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Abstract

Fault-based conformance testing is a conformance testing strategy that relies on specific fault models. Previ-
ously, this mutation testing technique has been applied to protocol specifications. Although a practical case
study of web-server testing has been conducted, we observed several issues when applying this method in a
large industrial project. In this paper, we discuss the foundations, techniques and tools to overcome these
shortcomings. More specifically, we show a solution to the problem of state-space explosion in generating
mutation tests for industrial scale applications. Furthermore, the previous approach used the counterex-
amples of a bisimulation check (between the original and the mutant) as test purposes. With respect to
input-output conformance (ioco), this is an over-approximation resulting in more tests than are necessary.
Hence, we propose to use an ioco-checker in order to generate less test cases. An industrial case study
demonstrates these improvements.

Keywords: mutation testing, labelled transition systems, input-output conformance, ioco, CADP-TGV,
Session Initiation Protocol (SIP)

1 Introduction

Nowadays software and software-enabled systems are becoming increasingly com-
plex. Model-based testing techniques assist in systematic testing of such systems.
By starting from a formal model test cases are derived automatically in order to
test the conformance of implementations with respect to their specification.

However, given a formal specification there is a huge, possibly infinite, number
of test cases that can be derived from that specification. There are different ways
of selecting a finite set of test cases. One possibility is the use of coverage criteria
on the level of the specification for test case selection. Another way, is the use
of anticipated faults for the generation of test cases. This approach of test case
selection, which is subject to this paper, is also known as mutation testing and was
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introduced in [7]. Basically, a fault is modeled at the specification level by altering
the specification. The idea is to generate test cases that would find such faults in
implementations.

One example of such a technique has been presented in [1], where the authors
generate test cases by the use of test purposes derived from mutated specifications.
They use mutation operators in order to generate faulty mutants from the original
specification. Afterwards, the labeled transition systems for the original specifica-
tion and for the mutant are constructed and minimized to their observable behavior
using the safety equivalence reduction of CADP [10]. A bisimulation check on the
minimized labeled transition systems gives a discriminating sequence if there is an
observable difference between the mutant and the original. This sequence serves as
test purpose for the tgv tool [13]. The generated test case fails on implementations
that conform to the mutated specification.

This approach has several advantages. First, it provides a reasonable test selec-
tion strategy by focusing on faults on the specification level. Second, this approach
is applicable to non-deterministic systems, since the derived test cases have a tree-
like structure.

Although, [1] showed the practicability of this approach by testing a web-server,
we observed several open issues when applying the method in an industrial project.
First, the used bisimulation check over-approximates the set of needed test cases,
because the generated test cases are intended for input-output conformance (ioco)
testing with respect to the ioco-relation of Tretmans [20]. Albeit, due to the use of
tgv all generated test cases are sound, i.e. test cases do not fail on input-output
conform implementations. However, there are test cases for faults that can not be
detected using the ioco-relation. Thus, using bisimulation results into more test
cases than needed. Second, the original approach relies on the construction of the
complete state spaces of both, the original specification and the mutated specifica-
tion. For industrial specifications with huge state spaces this is often infeasible. In
this paper we address these two problems.

This paper continues as follows. In Section 2 we review the underlying testing
theory. In Section 3 we develop the foundations for a new ioco-based test case
selection approach. Section 4 shows how to deal with large specifications and Sec-
tion 5 outlines the overall approach. Section 6 shows our experimental results. In
Section 7 we briefly review related work. Finally, we conclude in Section 8.

2 Preliminaries

Our approach relies on the ioco testing theory of [20]. Thus, we briefly review the
ioco relation. For a detailed discussion of ioco we refer to [20].

2.1 Input-Output Conformance

In this section we introduce the models for test case generation that are used to
describe specifications, implementations, test cases and test purposes.
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Definition 2.1 An input output labeled transition system (IOLTS) is a labeled
transition system M = (QM , AM ,→M , qM

0 ) with QM a finite set of states, AM a
finite alphabet (the labels) partitioned into three disjoint sets AM = AM

I ∪ AM
O ∪

{τ} where AM
I and AM

O are input and output alphabets and τ �∈ AM
I ∪ AM

O is an
unobservable action, →M⊆ QM ×AM ×QM is the transition relation and qM

0 ∈ QM

is the initial state.

We use the following classical notations of labeled transition systems for IOLTSs.
Let q, q′, qi ∈ QM , Q ⊆ QM , a(i) ∈ AM

I ∪ AM
O and σ ∈ (AM

I ∪ AM
O )∗. Then q

a→M

q′ =df (q, a, q′) ∈→M and q
a→M=df ∃q′ : (q, a, q′) ∈→M . q

ε⇒ q′ =df ((q = q′) ∨
(q τ→M q1∧· · ·∧qn−1

τ→M q′)) and q
a⇒ q′ =df ∃q1, q2 : q

ε⇒M q1
a→M q2

ε⇒M q′ which
generalizes to q

σ⇒ q′ = q
a1...an⇒ q′ =df ∃q0, . . . , qn : q = q0

a1⇒M q1 . . . qn−1
an⇒M qn =

q′. We denote q afterM σ =df {q′| q
σ⇒M q′} and Q afterM σ =df

⋃
q∈Q(q afterM σ).

We define OutM (q) =df {a ∈ AM
O | q

a→M} and OutM (Q) =df

⋃
q∈Q(OutM (q)).

Traces(M) denotes all possible sequences of actions σ ∈ (AM
I ∪AM

O )∗. We will omit
the subscript M (and superscript M ) when it is clear from the context.

An IOLTS M is weakly input enabled if it accepts all inputs in all states, possibly
after internal τ actions: ∀a ∈ AM

I ,∀q ∈ QM : q
a=⇒. An IOLTS is deterministic

if for any trace there is at most one successor state, i.e., ∀σ ∈ (
AM

I ∪ AM
O

)∗ :
|qM

0 afterMσ| ≤ 1, where |X| denotes the cardinality of the set X. An IOLTS is
complete if it allows all actions in each state, i.e. ∀q ∈ QM , ∀a ∈ AM : q

a−→M .
Commonly the symbol δ is used to represent quiescence. A quiescent state is a

state, that has no edge labeled with an output or an unobservable action. Thus,
q

δ−→ q means, that q is a quiescent state. To define the ioco relation we need the
suspension automaton, which makes quiescence observable by considering δ as an
output.

Definition 2.2 The suspension automaton of an IOLTS S =
(
QS , AS ,→S , qS

0

)
is

an IOLTS Δ(S) = (QS , AΔ(S),→Δ(S), q
S
0 ) where AΔ(S) = AS ∪ {δ} with δ ∈ A

Δ(S)
O .

The transition relation →Δ(S) is obtained from →S by adding loops q
δ→ q for each

quiescent state. The traces of Δ(S) are called the suspension traces of S and are
denoted by STraces(S).

For the ioco relation, we assume that the behavior of an implementation can be
expressed by an IOLTS. The following definition of the ioco relation says, that an
implementation I conforms to a specification S, iff the outputs of I are outputs of S
after an arbitrary suspension trace of S.

Definition 2.3 Let S be an IOLTS and I be an weakly input enabled IOLTS, where
the alphabets of I and S are compatible, i.e., AS

I ⊆ AI
I , and AS

O ⊆ AI
O, then

I ioco S =df ∀σ ∈ Straces(S) : OutI(Δ(I) after σ) ⊆ OutS(Δ(S) after σ).
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2.2 Test Purposes and Test Synthesis with TGV

While a formal model is a description of the system under test, a test purpose can
be seen as a formal specification of a test case. Tools like tgv [13] use test purposes
for test case generation. tgv defines a test purposes as follows [13]:

Definition 2.4 A test purpose is a complete, deterministic IOLTS TP = (QTP ,

ATP ,→TP , qTP
0 ), equipped with two sets of trap states AcceptTP and RefuseTP , with

the same alphabet as the specification S, i.e. ATP = AS. A trap state q has a self-
loop for each action, i.e. ∀a ∈ ATP : q

a−→TP q.

The states in AcceptTP of a test purpose define pass verdicts, while states in
RefuseTP allow to limit the exploration of the specification’s state space. That
is, RefuseTP states are not explored during test case generation. More precisely,
according to [13] test synthesis with tgv is conducted as follows. Given a test
purpose TP and a specification S tgv calculates the synchronous product SP =
S×TP . Then tgv extracts the visible behavior SP V IS of SP by adding suspension
labels and applying determinization to SP . The determinization removes τ actions
from the synchronous product. SP V IS is equipped with AcceptV IS and RefuseV IS

sink states. tgv derives a complete test graph from SP V IS by inverting outputs
and inputs. States where an input is possible are completed for all other inputs and
the verdicts pass, inconc (inconclusive) and fail are assigned to the states.

2.3 Test Cases, Test Graphs and Test Suites

In the ioco testing framework a test case is modeled as an IOLTS that synchronizes
with the model of the implementation under test (IUT).

Definition 2.5 A test case is a deterministic IOLTS TC =
(
QTC , ATC ,→TC , qTC

0

)

equipped with three sets of trap states Pass ⊂ QTC , Fail ⊂ QTC , and Inconc ⊂
QTC characterizing verdicts. A test case has to satisfy following properties:

(i) TC mirrors image of actions and considers all possible outputs of the IUT:
ATC = ATC

I ∪ ATC
O with ATC

I ⊇ AIUT
O ∪ {δ} and ATC

O ⊆ AIUT
I .

(ii) From each state a verdict must be reachable: ∀q ∈ QTC ,∃σ ∈ ATC∗
,∃q′ ∈

Pass ∪ Inconc ∪ Fail : q
σ⇒TC q′.

(iii) States in Fail and Inconc are only directly reachable by inputs:
∀(q, a, q′) ∈→TC : (q′ ∈ Inconc ∪ Fail ⇒ a ∈ ATC

I ).

(iv) A test case is input complete in all states where an input is possible: ∀q ∈
QTC : (∃a ∈ ATC

I , q
a→TC⇒ ∀b ∈ ATC

I , q
b→TC).

(v) TC is controllable, i.e., no choice between two outputs or between inputs and
outputs: ∀q ∈ QTC , ∀a ∈ ATC

O : q
a→TC ⇒ ∀b ∈ ATC \ {a} : q � b→TC .

A test graph generated by tgv contains all test cases corresponding to a test
purpose. Except for controllability a test graph already satisfies the properties of a
test case. A test suite is a set of test cases.
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3 A IOCO-Approach to Fault-based Testing

Basically, we use mutation operators at the specification level in order to generate
faulty versions of a specification. The mutation of the specification affects the
underlying formal model, which is an input-output labeled transition system in our
case. Not all mutations represent faults. A fault can only be defined with respect
to a conformance relation. In the following we show the meaning of faults in the
context of ioco.

3.1 From Faults via Non-conformance to Test Cases

Our first observation is that not all injected faults will cause observable failures.
In order to observe a failure, the mutant must not be io-conform to our original
specification. Hence, given an original specification S we are only interested in
mutants Sm, such that ¬ (Sm ioco S) 5 . Unfolding the definition of ioco gives

¬ (Sm ioco S) = (1)
=¬ (∀σ ∈ STraces(S) : Out(Δ(Sm) after σ) ⊆ Out(Δ(S) after σ)) (2)
= ∃σ ∈ STraces(S) : ¬(Out(Δ(Sm) after σ) ⊆ Out(Δ(S) after σ)) (3)
= ∃σ ∈ STraces(S) : Out(Δ(Sm) after σ) �⊆ Out(Δ(S) after σ)) (4)
= ∃σ ∈ STraces(S) :

∃o : o ∈ Out(Δ(Sm) after σ) ∧ o �∈ Out(Δ(S) after σ)) (5)

Line 3 is the first hint for a testing strategy. We are interested in the suspension
trace of actions leading to non-conformance between the mutant and the original
IOLTS. In other words, our test purposes for detecting faults are sequences of actions
leading to non-conformance. We immediately derive the fact that such a non-
conformance checking can be reduced to a test for subsets on the output labels
(Line 4). It follows the fact (Line 5) that a failure is observed, if the mutant Sm

produces an output o not predicted by specification S. This simple derivation shows
an important property of the ioco conformance relation: mutating the specification
by injecting an additional inputs a such that a new trace for the mutant Sm is
generated, i.e. ∀σ ∈ STraces(S) : σ · a �∈ STraces(S), does not lead to a failure.

The theory highlights a further important clarification in fault-based testing: In
presence of non-determinism, there is no guarantee that an actual fault will always
be detected. The reason is that non-conformance only means that there is a wrong
output after a trace of actions, but the implementation may still opt for the correct
one. In that case we rely on the complete testing assumption [14], which says that
an implementation exercises all possible execution paths of a test case t, when t is
applied a finite number of times.

However, for some faults a strengthened condition, i.e. all outputs are wrong
with respect to the specification, may hold. Formally, that is

∃σ ∈ STraces(S) : ∀ o ∈ Out(Δ(Sm) after σ) : o �∈ Out(Δ(S) after σ)

5 We make Sm input enabled.
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In that case we need to run the test case only once, because if this specific fault has
been implemented there is no right output the implementation can opt for.

In the future we should label the test cases that aim to detect faults which may
be hidden due to non-determinism. Such test cases need to be executed more than
once in order to raise the confidence in the implementation’s conformance. On the
other hand, we can identify test cases that require only a single execution.

4 State Space Reduction Techniques

In this section we show how to apply fault-based conformance testing to speci-
fications with huge state spaces. Given a mutant and a specification we need a
discriminating sequence that exhibits the difference between the mutant and the
specification. The idea is to extract a slice from the specification that includes the
relevant parts only instead of comparing the complete state spaces. The relevant
part for our conformance check are the places where the fault has been introduced
into the mutant. Fortunately, we know where the specification has been mutated.
Hence, the key idea is to mark the place of mutation in the lotos specification S
with additional labels (α, β) that are not used in the initial alphabet of S.

Basically, after a lotos event leading to the fault injected by the mutation, an
α event is inserted. Furthermore, we insert a β event before every other event of the
lotos specification. Then, the slices can be calculated using tgv and a special test
purpose that only selects (accepts) α-labeled transitions and refuses β-labeled ones.
The result of applying this slicing-via-test-purpose technique are two test processes
(graphs), one for the original specification, and one for the mutant. Finally, the
discriminating sequence is extracted from the two test processes that reflect the
relevant behavior of their models. Hence, the size of the model does not matter any
more since the equivalence check is performed on the test processes.

Note, that we rely on lotos [12] specifications for our discussion. Since lo-

tos does not distinguish between input and output events, i.e. lotos has an LTS
semantics, input-output information is added during test case generation. How-
ever, our approach is applicable to any other specification language with (IO)LTS
semantics.

4.1 Incremental Slicing

This idea has been presented in [3]. However, the capabilities of this approach
depend on the search strategy of the α marker. We used an incremental strategy.
In the first step we search for a β-free path to an α. If such a path does not exist
our slicing strategy (our test purpose) was too strong. Thus, we have to allow more
βs before α in the slicing-test-purpose.

For example, if we use the test purpose of Fig. 1(b) to slice the LTS of Fig. 1(a)
tgv fails to generate a test graph. Thus, the test purpose is extended to the one
depicted in Fig. 1(c), permitting one β transition in the path to α. For this example
tgv is able generate a test graph using this extended test purpose. However, if tgv

fails again to produce a test graph (using the new test purpose), we have to repeat
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(a) LTS of the marked spec. (b) Initial test purpose (c) Ext. test purpose

(d) Returned counterex-
ample

(e) Slicing test purpose derived from the
model-checker’s counterexample

(f) Resulting
test graph

Fig. 1. LTSs and test purposes illustrating the slicing-via-test-purpose technique.

this procedure n times until a test graph can be generated.
This breadth-first-search approach has two major drawbacks. First, we need to

invoke tgv once, for every β that is in the path leading to α, which results into
many unnecessary calls of tgv. Second, by enabling a single β we may select more
transitions of the labeled transition system than needed. For example, using the
extended test purpose of Fig. 1(c) on the LTS of Fig. 1(a) results into the whole LTS
since tgv never encounters a refuse state. To overcome this defiances we propose
to use an on-the-fly model-checker.

4.2 Reachability Analysis with Model Checkers

Basically, we need a trace that ends in α and contains all βs marking the events lead-
ing to α. By using an on-the-fly model-checker and a safety property, i.e. a property
that informally states that “something bad never happens”, we can generate such
a trace. If we state that α is not reachable, a model-checker’s counterexample is a
trace that ends in α. Since, we previously inserted α such a trace always exists if
the specification contains no unreachable parts.

The counterexample returned by the model-checker is a trace that contains all
βs which should be allowed before α. If we make the β events distinguishable, e.g.
by adding a unique number to each β event, the counterexample reflects the β event
that should be allowed by the slicing test purpose.

For example, running the model-checker on the labeled transition system de-
picted in Fig. 1(a) results in the counterexample shown in Fig. 1(d). This coun-
terexample says that we should allow the event β1 in order to reach α. Translating
this counterexample results into the test purpose illustrated in Fig. 1(e). If we apply
this test purpose to the labeled transition system of Fig. 1(a), the result looks like
the LTS depicted in Fig. 1(f).

Care has to be taken that parts of the faulty behavior are not sliced away.
Hence, an important precondition for this technique is that the insertion of the β

actions does not interfere with the effect of the mutation. That is, if the mutation
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does not produce an equivalent mutant, the labeled transition system has to exhibit
the injected fault between a certain β action and the α action. Otherwise, the
constructed test purpose may cut the part of the specification which exhibits the
injected fault.

Due to our simple α, β insertion strategy we currently cannot apply our approach
to all mutation operators of [1]. Basically, we are limited to mutations that do not
effect the tail state of a transition, i.e. mutations where the fault is exhibited by
the transition represented by the mutated lotos event. For example, the process
operator replacement (POR) mutation operator replaces process instantiations with
stop and exit events. Since, we do not know which actions are effected by this
mutation we cannot insert an α action after the mutation. Note, that smarter
marking strategies, e.g. strategies that make use of a specification’s control flow
dependencies, would allow to overcome these limitations.

By using a model-checker we only need to invoke tgv once for the calculation of
the relevant part. Furthermore, due to the distinguishable βs the test graph reflects
the relevant part of the specification more precisely.

5 The Overall Approach

Using the findings of Section 3 and the state space reduction technique of Section 4
we can now reformulate the test purpose generation procedure of [1]. Thus, we
generate a test purpose for a specification L =

(
QL, AL,→L, qL

0

)
as follows:

(i) Select a mutation operator Om.

(ii) Use the knowledge where Om changes the specification to generate L′ by in-
serting markers {α, β} �⊆ AL into the formal specification L.

(iii) Generate a mutated version Lm of the specification L′ by applying Om

(iv) Call the model-checker to generate a trace that ends in α (using CADP-
evaluator [15]) and derive a slicing-test-purpose from this trace.

(v) Generate two complete test graphs, CTGτ for the specification and CTGm
τ for

the mutant, by the use of the slicing-test-purpose (using tgv).

(vi) Transform CTGτ and CTGm
τ to CTG′

τ and CTGm
τ

′ by hiding the marker labels
α and β (using CADP-Bcg [10]).

(vii) Check CTG and CTGm for input output conformance (using an ioco
checker [22]). The counterexample c, if any, gives the new test purpose 6 .

6 Testing the Session Initiation Protocol

This section discusses our experimental results when applying our approach to the
Session Initiation Protocol Registrar. We conducted all our experiments on a PC
with AMD Athlon(tm) 64 X2 Dual Core Processor 4200+ and 2GB RAM.

6 The labels of the test processes are marked with INPUT or OUTPUT. We remove this marks. Further-
more, we have to add Refuse and Accept states.
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Fig. 2. Time needed by the different steps in our test purpose generation process.

6.1 Session Initiation Protocol Registrar

The Session Initiation Protocol (SIP) [19] handles communication sessions between
two end points. The focus of SIP is the signaling part of a communication session in-
dependent of the used media type between two end points. Essentially, SIP provides
communication mechanisms for user management (i.e., availability and location of
end systems) and for session management (i.e. establishment of sessions, session
modifications, . . . ). One entity within a SIP network is the so called Registrar,
which is responsible for the user management.

In cooperation with our industry partner’s domain experts we developed a formal
specification covering the functionality of a Registrar. This lotos specification
consists of approx. 3KLOC (net.), 20 data types (net. 2.5KLOC), and 10 processes.
Details about our specification can be found in [21].

6.2 Test Case Generation Results

We developed a mutation tool that takes a lotos specification and uses the ap-
plicable mutation operators (see Section 4.2) in order to generate for each possible
mutation one faulty version (mutant) of the specification. Additionally, our muta-
tion tool inserts the α and β markers according to the strategy of Section 4.2. By
the use of this mutation tool we generated the mutants of our specification.

Table 1 lists for each mutation operator (1st and 2nd column) the overall number
of possible mutants (3rd column) and the number of mutants for which our marking
strategy of Section 4 is applicable (4th column).

In addition, Table 1 shows the average time needed for the particular test case
generation steps. The 5th column lists the average number of seconds needed to
extract a path that leads to the mutation using the CADP on-the-fly model-checker
[15]. Finally, this table depicts the average number of seconds needed by tgv [13]
to extract the relevant parts of the original specification S (6th column) and of the
mutated specification Sm (7th column).

As this table shows, the average time needed to generate the counterexample
using the model-checker is 283 seconds. Additionally tgv needs on average 680
seconds to generate the test graph for the original specification and 9072 seconds
for the generation of the mutant’s test graph. Fig. 2 explains these high average
numbers, showing that the sum of time needed for the calculation of the different
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oper-
description

no. no. avg. avg. avg.

ator mut. marked mc tgv S tgv Sm

ASO Associative Shift Op. 11 5 402 142 145

CRO Channel Replacement Op. 37 37 260 723 8257

EDO Event Drop Op. 31 31 404 2102 1982

EIO Event Insert Op. 35 35 128 1383 1296

ENO Expression Negation Op. 52 3 183 65 68084

ERO Event Replacement Op. 35 35 373 878 254

ESO Event Swap Op. 9 9 83 2116 1785

LRO Logical Operators Replacement 21 8 340 117 31981

MCO Missing Condition Op. 46 11 208 105 907

ORO Operand Replacement Op. 416 32 258 98 97

RRO Relational Operators Replacement 91 12 218 85 1411

SNO Simple Expression Negation Op. 32 7 435 152 912

USO Unobservable Sequence Op. 27 27 388 879 818

total 843 252 283 680 9072

Table 1
Number of generated mutants and timing results for the extraction of the relevant parts for the original

specification and the mutated specification.

results during the test purpose generation process over the cumulative number of
generated test purposes. For example, the line for model-checker+CTG+CTGm shows
the sum of time needed to run the model-checker, to calculate the complete test
graphs CTG and CTGm for the specification and for the mutant using tgv.

Up to 77% of our 252 test purposes can be generated within reasonable time (i.e.
1000 seconds per test case). The other 23% test purposes are regarding complex
scenarios of our specification (e.g., client registers and removes its registrations
afterwards). These complex scenarios push the average up.

Table 2 illustrates the difference between using a bisimulation check as proposed
in [1] and using a ioco check as discussed in Section 3. This table shows for every
mutation operator (1st column), the number of mutants (2nd column), the average
time needed to compare the extracted test processes (3rd and 7th column), the num-
ber of equivalent mutants (4th and 8th column) and the number of mutants with an
observable difference (5th and 9th column) when using bisimulation (3rd-6th col-
umn) and when using input-output conformance (7th-10th column). Furthermore,
this table shows the average amount of time (in seconds) needed for generating the
final test case using tgv (6th and 10th column). Note, we did not investigate in
the runtime performance of our ioco checker yet.

As Table 2 illustrates, the total number of generated test purposes, and thus the
total number of generated test cases decreases by using the input-output confor-
mance relation. Instead of using an over-approximated set of test cases comprising
154 test cases, we only need to execute 98 test cases.

Basically, the ioco-equivalent mutants come from mutations where input actions
have been affected. For example, in our specification we use guards on inputs in
order to avoid meaningless input actions. If a mutation operator weakens such a
condition, e.g. by removing parts of the condition (MCO), the mutant allows more

7 The equality of the rows four and nine and of the rows five and eight is a coincidence.
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op.
no. bisimulation tc gen- ioco tc gen-

mark. time [sec] = �= eration time [sec] = �= eration

ASO 5 3.43 5 0 - 7.07 5 0 -

CRO 37 3.39 7 30 2.18 101.35 9 28 2.34

EDO 31 3.87 17 14 4.19 131.51 17 14 4.39

EIO 35 3.84 10 25 4.26 316.33 13 22 4.59

ENO 3 4.59 1 2 - 365.74 1 2 -

ERO 35 2.87 16 19 2.59 79.76 16 19 2.92

ESO 9 4.43 4 5 3.98 8.04 4 5 3.79

LRO 8 2.96 2 6 1.68 216.51 8 0 -

MCO 11 3.91 4 7 2.68 187.50 11 0 -

ORO 32 5.61 8 24 3.54 13.46 32 0 -

RRO 12 6.94 3 9 3.86 180.56 12 0 -

SNO 7 6.31 2 5 2.65 32.17 7 0 -

USO 27 4.37 19 8 3.06 155.16 19 8 2.51

total 7 252 4.35 98 154 3.15 138.01 154 98 3.42

Table 2
Bisimulation check, ioco check, and test case generation results.

inputs than the original specification. However, when testing with respect to the
input-output conformance relation injecting new additional inputs does not lead to
failures, as shown in Section 3.

The incremental slicing technique, which has been evaluated in [4], failed on
some complex mutants of our specification. More precisely, incremental slicing
failed on approximately 14% of the evaluated mutants. In difference to that, using
the CADP on-the-fly model-checker allows to generate sliced state spaces for all of
our mutations.

6.3 Test Execution Results

We executed our test cases against the open source implementation OpenSER and
against two versions (V1, V2) of a commercial SIP Registrar implementation.

Table 3 illustrates the number of test cases (2nd column), the number of passed
(columns 3, 6, and 9), failed (columns 4, 7, and 10) and inconclusive (columns 5,
8, and 11) test runs when using the bisimulation relation (3rd-18th row) and when
using the ioco relation (19th-34th row) for every mutation operator (1st column).
From the 4th to the 16th row and from the 20th to the 32nd row we list the results
for running the test cases against the Registrars with authentication turned on,
while the 17th row and the 33rd row list the results with authentication turned off.

By the use of the generated test cases we detected 3 different faults in the open
source, 5 different faults on V1 and 4 different faults on V2 of the commercial imple-
mentation. However, the verdict fail does not imply that the corresponding mutant
has been implemented. It also happens that there occurred an failure during the ex-
ecution of the preamble of the test case. The preamble is the sequence of messages
that aims to bring the implementation to a certain state in which the difference
between the mutant and the original specification can be observed. Furthermore,
a test case’s verdict is inconclusive if the implementation chooses outputs different
to the outputs required by the test case’s preamble. That is, the chosen output
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op.
no. OpenSER v1 v2

tc � � ? � � ? � � ?

bisimulation relation

CRO 30 3 26 1 5 23 2 5 23 2

EDO 14 8 3 3 0 1 13 0 1 13

EIO 25 14 3 8 7 0 18 7 0 18

ENO 2 0 2 0 0 2 0 0 2 0

ERO 19 2 17 0 2 13 4 2 13 4

ESO 5 0 5 0 0 4 1 0 4 1

LRO 6 0 6 0 0 5 1 0 5 1

MCO 7 0 7 0 0 5 2 0 5 2

ORO 24 0 24 0 0 16 8 0 16 8

RRO 9 0 9 0 0 6 3 0 6 3

SNO 5 0 5 0 0 5 0 0 5 0

USO 8 0 8 0 0 6 2 0 6 2

subtotal 154 27 115 12 14 86 54 14 86 54

wo.auth 154 0 103 51 0 108 46 0 93 61

total 308 27 218 63 14 194 100 14 179 115

ioco relation

CRO 28 2 24 2 3 23 2 3 23 2

EDO 14 9 1 4 1 1 12 1 2 11

EIO 22 13 3 6 6 0 16 6 0 16

ENO 2 0 2 0 0 2 0 0 2 0

ERO 19 2 16 1 3 13 3 3 13 3

ESO 5 0 5 0 0 4 1 0 4 1

LRO 0 - - -

MCO 0 - - -

ORO 0 - - -

RRO 0 - - -

SNO 0 - - -

USO 8 1 6 1 1 6 1 1 6 1

subtotal 98 27 57 14 14 49 35 14 50 34

wo.auth 98 4 82 12 0 89 9 0 68 30

total 196 31 139 26 14 138 44 14 118 64

Table 3
Results when execution the generated test cases on different SIP Registrars.

is correct with respect to the specification, but the test case failed to bring the
implementation to the required state.

The tests generated on basis of the ioco relation detect the same faults as the test
cases generated on basis of the bisimulation relation. Hence, the 56 additional test
cases of the bisimulation approach did not reveal additional faults. Consequently,
these test cases fail because of faults unrelated to their mutants.

7 Related Work

In extension to [3] we evaluated in [4] different slicing-via-test-purpose strategies,
which rely on incremental slicing. None of them was able to generate test purposes
for all mutants, in contrast to the approach presented in this paper.

Test purpose generation has been subject to previous research [11,8]. The au-
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thors of [8] present a modified model-checking algorithm that allows to transform
properties, given in computational tree logic (CTL), to test purposes. Henniger et
al. [11] automatically generate test purposes by identifying significant behavior of a
system. Each signification behavior is converted to a test purpose. However, both
articles do not consider testing for specific faults.

Ammann et al. [5] suggested the use of model-checkers for mutation based test
case generation. While model-checker based mutation testing was limited to de-
terministic models recent research [6,16] allows the application of model-checkers
to non-deterministic models. These approaches allow the use of non-deterministic
specification. However, the result of mutation based model-checker test case gen-
eration is still a linear trace that serves as test case. Applying such a test case to
non-deterministic implementations (or to implementations where the response to a
stimuli does not only depend on the test case’s input) may cause incorrect verdicts.

The authors of [9] showed how to use linear test cases for testing non-
deterministic systems. States with possible non-deterministic choices are marked
with inconclusive verdicts. If an inconclusive verdict is derived an additional call of
the model-checker verifies the correctness of the response with respect to the model.
Although, this makes linear test cases applicable to non-deterministic systems, test
execution may become very slow due to many calls of the model-checker during test
execution.

Petrenko and Yevtushenko [18] showed how to use partial, non-deterministic
finite state machines (FSM) for mutation based test case generation. This work
makes FSM based testing more amenable in industrial applications where specifi-
cations are rarely deterministic and complete. The difference to our approach is
the used model. FSMs assume that a system cannot accept a next input before
producing an output as a reaction to a previous input.

It is out of scope of this paper to review the growing related work on fault-based
testing on the specification level. For an extensive discussion on related work in
this area we refer to [2].

8 Conclusion

In this paper, we have developed a new ioco-based test case generation technique
focusing on faults. It has been shown that this represents an advancement to previ-
ous approaches [1,3], from both a theoretical and an experimental point of view: (1)
In contrast to the previous approach we generate ioco-relevant test cases only. In
the case of our Session Initiation Protocol (SIP) Registrar experiments this means
a reduction of 36% in the overall number of test cases. (2) Furthermore, we pushed
the limits of this technique by developing an improved slicing technique. In the
case of our SIP Registrar experiments the incremental slicing technique runs out
of memory for complex scenarios which did not happen for the presented model-
checker based slicing technique. We strongly believe, that these advancements make
fault-based conformance testing more amenable to industrial-scale testing.

Relying on the tgv tool, the main limits of our approach stem from the well-
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known assumptions of the input-output conformance (ioco) relation. For pros, cons
and alternatives see for example [17].

The main issues to be addressed in the future are: First we should optimize the
mutation operators using the findings of Section 3 in order to reduce the number
of equivalent mutants. Second, our slicing method limits the applicable mutation
operators. We need to develop a more general method that allows the application
of all mutation operators. Third, while this paper only gives empirical evidence of
the feasibility of our approach a formal correctness argument needs to be developed.
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