set; int m_count ;

};

int sc_main (int argc , char *argv []) {

M1 m1("module1"); M2 m2("module2 ");

m1.p.bind (m2); sc_start (-1); return 0;

}

Module m2 allows module m1 to set a flag (m_set) and to read how many times
it was set. The program entry point sc_main instantiates the two modules and
binds port p of m1 to module m2. Thus, in the thread run_m1, method calls
p->set() and p->read() are transactions, in which run_m1 executes the meth-

ods set and read defined in m2. These two methods are declared in interface
m2_if inherited by module m2. Transaction set sets data member m_set to true
and notifies event e. Transaction read returns the value of counter m_count.
The behavior of m2 is described by run_m2: it waits for the notification of e,
increments m_count and resets m_set.

3.3 SystemC Scheduler

In order to simulate the concurrent execution of several processes on a single
processor, the SystemC simulation kernel uses a scheduler to select the process
gaining control of the processor. In this section, we discuss two limitations, as
regards verification, of the SystemC scheduler: immutable order of process exe-
cution and nonpreemption.

Immutable Order of Process Execution. Except for explicit synchroniza-
tions, TLM does not impose any order of execution of processes: they run con-
currently with an asynchronous semantics. Synchronizations between processes
define a partial order on process interleavings, allowing several different sched-
ules. Although the choice of a schedule by the SystemC scheduler is implementa-
tion dependent, the SystemC standard [16] requires that all the simulation runs
with the same input will choose the same schedule. This helps debugging since
it allows to easily reproduce an erroneous behavior of the system. The downside
is that other schedules may lead to different erroneous behaviors that will never
show up with SystemC simulation.

In the set-counter, asynchronous concurrency means that the wait(e) state-
ment of process run_m2 can occur either before or after process run_m1 has
performed the transaction p->set(), i.e. either before or after event e is noti-
fied. This leads to two different system behaviors.

If the notification of e occurs before the wait, then the event is lost and
run_m2 will deadlock since it will eventually wait for an event that will not be
notified anymore. If the notification of e occurs after the wait, then run_m2 will
resume its execution and eventually proceed.

These two behaviors are intended in TLM. However, the SystemC scheduler
imposing an order of process execution no matter the number of simulation runs,
only one out of the two behaviors will be simulated. Hence, simulation may miss
the deadlock.

This deadlock can be prevented by replacing the statement wait(e) by
while(!m_set) wait(e). With this modification, a correct synchronization be-
tween the wait of run_m2 and the notification of event e by run_m1 is ensured.

Non-Preemption. The SystemC scheduler is not preemptive, i.e. a process
runs without interruption until it explicitly gives control back with a wait state-
ment. This is known as collaborative multithreading and is generally found easier
to program with than preemptive multithreading, e.g. it simplifies access control
to shared variables. However, this major difference with the concurrent model

of computation of TLM may hide interleavings intended in the model and the
final system.

For instance, when run_m1 gains control, it performs the two transactions,
set and read, in a row. Although run_m2 is resumed by transaction set, with the
simulation semantics of SystemC, this second process has no chance to execute
before run_m1 explicitly gives control back, i.e. on termination in this case.
Therefore, the value of m_count read by run_m1 during the transaction read is
never updated by run_m2.

However, in real asynchronous concurrency as in TLM, once process run_m2
is resumed, the update of m_count could occur before or after run_m1 performs
its transaction read. Therefore, the value of m_count read by run_m1 can either
be the updated one or not. These two behaviors are intended in the TLM model,
but only the second one is permitted by the SystemC scheduler. Hence, this syn-
chronization problem between successive transactions is missed by simulation,
and by formal semantics based on the SystemC simulation semantics.

4 Translation of the TLM-subset of SystemC into LOTOS

In this section, we briefly present LOTOS and outline the translation of TLM
descriptions written in SystemC into LOTOS. In the following, L denotes a list
L1, . . . , Ln of, depending on context, gates, variables, type-variable couples or
values. We use the set-counter without deadlock as a running example.

4.1 LOTOS

The standard process algebra LOTOS (Language Of Temporal Ordering Specifi-
cation) [8] allows to describe asynchronous concurrent processes communicating
and synchronizing by rendez-vous on gates. LOTOS specifications are composed
of a data part and a behavior part. For a complete description of LOTOS, we
refer the reader to existing tutorials, such as [1]; in the following we briefly
introduce the notions occurring in the examples of this paper.

Data values and operations are described by algebraic specifications in the
style of ACTONE [2]. Types define a collection of sorts, operations on sorts and
equations describing the meaning of operations. The verification toolbox CADP
also allows to use external C data types. In the examples of this paper, we
suppose that we are given an implementation of Booleans and natural numbers.

Behaviors are expressed by terms combining processes with algebraic oper-
ators. Figure 3 gives a grammar of behaviors; lower case identifiers stand for
terminals and upper case identifiers for non terminals (P is a process name, G

a gate name, X a variable name, S a sort name, and F a function name).
The semantics of LOTOS is formally defined by labeled transition systems.

Here, we only sketch the meaning. A rendez-vous “G O; B” on a gate G al-
lows to communicate several values O, called offers, either for emission (!) or
reception (?); then behavior B is executed. Hidden gates G of B in “hide G in

B” are unobservable, and unavailable for synchronization with other behaviors.

B ::= G O1 . . . On; B rendez -vous
| hide G1, . . . , Gn in B hiding

| B1 [] B2 choice

| B1 ||| B2 interleaving

| B1 |[G1, . . . , Gn]| B2 parallel

| B1 >> accept X1:S1, . . . , Xn:Sn in B2 sequence

| exit(V1, . . . , Vn) termination

| [V]−> B guard

| let X:S=V in B variable definition

| P[G1, . . . , Gm](V1, . . . , Vn) process call

O ::= !V | ?X:S offer

V ::= X | F(X1, . . . , Xn) value

Fig. 3. Grammar of LOTOS behaviors

“B1 [] B2” implements a nondeterministic choice between behaviors B1 and
B2. “B1 |[G]| B2” is the parallel composition of B1 and B2 synchronizing on
the gates G; pure interleaving “B1 ||| B2” is the special case where G is empty.
Synchronization on gates with offers only occurs if the offers are compatible
(same number and types, same values for matching emissions). In the sequence
“B1 >> accept X:S in B2”, on successful termination, behavior B1 uses the
operator “exit(V)” to pass results V of types S to B2 through variables X (of
types S). A behavior B can be guarded by a Boolean expression V : “[V]−> B”.
A “let X:S=V in B” construct allows to define a variable X of sort S that can
be used in B and is initialized to value V . Finally, a behavior B can be encap-
sulated in a recursive process P as follows: “process P [G](X:S): E:= B

endproc” where E is either noexit or exit(S).

4.2 Overview of the Translation

Our translation into LOTOS maps SystemC threads, transactions, shared vari-
ables, and modules into the single concept of LOTOS process. SystemC types are
translated into LOTOS types. Two additional LOTOS processes are required.
The event manager process is an implementation of the event communication
mechanism used in TLM. The lock manager process is not the translation of a
TLM concept. It is added to the LOTOS model so as to adjust the degree of
asynchrony to verification needs.

Several LOTOS implementations may exist for a given concept (e.g. event
communication). Due to lack of space, we will only briefly mention these alterna-
tives. Translation of shared variables and locks are based on standard techniques
from process algebra (e.g. [11]). In the following, we will write thread for a LO-
TOS process corresponding to the translation of a SystemC thread.

4.3 Variables of Modules

A variable v of a module can be shared, i.e. accessed by several threads or
transactions of the module. If this is not the case, the variable is added as a

parameter of the thread using it. Otherwise, it is necessary to introduce a dedi-
cated process sharedv that offers rendez-vous to read and write v. In LOTOS,
this supplementary process avoids synchronizations between processes accessing
the same shared variables.

If the type of v is Bool, sharedv can be defined as:

process sharedv[readv,writev](v:Bool): noexit :=
readv !v; sharedv[readv,writev](v) []

writev ?newv:Bool ; sharedv[readv ,writev](newv)

endproc

A single process comprising all read/write rendez-vous suffices to handle all
shared variables of a module.

Moreover, if a shared variable of a module m is accessed by threads of m and
by threads of other modules, then it is necessary to duplicate the gates accessing
this variable in order to avoid n-ary rendez-vous between the threads of m and
the other threads. This is the case in the set-counter example with the shared
variables of module m2: m_set (resp., m_count) is accessed for reading (resp.,
writing) by both run_m2 and transaction set (resp., read). Consequently, we
introduce the two supplementary gates w_m_set_ext and r_m_count_ext that
will be used by the transactions. The LOTOS code for the shared variables of
module m2 is:

process shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,

w_m_set_ext , r_m_count_ext]

(m_set:Bool , m_count :Nat) : noexit :=
w_m_set ?v:Bool ;

shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,w_m_set_ext ,

r_m_count_ext] (v,m_count)

[]

r_m_set !m_set;

shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,w_m_set_ext ,

r_m_count_ext] (m_set ,m_count)

[]

w_m_count ?v:Nat;

shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,w_m_set_ext ,

r_m_count_ext] (m_set ,v)

[]

r_m_count !m_count;

shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,w_m_set_ext ,

r_m_count_ext] (m_set ,m_count)

[]

w_m_set_ext ?v:Bool ;

shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,w_m_set_ext ,

r_m_count_ext] (v,m_count)

[]

r_m_count_ext !m_count ;

shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,w_m_set_ext ,

r_m_count_ext] (m_set ,m_count)

endproc

4.4 Locks

For various reasons (e.g. debugging, efficiency, knowledge of the system), it may
be desirable to control the level of asynchrony in (parts of) the LOTOS model.
This is possible using different locking strategies: locks ensure mutually exclusive
execution of selected code parts. For instance, one lock per module acquired by
each transaction of the module prevents simultaneous transactions in the same
target module, whereas a single global lock acquired by each thread reproduces
the nonpreemptive semantics of the SystemC scheduler. Several lock granularities
for different parts of the system can be used to fine tune the desired behaviors
of a model.

One or several lock manager processes can propose rendez-vous to acquire or
release locks on gates lock and free. These gates may take an offer identifying
a desired lock if a centralized lock manager is used for several locks.

To illustrate the use of locks with the set-counter, we implement a locking
policy that prevents transactions and the thread of m2 from executing simultane-
ously. Thus, a thread or a transaction starts by acquiring the lock of m2, which is
then freed only on suspension or termination. The corresponding lock manager
process is:

process lock_manager [lock ,free](m2_locked : Bool) : noexit :=
[not(m2_locked)] −> lock !m2; lock_manager [lock ,free](true)

[]

free !m2; lock_manager [lock ,free](false)

endproc

4.5 Event Communication

For an event e, an event manager process is used to record which processes are
waiting for e and to resume them all nondeterministically on notification of event
e. A wait(e) is translated into a sequence suspend !id_p !e; resume !id_p

where id_p is the identifier of the waiting process. A e.notify() translates into
a rendez-vous notify !e; if a process p is waiting for e, the event manager offers
a rendez-vous resume !id_p to resume p.

For each process p possibly waiting for an event e (this can be known stat-
ically), we use one Boolean parameter of the event manager to record whether
p is waiting for e or not. An event manager for an event e with two possible
waiting processes p1 and p2 can then be defined as:

process event_manager [notify ,resume ,suspend]

(id_p1_e , id_p2_e :Bool): noexit :=
suspend !id_p1 !e;

event_manager [notify ,resume ,suspend](true ,id_p2_e)

[]

suspend !id_p2 !e;

event_manager [notify ,resume ,suspend](id_p1_e ,true)

[]

(notify !e;

(

([id_p1_e]−>resume !id_p1; exit [] [not(id_p1_e)]−>exit)

| | |
([id_p2_e]−>resume !id_p2; exit [] [not(id_p2_e)]−>exit)

) >> event_manager [notify ,resume ,suspend](false ,false))

endproc

For each process, an additional Boolean parameter can suffice to encode whether
the process is waiting for a conjunction or disjunction of events. Finally, a single
process may manage all event/process combinations, or several processes can be
used to manage events local to groups of modules.

In the set-counter, there is only one event and run_m2 is the only thread
waiting for it, so the event manager is simpler than the more generic one above:

process event_manager [n, r, s](b_run_m2 : Bool) : noexit :=
s; event_manager [n, r, s](true)

[]

[not (b_run_m2)] −> n; event_manager [n, r, s](b_run_m2)

[]

[b_run_m2] −> n; r; event_manager [n, r, s](false)

endproc

4.6 Threads and Transactions

A SystemC thread T is translated into a LOTOS process whose behavior is the
translation of the body of T . C++ constructs occurring in threads are trans-
lated as follows: an assignment to a local variable becomes a let construct, a
conditional branching becomes a choice between behaviors guarded by mutu-
ally exclusive conditions ([cond]−>if_part [][not(cond)]−>else_part),
a loop becomes a recursive process, and a method call becomes either a process
call or a call to a C function if the method only processes data without syn-
chronizing. In this latter case, CADP calls the C function to compute a value if
needed.

A transaction is also translated into a process P . Unlike threads, transactions
may have input (request) and output (response). Inputs become parameters of
P while outputs become results returned by P via the exit operator. Calling a
transaction through a port is calling the corresponding process – which one is
statically known.

In the set-counter example, there are two transactions, set and read. Their
translation is:

process set[lock ,free ,notify ,w_m_set_ext] : exit :=
lock !m2;

w_m_set_ext !true ; notify;

free !m2; exit

endproc

process read [lock ,free ,r_m_count_ext] : exit (Nat) :=
lock !m2;

r_m_count_ext ?n:Nat;

free !m2; exit (n)

endproc

Then, the translation of thread run_m1 calling the transactions is:

process run_m1[lock ,free ,notify ,cout ,w_m_set_ext ,

r_m_count_ext] : noexit :=
set[lock ,free ,notify ,w_m_set_ext]

>> read [lock ,free ,r_m_count_ext]

>> accept n:Nat in cout !n; stop

endproc

Finally, the translation of thread run_m2 is:

process run_m2[lock ,free ,resume ,suspend ,r_m_set ,w_m_set ,

r_m_count ,w_m_count] : noexit :=
lock !m2; run2 [lock ,free ,resume ,suspend ,r_m_set ,w_m_set ,

r_m_count ,w_m_count]

where

process run2 [lock ,free ,resume ,suspend ,r_m_set ,w_m_set ,

r_m_count ,w_m_count] : noexit :=
r_m_set ?v:Bool ;

(

[not(v)]−> suspend ; free !m2; resume; lock !m2;

run2 [lock ,free ,resume ,suspend ,r_m_set ,w_m_set ,

r_m_count ,w_m_count]

[]

[v]−> r_m_count ?n:Nat; w_m_count !n+1; w_m_set !false;

run2 [lock ,free ,resume ,suspend ,r_m_set ,w_m_set ,

r_m_count ,w_m_count]

)

endproc

endproc

4.7 Modules and Complete System

A SystemC module is translated into a parallel composition of the process han-
dling its state variables with the translation of its threads.

As an example, the following is a translation of a module M with two threads
P1 and P2, which use the gates Aint=Aint1

∪Aint2
to access variables of M and

the gates Aext=Aext1
∪Aext2

to access variables of other modules. Contrary to
SystemC, transactions are not encapsulated in the owner module2. Consequently,
the scoping rules of LOTOS require M to expose its variables via gates (here
At) to make them accessible to threads of other modules (through transactions
of M).

2 This solution has been investigated and leads either to complex handling of contexts,
or to duplication of code; it is not exposed here.

process M [notify ,resume ,suspend ,At,Aint,Aext]: noexit :=

shared_var [Aint,At](var)

|[Aint] |

(P1[notify ,resume ,suspend ,Aint1
,Aext1

]

| | |

P2[notify ,resume ,suspend ,Aint2
,Aext2

])

endproc

The module m2 of the set-counter is translated into:

process m2[lock ,free ,notify ,resume ,suspend ,

w_m_set_ext ,r_m_count_ext] : noexit :=
hide r_m_set ,w_m_set ,r_m_count , w_m_count in

(

shared_var [w_m_set ,r_m_set ,w_m_count ,r_m_count ,

w_m_set_ext ,r_m_count_ext] (false ,0)

|[w_m_set ,r_m_set ,w_m_count ,r_m_count] |
run_m2[lock ,free ,resume ,suspend ,r_m_set ,w_m_set ,

r_m_count , w_m_count]

)

endproc

Module m1 contains only one thread, thus m1 is translated into a call to run_m1.
The entire system is the parallel composition of all modules with the event

and lock managers. Modules are synchronized with each other on the gates to
access their variables (the union of the Aext and At gates).

Finally, the translation of the entire set-counter system is:

(

(run_m1[lock ,free ,notify ,cout ,w_m_set_ext , r_m_count_ext]

|[w_m_set_ext , r_m_count_ext] |
m2[lock ,free ,notify ,resume ,suspend ,

w_m_set_ext , r_m_count_ext])

|[notify ,resume ,suspend] |
event_manager [notify ,resume ,suspend](false)

)

|[lock ,free] | lock_manager [lock ,free](false)

5 Experimental Results

We developed the LOTOS model of the set-counter without deadlock using two
locking policies: without (a global lock has to be acquired by each thread and
released on suspension or termination) and with thread preemption (no lock at
all). The former reproduces the behaviors of the TLM model observable with
the SystemC simulation kernel. The latter allows transaction interleavings, as
required by TLM semantics. We also wrote a µ-calculus formula expressing what
values of the counter may be read by initiator module m1 (cf. Sect. 3.3).

For both versions, we used CADP [3] to generate the corresponding automata
and check the property (as expected, it holds only with preemption). We also

Table 1. Results for the set-counter example

i=initiator t=target 1i 1t 2i 1t 1i 2t 2i 2t 3i 2t

w/
preemption

generation time (s) 1.1 1 1.4 1.8 28.4
number of states 77 1,201 1,109 48,149 1,940,977
formula checking (s) 0.1 0.3 0.1 0.7 35.8

w/o
preemption

generation time (s) 1 1 1.4 1.5 1.5
number of states 35 141 149 770 3,334
formula checking (s) < 0.1 < 0.1 < 0.1 < 0.1 1.1

checking w/o (w/ (s) 1.4 1.7 2.7 32.6 450.4

verified that, modulo branching equivalence, the model without preemption was
included in the model with preemption, but not vice versa.

Table 1 shows the results for different configurations of initiator (m1) and
target (m2) modules. When several targets are available, each initiator performs
set and read transactions with each target in sequence. Experiments were done
on a Sun UltraSparc IIIi 1.6GHz with 2GB memory running Solaris 10 (time is
in seconds and “generation” refers to the automata construction from LOTOS).

As a consequence of showing more behaviors, preemptive models (lines “w/”)
produce automata with a greater number of states than nonpreemptive mod-
els (lines “w/o”). However, first experiments show that minimization with re-
spect to branching bisimulation reduces automata of preemptive models by fac-
tors up to 103. Therefore, compositional approaches might be very effective.

6 Conclusion

TLM models are nondeterministic and asynchronous, as may be the underlying
hardware. Hence, they are difficult to apprehend and formal methods can help
their understanding and verification. Since there is no formal semantics of TLM,
most verification approaches refer to the simulation semantics of SystemC and
its nonpreemptive scheduler. Such approaches cannot exhibit all behaviors of a
TLM model, possibly leaving errors undetected, as we have shown in this paper.

We presented a translation from a TLM-subset of SystemC into LOTOS
using a schedulerless semantics; our translation can be easily tuned to support
the nonpreemptive semantics as a particular case. Although the interleaving
semantics abstraction of concurrency, in which our approach is rooted, may not
always correspond to physical true concurrency, it is widely accepted and proved
efficient in many application domains. Experimenting our translation on several
TLM models with CADP, we showed that our semantics is a strict superset of
a nonpreemptive one and that the additional behaviors may reveal errors.

Automating a translation of TLM into LOTOS is a difficult task, since the
former is informal whereas the latter has a precise formal semantics. The for-
malization of TLM is a necessary first step, to which the translation rules of this
paper contribute.

References

[1] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
Lotos. Computer Networks and ISDN Systems, 14(1):25–59, Jan. 1988.

[2] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and

Initial Semantics, vol. 6 of EATCS Monographs on Theoretical Computer Science,
1985.

[3] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In CAV, vol. 4595 of LNCS,
pp 158–163, July 2007.

[4] F. Ghenassia, ed. Transaction-Level Modeling with SystemC: TLM Concepts and

Applications for Embedded Systems. Springer, 2005.
[5] D. Große and R. Drechsler. CheckSyC: An Efficient Property Checker for RTL

SystemC Designs. In ISCAS, vol. 4, pp 4167–4170, May 2005.
[6] A. Habibi and S. Tahar. Design and Verification of SystemC Transaction-Level

Models. IEEE Transactions on VLSI Systems, 14(1):57–68, 2006.
[7] C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and M. Moy. Automatic Gen-

eration of Schedulings for Improving the Test Coverage of Systems-on-a-Chip. In
FMCAD, pp 171–178, 2006.

[8] ISO/IEC. Lotos — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, ISO, Genève,
1989.

[9] D. Karlsson, P. Eles, and Z. Peng. Formal Verification of SystemC Designs Using
a Petri-net Based Representation. In DATE, pp 1228–1233, 2006.

[10] D. Kroening and N. Sharygina. Formal Verification of SystemC by Automatic
Hardware/Software Partitioning. In MEMOCODE, pp 101–110, 2005.

[11] J. Magee and J. Kramer. Concurrency: State Models and Java Programs. Wiley,
2nd edn., Apr. 2006.

[12] K. L. Man. SystemCF L: A Formalism for Hardware/Software Codesign. In Eu-

ropean Conference on Circuit Theory and Design, vol. 1, pp 193–196, 2005.
[13] M. Moy, F. Maraninchi, and L. Maillet-Contoz. LusSy: A Toolbox for the Analysis

of Systems-on-a-Chip at the Transactional Level. In ACSD, pp 26–35, June 2005.
[14] W. Müller, J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, and W. Rosenstiel. The

Simulation Semantics of SystemC. In DATE, pp 64–70, Mar. 2001.
[15] B. Niemann and C. Haubelt. Towards a Unified Execution Model for Transactions

in TLM. In MEMOCODE, pp 103–112, 2007.
[16] Open SystemC Initiative. IEEE Standard SystemC Language Reference Manual.

IEEE Computer Society, 2006. IEEE Std 1666-2005.
[17] A. Rose, S. Swan, J. Pierce, and J.-M. Fernandez. Transaction Level Modeling in

SystemC. Open SystemC Initiative, 2005. www.systemc.org.
[18] A. Salem. Formal Semantics of Synchronous SystemC. In DATE, pp 376–381,

2003.
[19] J.-P. Talpin, P. L. Guernic, S. K. Shukla, and R. Gupta. A Compositional Be-

havioral Modeling Framework for Embedded System Design and Conformance
Checking. International Journal of Parallel Programming, 33(6):613–643, 2005.

[20] C. Traulsen, J. Cornet, M. Moy, and F. Maraninchi. A SystemC/TLM Semantics
in Promela and its Possible Applications. In SPIN Workshop, vol. 4595 of LNCS,
pp 204–222, July 2007.

[21] P. Wodey, G. Camarroque, F. Baray, R. Hersemeule, and J.-P. Cousin. LOTOS
Code Generation for Model Checking of STBus Based SoC: The STBus Intercon-
nect. In MEMOCODE, pp 204–213, June 2003.

