
HAL Id: hal-01526055
https://hal.archives-ouvertes.fr/hal-01526055

Submitted on 22 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Behavioural semantics for asynchronous components
Rabéa Ameur-Boulifa, Ludovic Henrio, Oleksandra Kulankhina, Eric

Madelaine, Alexandra Savu

To cite this version:
Rabéa Ameur-Boulifa, Ludovic Henrio, Oleksandra Kulankhina, Eric Madelaine, Alexandra Savu.
Behavioural semantics for asynchronous components. Journal of Logical and Algebraic Methods in
Programming, Elsevier, 2017, 89, pp.1 - 40. <10.1016/j.jlamp.2017.02.003>. <hal-01526055>

https://hal.archives-ouvertes.fr/hal-01526055
https://hal.archives-ouvertes.fr

Behavioural Semantics for Asynchronous Components

R. Ameur-Boulifaa, L. Henriob,∗, O. Kulankhinac, E. Madelainec,∗, A. Savuc

aLTCI, Télécom ParisTech, Univ. Paris-Saclay, 75013, Paris, France
bUniv. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, France.
cINRIA-I3S-CNRS, University of Nice Sophia Antipolis, France

Abstract

Software components are a valuable programming abstraction that enables a
compositional design of complex applications. In distributed systems, compo-
nents can also be used to provide an abstraction of locations: each component is
a unit of deployment that can be placed on a different machine. In this article,
we consider this kind of distributed components that are additionally loosely
coupled and communicate by asynchronous invocations.

Components also provide a convenient abstraction for verifying the correct
behaviour of systems: they provide structuring entities easing the correctness
verification. This article provides a formal background for the generation of
behavioural semantics for asynchronous components. It expresses the seman-
tics of hierarchical distributed components communicating asynchronously by
requests, futures, and replies; this semantics is provided using the pNet inter-
mediate language. This article both demonstrates the expressiveness of the
pNet model and formally specifies the complete process of the generation of a
behavioural model for a distributed component system. The purpose of our be-
havioural semantics is to allow for verification both by finite instantiation and
model-checking, and by techniques for infinite systems.

Keywords: Behavioural specification, software components, distributed
systems, futures

1. Introduction

Ensuring the safety of distributed applications is a challenging task. Both
the network and the underlying infrastructure are not reliable, and addition-
ally, even without failures, applications are complicated to design because of

∗Corresponding author
Email addresses: rabea.ameur-boulifa@telecom-paristech.fr (R. Ameur-Boulifa),

ludovic.henrio@cnrs.fr (L. Henrio), oleksandra.kulankhina@inria.fr (O. Kulankhina),
eric.madelaine@inria.fr (E. Madelaine)

Preprint submitted to Elsevier February 24, 2017

the multiple execution paths possible. To ensure the safety of distributed ap-
plications, we propose to use formal methods to be able to verify the correct
behaviour of distributed applications. Consequently, it is necessary to choose a
programming abstraction that is convenient to write applications, but also that
provides enough information to be able to check the properties of the program.
We adopt a programming model that is expressive enough to program complex
distributed applications but with some constraints enabling the behavioural ver-
ification of these applications. This programming model relies on the notion of
distributed software components. Component models provide a structured pro-
gramming paradigm, and ensure a very good re-usability of programs. Indeed in
component applications, both required and provided functionalities are defined
by means of provided/required ports; this improves the program specification
and thus its re-usability. Several effective distributed component models have
been specified, developed, and implemented in the last years [1, 2, 3, 4] ensuring
different kinds of properties to their users. Component models have been chosen
as the target programming model for many developments in formal methods.
Indeed, additionally to the valuable software engineering methodology they en-
sure, components also provide structural information that facilitate the use of
formal methods: the architecture of the application is defined statically.

Distributed component models. Even if our theorems and results can be adapted
to most component models, we primarily focus on one distributed compo-
nent model, the GCM (Grid Component Model [4]). This component model
originates from the Grid computing community, it is particularly targeted at
composing large-scale distributed applications. Its reference implementation
GCM/ProActive relies on the notion of active objects, and ensures that, dur-
ing execution, each thread is isolated in a single component. Because of active
objects, components that usually structure the application composition also pro-
vide the structure of the application at runtime, in terms of location and thread
(a single applicative thread manipulates the state of the component). We call
this kind of components asynchronous components because they are loosely cou-
pled entities communicating by a request-reply mechanism. All those aspects
facilitate the use of formal methods for ensuring safe behaviour of applications,
but they also require specific developments to produce a formal model of an
application built from such components.

Contribution. This article formalises the construction of a behavioural model
for the core constructs of GCM/ProActive components. It describes formally
how we can generate a behavioural model in terms of pNets (parameterised
Networks of synchronised automata) [5] from the description of the architecture
of a GCM/ProActive application and the description of the behaviour of each
service method implemented by the programmer. pNets are networks of LTSs
with parameters organised (and synchronised) in a hierarchical way. In this
article we formalise the automatic construction of the behavioural model for
communication, management, and composition aspects.

2

Our behavioural models are parameterised : pNets specify a structured com-
position of labelled transition systems (LTS) that can use parameters/variables.
Each pNet is either formed of other pNets or is a single LTS. Parameters can
be used as local variables in an LTS; but they can also be used to define fami-
lies of pNets of variable size, and to specify synchronisation between pNets (see
Section 4). Once the parameterised behavioural model is generated, we can for
example generate a finite instance of the model that can be checked against
correctness formulas using a model-checking tool. But our behavioural model is
richer than what can be checked by finite-state model-checkers and other ver-
ification techniques can also be used. For example we are currently working
on more symbolic techniques mixing bisimulation algorithms with satisfiability
engines to deal with properties of pNet systems with unbounded data, or with
unknown sub-nets [6]).

The GCM model and its GCM/ProActive implementation provide a very
rich environment for building distributed applications, including too many fea-
tures to be fully formalised in this article. In section 2, we shall define formally
a “Core GCM” model, containing its most important constructs, namely:

• Primitive components: at the leaves of the hierarchy, from the definition of
the service methods, we specify a component able to receive requests and
serve each of them one after the other. When a request service terminates,
a reply is sent back to the component that emitted the request. The crucial
parts composing the model of a primitive component are: the request
queue, the handling of asynchronous communications for sending requests
and replies, the futures and their management (Section 4.1).

• Composite components (composites, for short): as our component model
is hierarchical, a component can be built from the composition of other
components. In GCM, composites are instantiated at runtime, it is thus
necessary to specify their behaviour in our model too (see Section 4.2).
Each composite is in fact implemented as an active object and thus the
internal structure of a composite is very similar to the one of a primitive
component.

• Component composition: from an ADL (architecture description language)
specification, we generate the synchronisations corresponding to the com-
munications that can occur between the different components.

• Futures: futures are frequently used in active object languages, they are
place-holders for results of asynchronous invocations, called requests here.
We encode in our models the mechanisms for dealing with futures (Sec-
tion 4.1.5) and the transmission of futures references between components
(first class futures, Section 5).

Previous works. This article is built upon previous works of the authors. The
pNets have already been defined formally in [5], but in a more complex version
using a specific form of controllers named “transducers”. In this article, in
Section 3, we shall provide a new definition, simpler and more concise.

3

The modelling of basic component features has been addressed in previous
publications, including: 1) the pNets-based semantics of primitive and compos-
ite components, and their hierarchical composition have been described in [7]
and [5]; 2) behavioural models for first-class futures have been studied in [8].

In these works, we built pNet models for specific features of GCM in the con-
text of specific case-studies and proved properties of the studied applications.
To illustrate the kind of properties we are able to verify, we proved by model-
checking that a master-slave fault-tolerant application [9] behaves correctly: 1)
it answers to requests: we proved both reachability and (fair) inevitability of
termination of services, 2) the answers (values returned by services) are correct.
This shows that our approach addresses both safety and liveness properties,
but also functional correctness, modulo data abstraction, based on user require-
ments.

In Sections 4 and 5 we provide a general formalization of the features previ-
ously studied in those examples.

Full GCM. We have defined our Core GCM as containing the minimal set of
features needed to build interesting hierarchical asynchronous distributed com-
ponents, including the future mechanism ensuring transparent wait-by-necessity
request calls. Previous works also addressed advanced features of the GCM,
available in the GCM/ProActive middleware, that we will not address in this
article. This constitutes what we call Full GCM, and includes:

• Stateful components in [10]

• Non-functional concerns, as a full-fledge componentisation of the compo-
nent membranes. This is addressed in [10]

• Reconfiguration and reconfiguration management: some early version of
binding controllers were defined in [5]; and an industrial-inspired case-
study with full reconfiguration features was studied in [11]

• Modelling of group communication, collective interfaces, and collective
interface policies; this was defined in [12]

This article focuses on the static structure of component systems but con-
tains all the building blocks to reason on these extended features. We do not
include the semantics of these extensions here, for reasons of space, and because
it would add still more complexity to the formalisation. But the Core is eas-
ily extensible, and a number of the Full GCM features are implemented in the
VerCors platform (see [10]).

Compared to those previous works, this article first proposes a model aggre-
gating all those features of the Core GCM component model. More important,
this article fully formalises the modelling process in a systematic way compared
to the previous case-studies. This is a necessary step for the automatic genera-
tion of behavioural models for component systems. Also this article is the first
one to propose a model for the handling of futures in composite components.

4

Overall this article builds upon the individual case studies considered in
our previous works to fully formalise the generation of behavioural models for
asynchronous components. The different results mentioned above should be
considered also as a validation of our approach, they show that the semantics we
define in this article allowed us to prove the correctness of various applications.

The objective of this article is not to define a reduction semantics of GCM,
such a semantics has already been published and formalised in Isabelle/HOL [13,
14]. This semantics was particularly convenient to reason about generic prop-
erties of the component model and to prove generic properties valid for any
GCM application. The purpose in this article is rather to define a semantics
of GCM as an intermediate model suitable for (automatic) verification of ap-
plication properties, like model-checking for example. In this article we focus
on the exhaustive definition of the behavioural semantics for the whole GCM
model. The operational semantics provided in [13, 14] was high-level and ab-
stract enough to manage easily proofs on paper and in a theorem prover. It used
high-level constructs (maps, lists, sets) to formalize futures and request queues
for example. The behavioural semantics presented here is at the right level for
automated reasoning in tools like model-checkers, it is much more operational.
These differences make the proof of equivalence between the two semantics out
of scope for the present paper. However we will briefly explain how such a proof
could be performed in Section 6. We consider that our semantics is validated
by 1) the different use-cases published in previous works; 2) a set of theorems
showing that our semantics is somehow well-formed in Section 6.1; 3) a full
example illustrating most of the semantic rules defined in this article in Sec-
tion 6.3; 4) the tool support provided by the VerCors environment. In Section 7
we discuss briefly two main features of Full GCM, namely state-full components
and reconfiguration.

Why pNets. pNets provide two characteristics that are crucial in this work.
First pNets are hierarchically structured. This makes the structure of the for-
malisation similar to that of the components we model. Interactions can then be
specified at the same level and between the same entities as they occur in GCM
programs; for this reason there is no need for a restriction operator in pNets
because each composition operator controls locally the interactions that occur.
This also makes the approach compositional. Second, pNets are parameterised
and parameters can not only be used as data and inside processes, but also
synchronisation between processes can be dependent on parameters. Typically,
synchronisation vectors allow one to express easily the fact that an emitter pro-
cess sends a message m(i) and that this message m is received by the ith process
of a family of receivers. To the best of our knowledge, only pNets allow such
flexibility in the handling of parameters, indexes and processes without renam-
ing actions nor using ad-hoc synchronisation primitives. This feature is crucial
to encode easily families of methods, components, and futures. Interaction with
elements of these families is directly based on the source/target index and does
not rely on the creation of artificial communication channels.

Of course such expressiveness does not come for free. The counterpart we

5

have to pay is to define a rich and specific syntax and semantics for our pNets,
which somehow explains the complexity of the notations we use in this article.

Beyond GCM. Our behavioural specification is particularly adapted to the rea-
soning on GCM components, however, the approach is applicable to a wider
spectrum of programming models. The component structure of GCM is quite
similar to the one of Fractal [15] and SCA [3]; the runtime behaviour of compo-
nents uses active objects/actor-like computations, which is similar to Creol [16],
AmbientTalk [17], JCobox [18], ABS [19], and SynchNet [20]. More precisely, the
structure we create can be used to represent the SCA component structure but
the complexity of the runtime support provided by the SCA framework would
require us to formally specify many additional entities. The future proxies we
model can be reused, as well as the request queues, to encode JCobox or ABS
active objects. The explicit nature of futures in JCobox and ABS would make
the handling of proxies and of futures easier, however the cooperative scheduling
of requests would require a few additional synchronisation constructs in these
languages. The simplicity of our model fits well with the coordination language
SynchNet; the coordination mechanism could be specified by a combination of
synchronisation constructs and controllers. Consequently, the approach and re-
sults presented in this article can be adapted to the behavioural specification of
systems using these component and programming models and we believe that
our contribution provides a promising approach for specifying such component
systems.

Structure of the paper. This article is organised as follows. Section 2 gives a
brief overview of the GCM component model defined in [4]; it also gives the
abstract syntax we use for the definition of component systems and defines the
set of components we consider as well-formed in Section 2.3. Section 3 provides
a definition of the pNets formalism [5]. Then Sections 4 and 5 contain the main
contribution of the article; they present respectively the basic behavioural model
for GCM components and a more complex feature: first-class futures. Section 6
acts as a validation of our approach; it consists of two correctness theorems
in Section 6.1, and an example showing how the model is built in Section 6.3.
This article concludes with a comparison with related works in Section 8 and
a conclusion. Appendices describe the semantics of pNets and a summary of
main behavioural semantic functions.

2. The Grid Component Model: GCM

GCM has been proposed in the CoreGrid Network of Excellence, it is an
extension of the Fractal component model [21, 22] to better address large-scale
distributed computing. GCM builds above Fractal and thus inherits its hier-
archical structure, the enforcement of separation between functional and non-
functional concerns, its extensibility, and the separation between interfaces and
implementation.

6

m2: Ty2 −> Ty

m1: Ty1 −> Ty

m0: Ty3 −> Ty4

Binding

Content

Server Interface

Client Interfaces

Membrane

Primitive Component

m4: Ty5 −> Ty6

Figure 1: A typical GCM assembly

Figure 1 shows the basic component structure provided by GCM. It intro-
duces the terminology used to describe GCM components and their composi-
tion. Composite components are made of one or several sub-components, while
primitive ones are black boxes. Components expose interfaces that are bound
together when assembling components into a composite. Client interfaces emit
invocations; server interfaces receive invocations. Interfaces are annotated with
their signature, i.e. the type of their methods. Each message emitted (resp.
received) by an interface must be the invocation (resp. the reception of an
invocation) on a method invocation belonging to the interface signature.

GCM has been conceived thinking of components with an intermediate size,
i.e. the typical size of an MPI process, though it can be used to define much
finer or coarser grain components. In GCM/ProActive the primitive components
(and the composite ones too) have by nature this intermediate size: they contain
an activity, i.e. an active object, its dependencies, a request queue, and a thread.
This article relies on the fact that components are used as structuring entities
that specify the different threads of the applications and the set of objects
manipulated by each of those threads. It is very interesting and convenient
to use formal methods to check the properties of GCM applications, as the
component structure gives crucial information on the concurrency that occurs
at runtime.

GCM and Fractal come with an ADL (architecture description language)
providing a textual (XML-based) way of describing component assembly. Such
a description of the application architecture (either textual or graphical) is the
starting point of our work. Starting from the architecture description and the
description of the behaviour of each service method, we build a formal descrip-
tion of the behaviour of the whole application.

2.1. A reference implementation for GCM

GCM/ProActive is a reference implementation of the GCM component model.
It is based on the ProActive Java library and relies on the notion of active ob-

7

jects. It is important to note that each component corresponds at runtime to
an active object and consequently each component can easily be deployed on a
separate JVM and can be migrated.

One of the main advantages of using active objects to implement components
is their adaptation to distribution. Indeed, by nature active objects provide a
natural way to provide loosely coupled components. By loosely coupled compo-
nents, we mean components responsible for their own state and evaluation, and
only communicating via requests and replies. Asynchronous requests increase
and automate parallelism, and absence of sharing eases the design of concur-
rent systems. Additionally, loose coupling reduces the impact of latency, and
limits the interleaving between components. Finally, independent components
also ease the autonomic management of component systems, enabling systems
to be more dynamic, more scalable, and easily adaptable to different execution
contexts. This is why we think that active objects are particularly adapted to
implement a distributed component model.

2.2. Informal semantics of asynchronous components

This section describes briefly an informal semantics of GCM/ProActive com-
ponents. The general principle is that interaction between components is limited
to communications, and more precisely to a request/reply mechanism. Com-
municating by asynchronous requests allows each component to execute asyn-
chronously from the others. However it is commonly necessary to obtain a result
for some of those asynchronous invocations. A convenient abstraction for deal-
ing with response to asynchronous requests is the notion of futures. A formal
and general semantics of GCM/ProActive can be found in [13].

Communications. The basic communication paradigm we consider is asynchronous
message sending: upon a communication the message is enqueued at the receiver
side in a queue. To prevent memory from being shared between components,
messages can only transmit parameters which are copied at the receiver side; no
object or component can be passed by reference. This communication seman-
tics is similar to message passing in the Actor model [23]. The messages sent
between components are called requests. We call our component model asyn-
chronous because communication does not trigger computation on the receiver
side immediately, it just enqueues a request. In practice the communication
itself, i.e. the en-queueing of the request is synchronised: a brief rendez-vous
ensures that the sender only continues when the request is received at desti-
nation; according to [24] this ensures causal ordering of messages in the sense
of [25]. Such a synchronisation phase is not optimal in terms of parallelism but
greatly eases programming.

Synchronisation on request results relies on futures that are place-holders
for objects yet-to-be-computed. Futures come with a natural synchronisation
construct. Accessing a future enforces a synchronisation at a certain program
point that can only be released when the future is given a value. Those synchro-
nisation points may sometimes block a component. However, synchronisation
on future avoids the inversion of control featured by languages using some form

8

of asynchronous callback mechanisms (e.g. tokens in SALSA [26], AmbientTalk
futures [17], callback on futures in Akka). In other words asynchronous call-
backs are more asynchronous but sometimes make the programming of applica-
tions less intuitive. We say that futures are first class if future references can be
transmitted between remote entities without requiring the future to be resolved.
First class transparent futures are unique in ASP; they are transparent to the
user and ensure that the synchronisation on the future is triggered automati-
cally and only when the method result is strictly needed. The synchronisation
on futures guarantees some confluence properties on ASP [27]. A comparison
between different distributed languages and the way they handle futures can be
found in [28].

To allow for transparent asynchronous requests with results, we use trans-
parent first-class futures. The promise for a reply to a request is created auto-
matically when the request is sent, we call it a future. For accessing the value
of a future, the caller must wait until the request is treated and the result sent.
When the request is finished, the result is automatically sent to replace all the
references to the corresponding future. Futures are said to be first-class if they
can be transmitted between components.

Component behaviour. The primitive components encapsulate the business code.
They generally serve requests in the order of arrival, providing answer for all
the requests they receive. They can call other components by emitting a re-
quest on one of the client interfaces. In GCM/ProActive, each component is
mono-threaded: a single request is served at a time and no internal concurrency
occurs in a component. However, a component always accepts the reception of
a future value, or of a request.

While primitive components contain the application logic, composite com-
ponents have a predefined behaviour because they are only used as composition
tools. Composites serve requests in a FIFO order, delegating requests to the
bound component, which can be either sub-components or external ones. A
composite performs no computation: it only delegates requests.

Components featuring the semantics defined above are loosely coupled; they
are better adapted to a distributed setting and easier to program safely be-
cause of the limited concurrency they allow. However, the semantic of such
components rely on several notions, like for example request queues and fu-
tures, that have to be specified when building a behavioural model for those
components. This article specifies how those notions can be formally defined as
pNets, and how those definitions can be used to build the behavioural model of
a component-based application.

2.3. Component Definition

This section defines a hierarchical structure for representing components.
We define a syntax for describing the different elements of a GCM component
assembly. We also define a set of auxiliary functions that will help us to manip-
ulate the component structure, and finally we define what component systems

9

we consider to be well-formed, these are the systems for which we are able to
build a behavioural model. These definitions collect the information contained
in the ADL and in the source code that will be useful for our analysis; they also
represent faithfully the structure used by the VerCors tool-suite to model and
specify GCM applications.

The definitions below rely on several predefined structures. Type represents
a type, we have several kinds of names (even if there is no need to distinguish
them strictly): Name is an interface name, CName and C are component names,
MName is a method name.

2.3.1. Syntax and Notations

In the following definitions, we extensively use indexed structures (maps)
over some countable indexed sets. The indices will usually be integers, bounded
or not. Such an indexed family is denoted as follows: ai∈Ii is a family of elements
ai indexed over the set I. Such a family is equivalent to the mapping (i 7→ai)

i∈I .
To specify the set over which the structure is indexed, indexed structures are
always denoted with an exponent of the form i ∈ I (arithmetic only appears in
the indexes if necessary). Consequently, ai∈Ii defines first I the set over which
the family is indexed, and then ai the elements of the family.

For example ai∈{3} is the mapping with a single entry a at index 3; ex-
ceptionally, such mappings with only a few entries will also be denoted (3 7→a).
When this is not ambiguous, we shall use abusive vocabulary and notations for
sets, and typically write “indexed set over I” when formally we should speak of
multisets, and “x ∈ Ai∈Ii ” to mean ∃i ∈ I. x = Ai. An empty family is denoted
[]. To simplify equations, an indexed set can be denoted M instead of M l∈L

l

when L is irrelevant.
Let] be the disjoint union operator on indexed sets. The elements of the

union are then accessed by using an index of one of the two joined families.
We suppose here that disjoint unions are always well defined; this requires to
choose disjoint indices in the definition of the component system (e.g. name of
methods of different interfaces).
{{y ← x}} is the substitution operation that replaces in a term all occur-

rences of the term y by the term x (note that the absence of binders makes this
operation trivial).

2.3.2. Interfaces

Let SItf be the description of a server interface, it is characterised by the
interface name, the interface cardinality and the signature of one or more service
methods. In the same way, CItf is the description of a client interface, containing
one or more client methods. We use Itf to range over interfaces that can be either
client or server ones. Interfaces are structural entities that will be used to attach
component binding and thus to specify the flow of messages exchanged by the
components. This is why their names are crucial: the component bindings
will refer to interface names. Interfaces (also called ports) ensure re-usability
and compositionality of components; indeed the interface is the only entity
referenced both by the business code (that emits and receives operations on

10

m5: Ty5 −> Ty

m4: Ty4 −> Ty

m2: Ty2 −> Ty

m1: Ty1 −> Ty

m3: Ty3 −> Ty

Figure 2: Simple Primitive Component

Client

Interface
Interface

Server

Implicit internal interfaces

Figure 3: Abbreviations for matching exter-
nal/internal interfaces

interfaces) and by the composition layer (that binds interfaces together). A
method signature, MSignature, consists of a method name, an argument type1,
and a return type.

SItf ::= (Name,MSignaturei∈Ii)S (1)

CItf ::= (Name,MSignaturei∈Ii)C (2)

Itf ::= SItf | CItf (3)

MSignature ::= MName : Type→ Type (4)

2.3.3. Components

From those definitions we define components, which can be either primitive
or composite ones.

Comp ::= CName < SItf i∈Ii ,CItf j∈Jj ,Desc >

|CName < SItfi∈Ii ,CItfj∈Jj ,Compk∈Kk ,Bindingl∈Ll >

A primitive component consists of a name CName, a set of Server Inter-
faces SItf , a set of Client Interfaces CItf , and a description of its behaviour.
In the context of this article this description should be sufficient to infer the
behaviour of each of the service methods but in practice it would also contain
implementation details allowing the instantiation of the component.

Figure 2 illustrates a simple configuration of a primitive component. It
exposes two server interfaces. It has also a single client interface showing 2
client methods. The corresponding pNet system will be drawn in Figure 4.

A composite component consists of a set of sub-components exporting some
server interfaces, some client interfaces, and bindings (see Figure 1). A bind-
ing connects two interfaces of two components. These can be either two sub-
components of a composite, or one is a sub-component and the other is the
composite. A binding is thus a pair of qualified names. Each qualified name

1it is not restrictive to consider methods with a single argument as we have no restriction
on type complexity

11

is made of two parts, the first one is the name CN of a (sub)component, the
second one is the name of an interface IN.

Binding ::= (QName, QName) (5)

QName ::= CN.IN (6)

We define a function Interfaces that given a component returns the indexed
set of its interfaces, and a function Name that returns the name of its argument
that can be a component, a method, or an interface.

Membrane and internal interfaces. In Fractal and GCM, the frontier of a com-
posite component is called a membrane and can intercept incoming calls; it
deals with the component management. Also, for each interface declared in the
composite component definition, a symmetric internal interface is created with
the same name and a symmetric role (server or client) as illustrated in Figure 3.
In our formalisation, we choose to have no membrane and not specify explicit
internal interfaces, more precisely the membrane is trivial, i.e. it has no content
and the internal interfaces match exactly the external ones.

2.3.4. Auxiliary functions

We first define an auxiliary function that takes the symmetric of an interface.
It takes an interface and returns the same interface with a symmetric role:

Symm : Itf → Itf

Symm(Name,MSignature)S = (Name,MSignature)C
Symm(Name,MSignature)C = (Name,MSignature)S

Symm is extended to sets of interfaces. We then rely on an auxiliary function
GetItf, defined by the following rules, that returns the interface in a composite
component that corresponds to a qualified name. If the qualified name is equal
to the name of the composite then GetItf returns the inner interface named
IN of the composite component; it is the symmetric of the external interface
of name IN. Else, CN should correspond to the name of an inner component
and GetItf returns the external interface named IN of the inner component
named CN. The following rules define the function GetItf ; this function will
be used when we build the behavioural semantics of composite components (see
Section 4.2).

GetItf : QName × Comp → Itf

12

CN 6= CName
k ∈ K Name(Compk) = CN Itf ∈ Interfaces(Compk) Name(Itf) = IN

GetItf(CN.IN,CName < SItf,CItf,Compk∈K
k ,Binding >) = Itf

CN = CName i ∈ I SItfi = (IN,MSignaturel∈Ll)S

GetItf(CN.IN,CName < SItfi∈Ii ,CItf,Comp,Binding >) = Symm(SItfi)

CN = CName j ∈ J CItfj = (IN,MSignaturel∈Ll)C

GetItf(CN.IN,CName < SItf,CItf j∈Jj ,Comp,Binding >) = Symm(CItfj)

2.3.5. Well-formed components

In our semantics, we only deal with components that are correctly formed,
for this we define a predicate WF that indicates whether a component is well-
formed. We suppose there is a sub-typing relation E between types, and that
this relation is classically extended to method signatures, and to families of
method signatures.

We first define the predicate UniqueItfNames that takes a set of interfaces
and returns true if no two of these interfaces have the same name.

UniqueItfNames(Itf i∈Ii)⇔
(
∀i, i′ ∈ I. i 6= i′ ⇒ Name(Itfi) 6= Name(Itfi′)

)
Then a primitive component is well-formed if all its interfaces have distinct

names.

WF(CName <SItf,CItf,Desc>)⇔ UniqueItfNames(SItf ∪ CItf)

Finally a composite component is well-formed if all its sub-components are
well-formed, all the bindings connect existing interfaces of a compatible type2,
all sub-components have distinct names, and no two bindings start from the
same client interface. To simplify the semantics, we additionally require that
no binding has the same component as source and destination: there is no
binding looping back directly to the same component. The last condition of the
definition is the one specific to our model, it is not generally required by the
GCM model3. If C has the form C = CName < SItf,CItf,Compk∈Kk ,Binding >

2Those interfaces are found thanks to the GetItf function: they are either interfaces of
sub-components or internal interfaces of the composite component.

3The reason why we disallow loops is that a loop binding involves a synchronization be-
tween emission and reception operations in the same component and handling them requires
additional rules in the behavioural semantics. For example concerning method invocation, we
would need an additional synchronization vector that synchronizes the method body and the
request queue of the same component in the case of a loop binding (Section 4).

13

then

WF(C)⇔

UniqueItfNames(SItf] CItf) ∧
∀k, k′ ∈ K. k 6= k′ ⇒ Name(Compk) 6= Name(Compk′) ∧
∀k ∈ K.WF(Compk) ∧
∀(Src,Dst) ∈ Binding.

(
∃Name, Name′, M, M ′, MSignature, MSignature′.

GetItf(Src, C) = (Name,MSignature)C ∧
GetItf(Dst, C) = (Name′,MSignature′)S ∧
MSignature′E MSignature ∧
@Dst′.Dst′ 6= Dst ∧ (Src,Dst′) ∈ Binding

)
∧

∀(C0.CI, C1.SI) ∈ Binding. C0 6= C1

3. The pNets model: a formalism for defining behavioural semantics

This section provides a “simplified” version of pNets [5] that is convenient
for providing a concise formal definition both of pNets themselves, and of the
component specification in terms of pNets. The previous definition was more
verbose and more complex, but allowed a more efficient implementation and
greater expressiveness. In particular, the previous definitions featured a specific
construct for pNet families that was more optimised but required additional
semantic definitions. In this article, families of pNets will be defined as a special
construct that generates a simple pNet (with all the possible synchronization
vectors) from a set of pNets. Section 6.3 will show an optimised instantiation
of the produced pNet structure and synchronisation vectors.

An operational semantics for pNets is given in Appendix A.

3.1. Term algebra

In all forthcoming definitions, we suppose that we have a fixed set of param-
eters, used to construct the expressions of our term algebra. Our models rely on
the notion of parameterised actions. We leave unspecified the constructors of
the algebra that will allow building actions and expressions used in our models.
Let us denote Σ the signature of those constructors, and T be the term algebra
of Σ over the set of variables P. We suppose that we are able to distinguish in T
a set of action terms (over variables of P) denoted A (parameterised actions),
a set of data expression terms (disjoint from actions) denoted E , and, among
expressions, a set of boolean expressions (guards) denoted B. For each term
t ∈ T we define fv(t) the set of free variables of t.

We also allow countable indexed sets to depend upon variables to allow these
sets to have a parameterised size. This allows us to express the semantics of
systems of unbounded size while allowing us to consider finite models by defining
a value for the parameterised size of each element of the system. We denote
IP the set of indexed sets using variables of P. There must exist an inclusion
relationship ⊆ over the indexed sets of IP , with the natural guarantee that this
operation ensures set inclusion when one replaces variables by their values. In
practice we will mostly use intervals for which the upper bound depends on the
variables of P: IP = [1..n] where n is an integer.

14

3.2. The pNets model

In this section, we define the structure of pLTSs, pNets and Queues, and
define their operational semantics. The formal properties of pNets have been
further studied in [29].

A pLTS is a labelled transition system with variables; a pLTS can have
guards and assignment of variables on transitions. Variables can be manipu-
lated, defined, or accessed in states, actions, guards, and assignments.

We first identify the actions a pLTS can emit or receive. Let a range over
action labels, op over operators, and x over variable names. The set A of action
terms used in pLTSs is defined as follows:

α ∈ A ::= a(p1, . . . , pn) action terms
p ::= ?x | Expr action parameters (input or output)

Expr ::= Value | x | op(Expr1, ..,Exprn) Expressions

For any action term a(p1, . . . , pn), we suppose that each input variable does not
appear in any other parameter of the action term: pi =?x⇒ ∀j 6= i. x /∈ fv(pj).

Actions do not have an input or output role, as each action can emit and
receive parameters at the same time. For α ∈ A we also suppose that there is
a function iv(α) that returns a subset of fv(α) which are the input variables:
iv(a(p1, . . . , pn)) = {x ∈ fv(a(p1, . . . , pn))|∃i ∈ [1..n]. pi =?x}.

Definition 1 (pLTS). A parameterised LTS is a tuple pLTS , 〈〈S, s0, L,→〉〉
where:

• S is a set of states.

• s0 ∈ S is the initial state.

• L is the set of labels of the form 〈α, eb, (xj := ej)
j∈J〉, where α ∈ A is

a parameterised action, eb ∈ B is a guard, and the variables xj ∈ P are
assigned the expressions ej ∈ E . Variables in iv(α) are assigned by the
action, other variables can be assigned by the additional assignments.

• →⊆ S × L× S is the transition relation.

The semantics of pLTS is quite standard, they form a labelled transition
system with parameters. The state of the system is characterized both by a
state in S, and by the value of each variable. A transition fires an action,
receiving values for input parameters of the action, and assigning values to
some other variables. Guards decide whether a transition is enabled. Note that
we make no assumption on finiteness of S or of branching in →.

pNets are constructors for hierarchical behavioural structures: a pNet is
formed of other pNets, or pLTSs at the bottom of the hierarchy tree. Message
queues can also appear in leaves of a pNet system. A composite pNet consists
of a set of pNets exposing a set of actions, each of them triggering internal ac-
tions in each of the sub-pNets. The synchronisation between global actions and
internal actions is given by synchronisation vectors: a synchronisation vector

15

synchronises one or several internal actions, and exposes a single resulting global
action. Actions involved at the pNet level do not need to distinguish between
input and output variables. The set AS is the subset of action terms A that are
used in pNets; it only contains actions without input variable:

α ∈ AS ::= a(Expr1, . . . ,Exprn)

Definition 2 (pNets). A pNet is a hierarchical structure where leaves are
pLTSs (or queues defined below), and nodes are synchronisation artefacts:
pNet , pLTS | Queue(m) | 〈〈pNeti∈Ii ,SVk∈K

k 〉〉 where

• I ∈ I is the set over which sub-pNets are indexed, I 6= ∅.

• pNeti∈Ii is the family of sub-pNets.

• SVk∈K
k is a set of synchronisation vectors (K ∈ I). ∀k ∈ K,SVk =

αj∈Jkj → α′k where αj , α
′
k ∈ AS . Each synchronisation vector verifies:

Jk ∈ I, ∅ 6= Jk, and Jk ⊆ I.

For each pNet, we define a function sort (Sort : pNet→ A). The sort of a pNet
is its signature: the set of actions that a pNet can perform. For a pLTS we do
not need to distinguish input variables. More formally:

Sort(〈〈S, s0, L,→〉〉) = {α{{?x← x|x ∈ iv(α)}}|〈α, eb, (xj := ej)
j∈J〉 ∈ L}

Sort(〈〈pNet,SV〉〉) = {α′k|αj∈Jkj → α′k ∈ SV}

The semantics of pNets consists in synchronizing the actions of sub-pNets
according to the synchronisation vectors. A pNet can evolve and fire an action
only if a synchronisation vector exists for this action and all the sub-pNets
involved in the synchronisation vector can perform the action specified for them.
In other words, a synchronisation vector SVk of the form αj∈Jkj → α′k means
that if each sub-pNet j in Jk performs synchronously the action αj ; this results
in a global action labelled α′k. For example, the synchronisation of the same
action in two processes indexed i and j corresponds to the synchronisation vector
(i7→a, j 7→a)→a′ (recall that we identify indexed sets and mappings, giving us a
convenient notation for synchronisation vectors).

When I = [1..n], it is equivalent to use tuple notations instead of indexed
sets. In that case, we denote the pNet as 〈〈pNet1, . . . , pNetn,SV〉〉, and each
synchronisation vector as: 〈α1, . . . , αn〉 → α. In that case, elements not taking
part in the synchronisation are denoted by a dash ′−′ as in: 〈−,−, α,−,−〉→α.

Flow of information. The synchronisation vectors allow a lot of flexibility in the
use of the variables, and the decidability of whether a synchronisation vector
can be triggered depends a lot on the precise action algebra (operators, allowed
expressions,...). In this article, however, this expressive power is not used: for
each globally synchronised action there is a single pLTS that outputs the value of
each parameter (and potentially several targets). Several actions will receive one
parameter and output another one, without any consequence on the decidability

16

of which actions can be triggered. In the drawings, arrows will always indicate
the direction of the flow of information (however sometimes, this flow is not
unidirectional, in that case we indicate the most obvious direction and explain
the details in the text). By convention, when we need to distinguish several
action names, we will precede the actions that mostly have an input role with
an i prefix, like iQ and iR.

Queues. We also define a particular pNet called Queue(m); it models the be-
haviour of a FIFO queue, with m the set of enqueue-able elements.We suppose
that the term algebra has two specific constructors Q and Serve4 such that5

∀mi ∈ m.Serve mi ∈ AS ∧ iQ mi ∈ AS

Then the queue pNet offers the following actions: L = {iQ mi|mi ∈ m} ∪
{Serve mi|mi ∈ m}. The behaviour of a queue is only FIFO en-queueing (de-
noted iQ mi) and de-queueing (denoted Serve mi) of messages. It could be
encoded as an infinite pLTS.

Sort(Queue(m)) = {iQ mi|mi ∈ m} ∪ {Serve mi|mi ∈ m}

Whenever pNets will be translated into (ultimately finite) automata struc-
tures for model-checking, pNet queues will naturally be represented by finite
automata. However, in order to be able to address more general approaches,
and in particular specific model-checking algorithms for unbounded channels,
we keep a high-level representation of queues. From these abstract queues, we
will be able to generate both regular representation (for unbounded queues),
and finite representation (for explicit-state model-checking).

3.3. Additional pNet Constructs

pNet families. It is convenient to collect a set of pNets into a family that can
be addressed according to an index. For example such a construct makes it easy
to model a pool of identical proxies responsible for handling futures; families
are also convenient to gather the pNets of all the subcomponents of a given
component into a single sub-pNet (that represents the functional content of the
component). We define a construct that builds families of pNets as syntactic
sugar. This is simpler than adding families to the pNet definition and defining
a semantics for them.

We define a constructor for a pNet made of an indexed family of pNets.〈〈←−−−→
PN i∈I

i

〉〉
takes a family of pNets indexed over a set I ∈ I and produces a global

pNet. The synchronisation vectors for this family will be expressed at the level

4We chose constructors coherent with the term algebra we will use in this article to simplify
notations.

5In the rest of the paper, most action names contain names of methods. This way the
name of the method involved in the interaction is exhibited in the action label.

17

above, consequently we “export” all the possible synchronisation vectors that
the family could offer, only some of them will be used.〈〈←−−→

PNi∈I
i

〉〉
, 〈〈PNi∈I

i , {α→ α|α ∈ V}〉〉
where V = {αj∈Jj | J⊆I ∧ ∀j ∈ J. αj ∈ Sort(PNj)}

This supposes that the elements of V are action terms. If all the elements of

the family are identical, then we simply write
〈〈←−→

PN I
〉〉

.
In order to express synchronisation vectors of families of pNets, we must

allow families of actions to be considered as actions themselves. More precisely,
if ai is an action, then actions can be of the form (ai)

i∈I , or i 7→a to allow the
sub-pNet at index i to perform an action.

Synchronised Actions. Finally, we identify the actions that are already synchro-
nised (they will not need further synchronisation). We slightly extend the action
algebra with such already synchronised actions (distinguished by underlined la-
bels):

α ∈ AS ::= a(Expr1, . . . ,Exprn) | a(Expr1, . . . ,Exprn) pNet actions

Synchronised actions are not meant to be used any more for synchronisation
purposes, they should just be visible at the top-level of the pNet hierarchy. Note
that action labels that have an input connotation like iQ and iR will not appear
underlined.

We define an operator that takes an indexed set of pNets and returns the
synchronisation vectors that should be included in the parent pNets to allow
the visibility of synchronised actions:

TauMonitor(pNeti∈Ii) = {(i7→α)→ α|i ∈ I ∧ α ∈ Sort(pNeti)}

In the following, those synchronisation vectors dedicated to observation will
be implicitly included as synchronisation vectors of all our pNets. This means
that for all pNets, TauMonitor(pNeti∈Ii) is implicitly included in the set of
synchronisation vectors (where pNeti∈Ii is the set of sub-pNets of the new pNet).

In this article, we do not use explicitly invisible actions (τ actions). More
precisely, τ actions would behave similarly to the synchronised actions defined
above: there is always a synchronisation vector allowing a sub-pNet to perform
a τ action. Also, synchronized actions exported by the TauMonitor operator
are only useful to observe the internal reductions. To reduce the size of the
model one could replace them with a τ action without any consequence on the
semantics.

3.4. Adequacy of pNets for modelling GCM components

Next sections will present the behavioural semantics of GCM components,
expressed as a translation from a component architecture into a hierarchy pNet.

18

Before defining this translation, we explain below why we chose pNets as a
support for GCM behavioural semantics.

First, as already explained, our goal is to provide a model adapted to the
behavioural verification of the properties of GCM applications. It must be
adapted to the generation of a model that can then be verified, typically a
finite model that could be model-checked, even if other techniques could be
envisioned. In pNets, models can use parameters, both in the structure and in
the LTSs which allows us to give a semantics based on an infinite set of states,
but also to easily consider finite instances by restricting each parameter to a
finite domain. Thus the first reason for the choice of pNet is that it is adapted
to the definition of infinite models from which a finite instance can easily be
extracted. Defining finite instances in this manner can be done using abstract
interpretation techniques, while preserving logical properties of the system [30].

Second, concerning communication, the semantics of communication and
asynchrony of pNets fits closely to the one of GCM. Indeed, to guarantee causal
ordering of requests, GCM components communicate by a rendez-vous mecha-
nism. In GCM/ProActive the request sending and its arrival in the queue of
the destination component occur synchronously. The rest of the execution is
entirely asynchronous. pNets have a similar semantics: they are made of inde-
pendent pLTSs or pNets interacting by synchronous communications. On the
contrary, futures are a too high-level construct to be part of pNet definition.
They will have to be encoded by a set of pLTSs. Next sections will show that
the parameterised nature of pNets and the synchronisation vectors allow for
encoding futures in a precise and generic way. Thus the second reason why
we chose pNet is that it provides a communication model similar to GCM for
requests and give enough expressive power to encode futures.

From another point of view, we mentioned earlier that we want our be-
havioural models to represent the structure of the application (e.g. to allow
the encoding of reconfigurations). On that aspect and more generally when
encoding communication channels, π-calculus might seem to be a reasonable
approach. However, we think that channels à la π-calculus are too powerful
for automatic verification techniques. Indeed, in GCM/ProActive bindings are
not first-class entities and can only be reconfigured by an application manager.
Additionally, pNets are much better adapted to the verification techniques we
target, i.e. finite state model-checking, than π-calculus.

Finally, the hierarchical structure of pNets fits well with hierarchical compo-
nents. The hierarchical structure of the ADL and of pNets will be the same,
even if additional pLTSs and pNets will be defined to encode specific features
(e.g., future proxies).

Next section will illustrate precisely how pNets provide a convenient abstrac-
tion for modelling asynchronous components communicating by asynchronous
requests and futures.

19

4. Behavioural semantics for GCM components

This section defines formally the behavioural semantics for the component
model defined in Section 2.3. It shows how to build pNets from the specification
of a hierarchy of components. We organise this section as follows. We first give a
behavioural semantics for primitive components including simple future proxies,
and the behaviour and synchronisation of the different elements of the primitive
component. We then describe the behavioural semantics for composite compo-
nents, which compose the semantics of their sub-components synchronising the
request and replies among the sub-components, the composite, and the external
components. For that, we will need to define a new kind of future proxies for
handling the delegation mechanism that occurs in the composite components.

Term algebra. The term algebra we use is a set of parameterised actions; ac-
tions will typically be of the form Serve m for m a method label as defined
below. Parameters will be either values (method parameters denoted by arg or
computed results denoted val), or future identifiers (denoted by either p, or f ,
or fid). Throughout this article, we use, as action parameters, two variables arg
and val that (implicitly) range over the set of values, this set of values being
purposely undefined. In an object-oriented language, those values should be an
abstraction of objects.

Labels for identifying methods. In our actions, we need identifiers for methods
that are more precise than simple method names. We define thus MethodLabels
as a set of method labels, where a method label encompasses a method name,
a signature, and the interface the method belongs to, plus possibly other meta-
information. Most of the following can be read as if MethodLabels were just
method names, however at some specific points and to disambiguate different
methods, the other information encoded in MethodLabels is also necessary. mi

range over such method labels.
A function MethLabel : Itf→ P(MethodLabels) is defined, where MethLabel(Itfi)

returns the set of MethodLabels corresponding to the methods of interface Itfi.
MethLabel is also defined for sets of interfaces (union of method labels for each
interface). Conversely, for a given method label m, Itf(m) returns the interface
of the method.

Behavioural semantics. The behavioural semantics of components is expressed
under the form JComponentK6. It relies on several auxiliary functions for ex-
pressing the semantics of specific parts of the components. The core entities of
this semantics include: a queue accepting incoming requests, a body entity that
serves requests and triggers the adequate service methods, future proxies that
act as place-holder for awaited request results, and proxyManagers that manage
a pool of future proxies.

6Appendix B provides the list of semantic definitions contained in this article with their
brief description and their signature.

20

4.1. Semantics of primitive components

Primitive components are the leaves of the hierarchy; they contain the ap-
plicative code from which more complex components, and thus more complex
behaviours can be built. This section gives a behavioural semantics for GCM
primitive components, able to receive requests, to serve them in a FIFO or-
der by executing a service method, and to send requests to the external world.
Additionally to the global structure of a primitive component and the synchro-
nisation of its sub-entities, this section defines pLTSs describing the behaviour
of a FIFO service policy, of proxies for handling futures, and of managers for
pools of future proxies.

The general idea used here is that the structure of the pNets encoding a
component reflects as closely as possible the implementation provided by the
ProActive/GCM middleware. This includes the body, the queue, and the future
proxies. The default behaviour of bodies and queues is to serve requests, one at
a time, in a FIFO order, and we encode this straightforwardly in the pNets. The
future proxies, in the implementation, are allocated dynamically, and ultimately
managed by the garbage collector, while in the static pNet model, we encode
them as an indexed family, and provide an explicit recycle operation allowing
to reduce the size of the model for model-checking.

4.1.1. Illustrative Example

We first illustrate and explain the structure of the behavioural semantics
of primitive components based on the component shown in Figure 2. Figure 4
illustrates the structure of the pNet expressing the semantics of the component.
It illustrates both the global structure of the pNets represented by boxes, and
the synchronisation vectors represented by arrows (an ellipse is used when a
synchronisation vector involves more than two processes), and labelled by their
corresponding rule number. The inference rules will be defined in Table 1, and
explained in Section 4.1.6. Note that the direction arrows is purely conventional,
but goes, as much as possible, from an emission action to a reception action,
intuitively following the data flow. Arrows representing complete vectors in the
figure are labelled by the corresponding synchronized action (underlined), while
those at the outside border of the pNet show only the corresponding incoming
or outgoing action (not yet synchronized).

A primitive component can receive incoming requests (iQ mi) that are stored
in the Queue pNet and then served by the Body pLTS. The queue allows the
component to always be ready to accept the new request while being able to
handle the service of the request asynchronously. The service consists in trig-
gering a Call mi to the adequate service method, called Mi in the figure. The
service method should ultimately produce a result for the request. Once a result
is computed for the request, an R mi action is emitted with the right future
identifier fid and result value val.

The service method can call external components through client interfaces.
For each method of each interface there is a proxy manager PM ∗, in charge of
creating and managing a family of future proxies Proxy ∗ [< proxy− index>].

21

PM m4

Body

PM m3

Call m*(arg)

Primitive Example 1

R m*(fid∗)

R *(val)

iR m3(p3, val)

iR m4(p4, val)

Q m3(p3, arg)

Q m4(p4, arg)

GetValue m3(p3, val)
GetValue m4(p4, val)

P1.1

P1.2
Serve m*(fid∗, arg)

P1.4

P2.1
P1.3

P2.2 P2.6

P2.4

P2.3

P2.5

Queue

G
e
tP

ro
x
y
m
* New m3(p3)

New m4(p4)

Recycle m3(p3)

Recycle m4(p4)

iQ m1(fid1, arg)
iQ m2(fid2, arg)

R m2(fid2, val)

M2M1

R m1(fid1, val)

Proxy m4[p4]

Proxy m3[p3]

Figure 4: pNet for the Simple Primitive Component from Figure 2

Those future proxies have two purposes: they will be accessed when the result
of the request is needed, and they will be given the computed result when the
invoked request is finished. Each future inside a proxy family keeps track of
one specific remote method invocation, and because of asynchrony there can be
several instances in the same family that are active at the same time. On each
proxy manager PM mi, the caller can perform a GetProxy. Upon request, a
fresh future proxy Proxy mi is allocated and returned by a New mi action that
acts as a response to the GetProxy. Then the outgoing call is emitted with the
reference to the corresponding proxy sent as parameter (Q mi). Later, when
a result is computed, the reply iR mi is received by the adequate proxy and
the result can be accessed by GetValue mi actions performed by some service
methods. Then, service methods can emit Recycle actions that are sent to the
adequate proxy and proxy manager. Proxies are indexed in the same way as the
default ProActive implementation (alternative indexing mechanisms exits in the
library): only a local index is created allowing for simple creation of small future
identifiers; then the transmission of the future value follows the invocation flow
(i.e. the bindings) backwards. This way the structure for future indexes is small
and simple, and future transmission is done locally, without needing a global
referencing system, and following a single binding. Section 5 will show that,
when futures can be passed between components, the proxy and index need to
be more complex. Figure 14 shows an example of a service method that creates
and uses several future proxies, it illustrates one possible workflow involving the
actions described above.

22

4.1.2. pNets

This section formalises and generalises the principles depicted in the previ-
ous section. Primitive components encode the business code of the application.
Consequently, the behaviour of primitive components include the behaviour of
“service methods”: those methods represent the business logic of the applica-
tion. This behaviour is the only part for which we do not specify the generation
of the behavioural model, it can be inferred by static analysis or written by the
programmer. We suppose that for each service method ml, Jml,DescKservice
provides a pNet expressing the behaviour of this service method. Concerning
the rest of the behaviour of a primitive component below, it is computed by the
rules shown in this section.7

ml∈L
l = MethLabel(SItf) Q = Queue(ml∈L

l) B = Jml∈L
l Kbody

∀l ∈ L.SMl = Jml,DescKservice ∀j ∈ J.Pj = P(CItfj)

∀j ∈ J.PMj = PM(CItfj) SV = SVS(ml∈L
l) ∪ SVC(CItf j∈Jj , L)

JCName < SItf,CItf j∈Jj ,Desc >K = 〈〈Q,B,
〈〈←−−−→
SMl∈L

l

〉〉
,
〈〈←−−−→
PMj∈J

j

〉〉
,
〈〈←−→
Pj∈J

j

〉〉
, SV 〉〉

With the auxiliary rules:

mn∈N
n = MethLabel(CItf) ∀n ∈ N.Fn =

〈〈←−−−−−−→
JmnKNproxy

〉〉
P(CItf) =

〈〈←−−→
Fn∈N

n

〉〉
mn∈N

n = MethLabel(CItf)

PM(CItf) =
〈〈←−−−−−−−−−−−−−→
JmnKn∈NproxyManager

〉〉
Each premiss of this rule correspond to one item in the following list:

• A queue able to receive incoming requests: it can enqueue a request on
a method label of one of the server interfaces, we use here a pNet queue
constructor.

• A body (see Section 4.1.3) that will serve all the requests present in the
queue. The body takes one request after the other, delegates the treatment

of the request to the service methods
〈〈←−−−→
SMl∈L

l

〉〉
, and only serves the next

request when the previous one is finished.

• Service methods: there is one service method for each method label of
a server interface. The service methods provide the business logic of the
primitive components.

• A family PM of proxy managers (see Section 4.1.5) indexed both over
the set of client interfaces and over the methods of those interfaces: those

7Recall that the construct ml∈L
l = MethLabel(SItf i∈Ii) defines both the value of each

method label ml and the set L over which it is indexed.

23

managers are responsible for allocating a new proxy when requested, and
activating those newly created proxies.

• A family P of future proxies (see Section 4.1.5) indexed over the set of
client interfaces (J), the methods of those interfaces (N), and proxy in-
dexes, i.e. integers (N): a proxy is responsible for receiving the result of
a request made towards another component; when the value of the re-
sult is needed by a service method, this method asks for the value to the
adequate proxy.

4.1.3. Body

The body is a pLTS modelling the service of the different requests: for each
service method, the body can dequeue a request corresponding to this method,
delegate the service to the appropriate service method, and synchronise with
the end of a service method. It waits for the end of one service method before
de-queueing a new request. It can be generated automatically from the set of
service methods mi∈I

i . Jmi∈I
i Kbody = 〈〈S, s0, L,→〉〉 where:

• S = {s0} ∪
⋃
i∈I
{si(fid, arg)} ∪

⋃
i∈I
{s′i(fid)}

• L =
⋃
i∈I
{Serve mi(?fid, ?arg),Call mi(arg),R mi(fid)}

• →={s0
Serve mi(?fid,?arg)−−−−−−−−−−−−−−→ si(fid, arg)

∣∣i ∈ I}∪
{si(fid, arg)

Call mi(arg)−−−−−−−−−→ s′i(fid)
∣∣i ∈ I} ∪ {s′i(fid)

R mi(fid)−−−−−−−→ s0

∣∣i ∈ I}
For each method m, the body pLTS can always perform the three actions

Serve m, then Call m and then R m. This body encodes a mono-threaded com-
ponent behaviour where no two requests are served at the same time. This
corresponds indeed to the behaviour of the GCM/ProActive framework, and
more generally to the behaviour of active objects or actors. Allowing the body
to serve multiple requests at the same time would be quite easy but the re-
sulting behaviour would be much more complex. Figure 5 provides a graphical
representation for the pLTS of the body defined above (in the rest of this article
we will express pLTSs graphically). The graph shows a body able to serve three
functional requests (m0, m1, and m2).

4.1.4. Service Methods

The behaviour for each service method is expressed by a pNet, used when
serving the corresponding request. This behaviour is either obtained by source
code analysis, or provided by the user. It can for example be composed of the
execution of several pLTSs expressing the behaviour of each local method. In
the Vercors environment, it can be generated from UML state machine [31].

24

BodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBody

Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)Serve_m0(?fid,?arg)

Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)Serve_m1(?fid,?arg)

Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)Serve_m2(?fid,?arg)

Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)Call_m0(arg)

Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)Call_m1(arg)

Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)Call_m2(arg)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)R_m0(fid)

R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid)R_m1(fid) R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)R_m2(fid)

Figure 5: Graphical representation of the behaviour of the Body

4.1.5. Modelling of the Future Proxies

Futures enable asynchronous method invocations. Technically, a future is
often implemented by a proxy that represents the result and is accessible both
locally to know whether the result came back, and remotely by the invoked
component that wants to return the result. We represent those notions in our
behavioural models. Fresh future proxies are instantiated upon need; this is done
by invoking the proxy manager before performing an asynchronous request.

Remember future proxies are families indexed by client interface index,
method index, and future identifier; proxy managers are indexed by client in-
terface index and method index. We provide the specification of proxy manager
and future proxy in Figure 6. The behavioural semantics of the proxy manager
is defined by the pLTS ProxyManager m shown on the right side of Figure 6;
it is denoted by JmKproxyManager. It maintains a list of available proxies and

returns a fresh future (by a New action), or if there are no more fresh futures,
raises an error NoMoreProxy. Indeed, in our specification, we let future identi-
fiers be indexed by N but if one wants to perform finite model-checking, a bound
should be chosen on the size of each future proxy family, and in each proxy man-
ager, Max Proxy should be set to the chosen bound. The proxy semantics we
propose here faithfully fits the semantics of GCM/ProActive implementation in
case the bound Max Proxy is infinite.

When model-checking a GCM application, we have to chose specific sizes for
the proxy families (and similarly for request queues), and we check reachability
of the NoMoreProxy error. If it is reachable this means that our model does not
represent correctly the semantics of the implementation, and we should increase
the proxy number. If it is not reachable, we can deduce that it would also be the
case for any larger size, and naturally for the infinite case. Proving this cannot
be done by model-checking techniques: it should be done inductively, and this is
straightforward using the structure of the proxy manager automaton. Whatever
the state of the Pool Proxy array is, and considering any possible interaction
sequence with the context; when you start in the initial state, set the p index to
0, and go a number of times around the central loop of the automaton searching
for a free proxy, then the guard [p=Max Proxy] will necessarily occur later when

25

Proxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_m
val:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultType

iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)iR_m(?val)

GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)GetValue_m(val)

Recycle_mRecycle_mRecycle_mRecycle_mRecycle_mRecycle_mRecycle_mRecycle_mRecycle_mRecycle_mRecycle_mRecycle_mRecycle_mRecycle_mRecycle_mRecycle_mRecycle_m
New_mNew_mNew_mNew_mNew_mNew_mNew_mNew_mNew_mNew_mNew_mNew_mNew_mNew_mNew_mNew_mNew_m

ProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_m
Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]
p:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:nat

GetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_mGetProxy_m
p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0

[Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False]

[p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy]
Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)Error(NoMoreProxy)

[p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy]
p++p++p++p++p++p++p++p++p++p++p++p++p++p++p++p++p++

[Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true]
New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)New_m(p)
Pool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=false

Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)
Pool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=true

Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)
Pool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=true

Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)Recycle_m(?p)
Pool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=true

Figure 6: pLTSs for the Future Proxies and Proxy Managers

Max Proxy is larger.
Each future proxy has a very simple behaviour; it encodes a single assign-

ment memory location; JmKproxy is defined by the pLTS Proxy m shown on
the left side of Figure 6. Once activated by a New m action, it waits for the
corresponding reply (R m(?val)). At this point, the proxy can be accessed to
know the result of the request invocation, it repeatedly sends the result to the
service methods by a GetValue m(val) action.

The proxies in Figure 6 are endowed with a Recycle m transition, bringing
back the proxy in its initial state. This is useful when information can be
computed, e.g., by static analysis, that the proxy is not useful any more, so
it can be made available again in the proxy pool of the ProxyManager. The
Recycle m event should be sent by the LTS modelling a service method. When
such an event is received by the ProxyManager, this sets the corresponding
entry in the Pool Proxy to free.

Several design choices have been made in the specification of proxies and
proxy managers. Alternative proxy family specifications, better optimised for
some specific usage could also be designed, but should provide a behaviour
equivalent to this one. For generality, the proxy manager accepts Recycle m
transitions in every state, even if, as a single request is served at a time, this
action can only be received when the proxy manager is in its initial state.

4.1.6. Synchronisation Vectors

The set of synchronisation vectors for a primitive component is built (in the
semantic rule from section 4.1.2) by two functions: SVS that provides the set
of synchronisation vectors corresponding to the server interfaces, and SVC for

26

Table 1: Server and client-side synchronisation vectors for primitive components. Recall that
the synchronised sub-pNets (defined in Section 4.1.2) are:
〈〈Queue,Body,ServiceMethods,ProxyManagers,Proxies〉〉

l ∈ L fid ∈ N
{〈iQ ml(fid, arg),−,−,−,−〉 → iQ ml(fid, arg), [1]
〈Serve ml(fid, arg),Serve ml(fid, arg),−,−,−〉 → Serve ml(fid, arg), [2]
〈−,Call ml(arg), l 7→Call ml(arg),−,−〉 → Call ml(arg), [3]
〈−, R ml(fid), l 7→R ml(val),−,−〉 → R ml(fid, val)} [4]

⊆ SVS(ml∈L
l)

P1

j ∈ J l ∈ L I = MethLabel(CItfj) mi ∈ I p ∈ N
{〈−,−, l 7→GetProxy mi, j 7→i7→GetProxy mi,−〉 → GetProxy mi, [1]

〈−,−, l 7→New mi(p), j 7→i 7→New mi(p), j 7→i 7→p 7→New mi〉→New mi(p), [2]
〈−,−, l 7→Q mi(p, arg),−,−〉 → Q mi(p, arg), [3]
〈−,−,−,−, j 7→i7→p 7→iR mi(val)〉 → iR mi(p, val), [4]
〈−,−, l 7→GetValue mi(p, val),−, j 7→i 7→p 7→GetValue mi(val)〉 → GetValue mi(p, val), [5]
〈−,−, l 7→Recycle mi(p), j 7→i 7→Recycle mi(p), j 7→i 7→p 7→Recycle mi〉 → Recycle mi(p) } [6]

⊆ SVC(CItf j∈Jj , L)

P2

the client interfaces. Each of those sets is defined as the smallest set verifying
the constraints given in Table 1.

Let us explain briefly what are the synchronisation vectors generated by the
inference rules, more precisely, we focus on the synchronisation vectors for the
GetProxy mi actions, Rule [P2.1]. Recall that we are in the context of the rule
given in section 4.1.2, which defines L the set of all service methods and J the
set of client interfaces. Then rule [P2] defines I as the set of methods in the
client interface CItfj . One synchronisation vector for GetProxy mi is generated
for each l ∈ L, for each j ∈ J , and for each i ∈ I. Each synchronisation vector
synchronises one action l 7→GetProxy mi of the sub-pNet containing the family of
service methods, with one action8 j 7→i7→GetProxy mi of the sub-pNet containing
the family of proxy managers (for each interface). As each of the synchronisation
vectors of families of pNets triggers the action on the indexed element of the
family, this line allows one action GetProxy mi of one service method (indexed
by l) to be synchronised with the action GetProxy mi of the proxy manager
indexed by i of the interface indexed by j.

The set of service synchronisation vectors SVS defined in rule [P1] encodes
the following synchronisations: en-queueing an incoming request [P1.1], service
of a request by the body [P1.2], the body calling a service method to serve a
request [P1.3], and the service method providing a result for this served request
[P1.4]. In the last case the result both notifies the body process and is returned

8j 7→i 7→a should be read j 7→(i 7→a)

27

to the outside of the primitive component. In all the actions, the method ar-
gument or the returned value is used as parameter, plus when necessary the
identifier of the concerned future (fid).

The set of client synchronisation vectors SVC is defined in rule [P2]9; it
encodes the following synchronisations:

• obtaining a new future proxy which involves a call to the proxy manager
[P2.1] and another action [P2.2] for returning a fresh proxy identifier and
activating the corresponding future proxy;

• the sending of a request from a service method to an external component
[P2.3];

• the reception of a result by the future proxy [P2.4];

• the access to a future value [P2.5] from a service method, the future value
is stored in the future proxy; it is interesting to note here that the value of
p is provided by the GetValue action, it is used to index the right future
proxy, and the value of val is on the contrary provided by this future proxy
and “returned instantly” to the service method;

• the eventual recycling of a future proxy [P2.6].

The function SVC receives as argument the set L of indexes over which service
methods range. This argument is necessary because all service methods can
perform some of the actions, like GetValue mi.

4.2. Semantics of composite components

Hierarchical component models, like GCM, allow the specification of new
components, based on the composition of others. Such a compositional ap-
proach is very convenient when building large applications. As defined in Sec-
tion 2.3, we start from a static definition of composition of the system by some
form of ADL (architecture description language). The ADL is used to extract
component bindings that will define the synchronisation between the emission
and the reception of communication actions. A composite component also has
a request queue for receiving requests coming from the outside or the inside
of the component, it treats each of those requests by sending it to the ade-
quate sub-component or emitting a request to the outside world. To this end,
the composite has future proxies but, as the requests only transit through the
component, we implement a special future proxy that stores the name of the
future that should be fulfilled by the current request. This proxy enables future
redirection: when a future proxy is created, it receives the identifier for another
future f ′ and when the reply will come back, it will be immediately re-sent as

9Note the indexing of proxy managers (by interfaces and methods) and of proxies (by
interfaces, methods, and proxy identifier).

28

A
B

Composite Example 1

Body

CPM m0

CPM m1

CPM m2

CProxy m1[p]

CProxy m2[p]

CProxy m4[p]

iR m4(p, val)

iR m2(p, val)

iR m1(p, val)

CPM m4

CProxy m0[q]

Q m4(fb, arg)

R m0(q, val)

iQ m0(f, arg)

R m0(f, val)

New m0(f, q)

Deleg m0

Q m1(p, arg)

Q m2(p, arg)

Q m4(p, arg)

New m1(fa, p)

iR m1(fa, val)
iR m2(fa, val)

R m1(fa)

R m2(fa)

R m4(fb)

Recycle m(p)

R m0(f)

C3

C4.2

C5.2

C4.2

C6.2

C7.2

C7.1

C2.1
Serve *(f, arg)

C1.1

C4.1

R m3(f, val)

Deleg m
Call m(f, arg)

C2.2

R m2(f)

C5.1

C2.2

∀m in {m1,m2,m4}

R m0(f)

C4.1
GetProxy m(f)

∀m in {m1,m2,m4}

R m1(f) R m4(f)

Recycle m0(q)

iR m4(fb, val)

Q m3(f, arg)

New m2(fa, p)

New m4(fb, p)
GetProxy m0(f)

Call m0(f, arg)

C6.1
Q m1(fa, arg)

Q m2(fa, arg)
iQ m0(q, arg)

Queue

Queue

Figure 7: pNet for the Composite Component from Figure 1 For readability we draw the
Queue pNet at two places.

a reply for the future f ′. The behavioural semantics of the composite compo-
nent not only encodes the handling of requests and redirection of futures at the
boundary of the composition but also encodes the routing of requests in the
composite component. This second aspect is different from the implementation
where, for efficiency reasons the composite has no control on the communica-
tion between its direct sub-components. Here we take a more compositional
approach where the composite component controls the communication between
its direct sub-entities.

Except for this difference the component structure is similar to the imple-
mentation: in ProActive/GCM composite components are implemented by ac-
tive objects with predefined behavior consisting in delegating the requests they
receive to the right target components. They store futures just to transmit their
return value to the original caller.

4.2.1. Illustrative Example

Figure 7 shows the pNets structure corresponding to the composite com-
ponent of Figure 1. It illustrates the structure of the pNets we generate for
specifying the behaviour of a composite component. We use it here to illustrate
how we are able to generate behavioural models for GCM composites. As for the
primitive case, the corresponding semantic rule and vector table will be detailed
later, in Section 4.2.2 and Table 2.

Two sub-pNets A and B represent the behaviour of sub-components A and B.
A queue pNet receives iQ m0(f,arg) requests where f is the future corresponding

29

to the request and arg the value passed as argument. Serve ∗ communications
allow the body to retrieve those requests, which will then be treated by the
Deleg m0 pNet, this pNet receives Call communications from the body and
delegates the request to an inner component (here, A); during this process, a
future proxy is created by the proxy manager (process CPM m0), the proxy
(process CProxy m0[q]) is responsible for receiving the reply when A has fin-
ished the request treatment and for forwarding this result to the outside of the
composite component: R m0(q,val) that becomes R m0(f,val). Note that this
proxy encodes some basic form of future forwarding: the future q corresponds
to the same result as the future f. This future forwarding mechanism will be
extended in Section 5.1 to deal with first-class futures.

Similarly, requests emitted by the inner components arrive in the queue
(we draw two Queue boxes, but they correspond to the same element), they
are then delegated to the outside world by a similar mechanism: a Deleg m
pNet delegates the call, and creates a future proxy, which will be responsible
for sending back the result to the appropriate inner component. Here again
the proxy manages the fact that both the future q and the future fa (or fb)
represent the same result.

The structure of the proxy-manager (CPM *) and of the proxy (PM *) is
similar to the primitive case: using double indexes over interfaces and methods.
However, here we have proxies both for client interfaces and for server interfaces
(because of their corresponding internal client interfaces).

All the communications expressed above, but also the communication chan-
nels between the different inner components – requests Q m3 and the corre-
sponding replies R m3 – correspond to synchronisation vectors of the pNet of
the composite. Each box is a pLTS or a family of pLTSs, except inner compo-
nents that are more complex pNets.

4.2.2. Global structure

The semantics of a composite component is described below; the first differ-
ence compared to the semantics of primitive components is that it does not rely
on service method specification, instead it delegates requests to sub-components,
some of the sub-pNets of a composite component’s pNet correspond to the
behaviour of the sub-components. Like primitive components, the pNet cor-
responding to a composite component comprises a proxy manager and proxy
families, but in the case of composite, we also need one future proxy family for
each method of each server interface. The request queue can receive requests on
all methods of all the interfaces of the composite component, both server and
client (i.e. internal server) ones. For each declared interface of the composite
component, a symmetric (the symmetric of a server interface is a client one)
internal one exists, it can be obtained by using the Symm function. The seman-
tics of delegation consists in re-emitting each received request to the symmetric
interface, and in using the bindings to route this request to the right target.

Both server and client interfaces play the same role: they transmit both re-
quests and replies. Consequently, they both have delegation methods and future
proxies. The transmission mechanism works as follows. To delegate a request

30

to an inner component or from an inner component to an external one, “delega-
tion methods” are used, they are denoted DM. Delegation methods transform
a request into another and a special proxy for future is used to remember the
relationship between the original future and the future of the new delegated
request. The building of proxy manager families is identical to the case of the
primitive component (we reuse the same function); however each future proxy
is slightly different as shown below. The body and the queue are similar to the
ones of primitive components.

The rule below has a structure very similar to the rule for primitives, the
main differences coming from the role of delegation methods, detailed in the
next two subsections, and the handling of internal bindings (see Table 2).

m=
⊎

Itf∈SItf

MethLabel(Itf)]
⊎

Itf∈CItf

MethLabel(Itf) Q=Queue(m) B=Jm Kbody

Itfh∈Hh =CItf] Symm(SItf) ∀h∈H.Ph = P(Itfh) ∀h∈H.PMh = PM(Itfh)

SV = SVS(MethLabel(SItf),MethLabel(CItf)) ∪ SVC(CItf, Itfh∈Hh)

∪ SVB(CName < SItf,CItf,Compk∈K
k ,Binding >)

JCName < SItf,CItf,Compk∈K
k ,Binding >K =

〈〈Q,B,DMS(m),
〈〈←−−−−→
PMh∈H

h

〉〉
,
〈〈←−−→
Ph∈H

h

〉〉
,
〈〈←−−−−−−−→
JCompkKk∈K

〉〉
,SV〉〉

With the auxiliary rule:

∀l∈L.DMl =JmlKdelegate

DMS(ml∈L
l) =

〈〈←−−−→
DMl∈L

l

〉〉
This rule defines the index sets that will be used in the vector Tables 1 and

3: H is the set of external and internal client interfaces, L is the set of all server
and client methods, and K is the set of sub-components.

4.2.3. Future Proxies

The behaviour of future proxies for a composite component is slightly dif-
ferent from the one of primitive ones, as illustrated in Figure 8: the process
CProxy m in the figure gives the new value of the proxy semantics JmKproxy.
The delegation methods create those proxies to remember the identifier of the
future that the delegation method should serve. Consequently, the future proxy
receives a future identifier and will return it as necessary upon request. The fu-
ture proxy thus first receives a New action with a future identifier as parameter
and then emits an R m(f). Such a proxy is somehow automatically recycled as,
by construction, we know it is only used once.

4.2.4. Delegation Methods

The Deleg m process, also shown in Figure 8 expresses the generation of
delegate methods: JmKdelegate is given by the pLTS Deleg m. This delegation

process receives a Call invocation from the body, creates a future proxy, launches

31

CProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_m
f:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:nat

New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)New_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)R_m(f)

Deleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_m
arg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argType
p,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:nat

Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)Call_m(?f,?arg)

GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)GetProxy_m(f)

New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)New_m(?p)

Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)Q_m(p,arg)

Figure 8: Auxiliary processes proxy and delegate of composite components

a remote invocation (either to an inner or to an external component) and finishes
its execution. This way the composite component can continue its execution
and serve another request, but the process of the future proxy is still running in
order to redirect the reply towards the right future identifier. The proxyManager
for composite component is not shown, indeed it is a direct adaptation of the
primitive one (Figure 6): it behaves exactly the same except that the GetProxy
action receives a future identifier as parameter, this parameter is then passed
as argument in the New emission action (it will be used by the future proxy).

4.2.5. Synchronisation Vectors

Synchronisation vectors express first the internal wiring of the membrane
of the composite component: they express the delegation mechanism, the co-
ordination with the future proxy, the service of the requests, the creation of
the future proxies, and the use of a future proxy to rename a future when it
traverses the membrane of the composite. The sequence of actions is ensured by
the behaviour of body and delegation methods while the synchronisation vec-
tors ensure the coordination of all entities. The second kind of synchronisation
vectors handle the routing of requests in the composite component; they express
how requests follow the bindings and provide the semantics of the component
composition.

Synchronisation vectors for composite components are organised into three
sets: server-side (SVS), client-side (SVC), and binding-related (SVB) synchro-
nisation vectors. The set of server and client synchronisation vectors is the
smallest set verifying the rules given in Table 2; they correspond to the syn-
chronisation inside the membrane.

The server-side synchronisation vectors are defined by rules [C1] and [C2].
[C1] allows external components to enqueue a request in the queue, for each
method of a server interface of the composite (given as first argument of SVS).
Note that replies (R m) are not part of this rule because they depend on the
bindings of the component; consequently they are treated among the binding
synchronisation vectors. Rule [C2] uses a bigger set of methods as it takes
into account requests of the server interfaces and the client interfaces of the
composite; indeed, remember client interfaces have an associated internal server
interface accessible by the sub-components of the composite. This second rule

32

Table 2: Server and client-side synchronisation vectors. The synchronised sub-pNets are (see
Section 4.2.2): 〈〈Queue,Body,DelegationMethods,ProxyManagers,Proxies,Subcomponents〉〉

m ∈ m f ∈ N
〈iQ m(f, arg),−,−,−,−〉 → iQ m(f, arg) ∈ SVS(m,m′)

C1

(i ∈ LS ∧m = mi) ∨ (i ∈ LC ∧m = m′i) f ∈ N
{〈Serve m(f, arg),Serve m(f, arg),−,−,−〉 → Serve m(f, arg), [1]
〈−,Call m(f, arg), i 7→Call m(f, arg),−,−〉 → Call m(f, arg) } [2]

⊆ SVS(ml∈LS
l ,m′l

l∈LC)

C2

j ∈ J mk∈K
k = MethLabel(CItfj) k ∈ K f, p ∈ N

〈−, R mk(f), k 7→Q mk(p, arg),−,−,−〉 → Q mk(p, arg) ∈ SVC(CItf j∈Jj , Itf h∈H
h)

C3

h ∈ H mk∈K
k = MethLabel(Itfh) k ∈ K f, p ∈ N

{〈−,−, k 7→GetProxy mk(f), h 7→k 7→GetProxy mk(f),−,−〉 → GetProxy mk(f), [1]

〈−,−, k 7→New mk(p), h 7→k 7→New mk(p, f), h 7→k 7→p 7→New mk(f),−〉→
New mk(p, f)} [2]

⊆ SVC(CItf j∈Jj , Itf h∈H
h)

C4

uses both arguments of SVS , i.e. the list of client and server interfaces of the
component. It deals with request service [C2.1], and subsequent calls [C2.2] to
delegation pNets.

Client-side synchronisation vectors are expressed by rules [C3] and [C4] of
Table 2. Similarly to the server case, [C3] is specific to external client interfaces
(given as first argument of SVC), while [C4] is applicable to both external and
internal client interfaces (the second argument of SVC). Remember the internal
client interfaces are the symmetric of server interfaces of the composite compo-
nent. The first rule exports request sending (Q m) sent by delegate methods
to the external components. Note that delegate methods are indexed by the
method labels of the interfaces: in the pNet definition, ml∈L

l is a disjoint union,
and thus each l ∈ L is considered as equal to a method index k of a single in-
terface i. Consequently, the request sending action (Q mk) is always issued by
the delegate method indexed by k. Rule [C4] allows delegation methods to in-
stantiate new proxies (by calls to the proxy manager and to the future proxies).
Compared to the case of the primitive component, note the additional argument
f passed to the proxy manager. This future identifier allows the future proxy
(indexed p) to remember that the reply it will receive should be forwarded to
the caller as the value for the future identifier f (and not p). In other words,
the proxy remembers that the future p it will receive is in fact an alias for the
future f . Similarly to primitive components, there are two actions for dealing
with future proxy creations: GetProxy in [C4.1], and New in [C4.2].

Finally, the synchronisation vectors for the bindings of the composite com-

33

Table 3: Binding synchronisation vectors. The synchronised sub-pNets are (see definition in
Section 4.2.2): 〈〈Queue,Body,DelegationMethods,ProxyManagers,Proxies,Subcomponents〉〉

(CName.SI, C.SI2) ∈ Binding k∈K C=Name(Compk)

SItfi = GetItf(CName.SI,CName<SItf i∈Ii ,CItf,Compk∈K
k ,Binding>) i ∈ I

mn∈N
n =MethLabel(SItfi) n∈N m′n =mn{{SI←SI2}} q, f ∈ N

{〈−, R mn(f), n 7→Q mn(q, arg),−,−, k 7→iQ m′n(q, arg)〉 → Q mn(q, arg), [1]

〈−,−,−, i 7→n7→Recycle mn(q), i 7→n7→q 7→R mn(f), k 7→R m′n(q, val)〉 → R mn(f, val)} [2]

⊆ SVB(CName<SItf i∈Ii ,CItf,Compk∈K
k ,Binding>)

C5

(C.CI,CName.CI2) ∈ Binding k ∈ K C = Name(Compk)

CItfj = GetItf(CName.CI2,CName<SItf,CItf j∈Jj ,Compk∈K
k ,Binding>) j ∈ J

mn∈N
n =MethLabel(CItfj) n ∈ N m′n =mn{{CI2←CI}} p, f ∈ N

{〈iQ mn(f, arg),−,−,−,−, k 7→Q m′n(f, arg)〉 → Q mn(f, arg), [1]

〈−,−,−, j 7→n7→Recycle mn(p), j 7→n7→p 7→R mn(f), k 7→iR m′n(f, val)〉→ iR mn(p, val)} [2]

⊆ SVB(CName<SItf,CItf j∈Jj ,Compk∈K
k ,Binding>)

C6

(C.CI, C′.SI)∈Binding k, k′∈K C=Name(Compk) C′=Name(Compk′)

CItf ’ = GetItf(C.CI,CName<SItf,CItf,Compk∈K
k ,Binding>)

mn∈N
n = MethLabel(CI) n ∈ N m′n = mn{{CI←SI}} f ∈ N

{〈−,−,−,−,−, (k 7→Q mn(f, arg), k′ 7→iQ m′n(f, arg))〉 → Q mn(f, arg), [1]

〈−,−,−,−,−, (k 7→iR mn(f, val), k′ 7→R m′n(f, val))〉 → R mn(f, val) } [2]

⊆ SVB(CName<SItf,CItf,Compk∈K
k ,Binding>)

C7

ponent are shown in Table 3. There are three rules for building SVB . Rule [C5]
deals with import bindings, i.e. bindings from the composite component’s inter-
nal client interfaces to inner components. Symmetrically, [C6] concerns export
bindings, from inner components to the composite component’s internal server
interfaces. The last rule [C7] specifies synchronisations due to bindings between
two inner components.

The rule [C5] concerns import bindings. The first premise of the rule picks
an import binding, the next premises find the concerned server interface of the
composite component and the destination of the binding, i.e. a sub-component.
The only remaining non-trivial premise is m′n = mn{{SI ← SI2}}; it replaces
in mn the occurrence of the interface named SI by the interface SI2. Indeed,
remember that each MethodLabel contains the name of the invoked interface,
this name must thus be updated when a request/reply/. . . is transmitted from
an interface to another10. Similar premises, renaming an interface name, will
also be used in rules [C6] and [C7]. The first item of Rule [C5.1] synchronises the
emission of a request by a delegate method with the inner component bound to
the concerned internal client interface. This action is also synchronised with the

10Other meta-information are encoded in the method label and should also be updated.

34

proxy for future that will receive the result computed by the request. The case
[C5.2] concerns the corresponding reply that is issued by the inner component,
this reply is sent to the outside of the composite component. Note the partic-
ular flow of information here: the inner component emits a value for future q,
that is directly synchronised with the future proxy number q of the composite
component; the identifier of the future to be sent to the outside becomes f ; it
is retrieved from the future proxy, and an action R m′n(f, v al) is emitted. At
the same time, a recycling action is triggered in the proxy manager.

The second rule [C6] manages export bindings, it also has one item for
request emission [C6.1] and another one for reply reception [C6.2]. A request
emitted by the inner component on the first side of the binding is enqueued
in the encompassing composite component (at the other side of the binding).
Replies are redirected when received by the encompassing component: when the
reply for future p is received, the future proxy at index p is used to retrieve the
future identifier f , and finally the result val is transmitted, associated with the
future f , to the inner component indexed by k. At the same time, a Recycle
action is triggered in the adequate proxy manager.

Rule [C7] deals with bindings between two inner components. It considers
a binding between an interface of component C and an interface of component
C ′. It finds k, the index of C, and k′, the one of C ′; the rule directly transfers
requests [C7.1] and replies [C7.2] from one component to the other for all the
methods of the client interface bound. Like in the preceding rules, the name of
the interface is updated during transmission.

This section presented a behavioural semantics for hierarchical components
communicating by asynchronous requests. The behaviour of composite com-
ponents is only to forward requests to the adequate destination. We encode
replies by means of futures, and composite components act as reply forwarders.
This section generalised the examples of specifications one could find in [5].
In previous work, we provided a behavioural model for some given GCM ap-
plications [9, 7]; these models have been used to prove the correct behaviour
of the analysed application. These examples show the capacities of our be-
havioural models, and their adequacy for verification purposes. This section
generalises those previous examples and instances, in order to formally specify
the automatic generation of behavioural models for asynchronous components.
The next section will define first-class futures, allowing more asynchronous be-
haviour. First-class futures generalise the future forwarding mechanism that we
presented above to allow futures to be passed as method arguments and return
values between any two components.

5. First-class Futures

In this section we focus in particular on first-class futures, which are a crucial
aspect of GCM components featuring wait-by-necessity mechanism. We will
introduce behavioural models for first-class futures in order to allow for more
asynchrony between components.

35

We will specify new rules for the extended component behaviour. In prac-
tice, we build new behavioural semantics by modifying the semantics defined
in the preceding section, for this we use two additional operators that simplify
the modification and composition of pNets. The first one allows us to remove
some part of the synchronisation vectors in order to redefine them; the sec-
ond one allows us to extend a pNet definition with new sub-pNets and/or new
synchronisation vectors.

• ;: Let pNet be a pNet and A be an indexed set of labels; pNet�A returns
a pNet similar to pNet but with restricted synchronisation vectors. The
synchronisation vectors of pNet � A are the ones of pNet except all the
synchronisation vectors containing an element of A as part of their global
synchronisation label. For example, if m belongs to A then all the vectors
containing m in their global label will be removed, in that case the labels
concerned would be: Q m, iQ m, Q m, R m, Serve m, etc. Remember
that method labels contain the name of the interface that contains the
method and consequently, removing a method label cannot remove an ac-
tion concerning another method with the same name in another interface.
This operator allows us to remove all the synchronisation vectors of a pNet
that are related to one aspect of the synchronisation (e.g., the method in-
vocation on some methods) in order to set a new synchronisation pattern
(e.g. intercept this method invocation).

• ⊕: For I ∈ I and I ′ ∈ I disjoint, let pNet = 〈〈pNeti∈Ii ,SVk∈K
k 〉〉 be a

pNet and pNet′i
i∈I′

be a pNet family (possibly empty). Let SV ′k
k∈K′

be a set of synchronisation vectors over I] I ′, such that for k ∈ K ′,
SV ′k = αj∈Jkj → α′k where α′k ∈ Sort(pNet), Jk ∈ I, Jk ⊆ I] I ′, and

∀j ∈ Jk ∩ I. αj ∈ Sort(pNetj), and ∀j ∈ Jk ∩ I ′. αj ∈ Sort(pNet′j). pNet ⊕
〈〈pNet′i

i∈I′
,SV ′k

k∈K′

〉〉 extends pNet with the new sub-pNets pNet ′i. The
synchronisation vectors are kept (they do not synchronise the new sub-

pNets); and the new synchronisation vectors SV ′k
k∈K′

are added to the
ones of pNet:

pNet⊕ 〈〈pNet′i
i∈I′

,SV′k
k∈K′

〉〉 = 〈〈pNeti∈Ii] pNet′i
i∈I′

,SVk∈K
k] SV′k

k∈K′

〉〉

5.1. Informal Semantics of First-class Futures

We call first-class futures, the futures that can be transmitted between com-
ponents before their value is known. Without first-class futures, a component
must wait for the result of a request and perform a GetValue before being able
to send this result to another component (in a request parameter, or in a request
result). With first-class futures, a component can send a generalised reference
to the future, i.e. a reference that uniquely represents the future in the whole
component system. This way, once the result is computed it is sent to all the
components that hold a (generalised) reference to the corresponding future.

In the model presented in Section 4, composite components act as reply
forwarders which correspond to some kind of limited first-class futures. However,

36

there are two differences concerning our use-cases. First, we need a somehow
simpler mechanism to transmit a future value without renaming a future, only
based on its global reference. Second, we also need the primitive components to
be able to handle first-class futures. This means primitive components must be
able to know futures and have future proxies for futures that were not created
by them (they were received as method parameters); consequently new proxies
have to be created for first-class futures with a slightly different mechanism for
creating and fulfilling those futures. Finally, a forwarding mechanism similar to
the one defined in the semantics of ASP (forward-based future update strategy
in [32]) has to be added to transmit the future value not only to the component
that performed the method invocation but also to the other components that
have received the generalized reference to the future.

We will consider in this section only the case when a future is transmitted
as the single argument of a request. The case where a single future is returned
as request result is similar, and closer to the reply forwarding mechanism imple-
mented by the composite components. The case where a future is only a part of
the transmitted object requires reasoning on the abstract representation of the
transmitted objects, which we do not do in this article. Overall, we consider
here the minimal case which is sufficient and general enough to understand the
mechanism of the generation of behavioural models for first-class futures. A
general study on the different kind of first-class futures, their identification and
a few usage scenarios more complex than the one presented here can be found
in [8]; however, compared to [8], the approach presented here provides a com-
plete formal specification of the generation of behavioural models whereas the
previous study illustrated the kind of properties we are able to prove with our
model for first-class futures. We suppose in this section that the methods that
can receive first-class futures have been previously identified.

To handle first-class futures, it is not possible anymore to consider future
identifiers as integers that are locally unique. Future identifiers need to be global
references where uniqueness is guaranteed globally in the system. For this, we
defined generalised references, which identify uniquely future proxies. A gener-
alised reference gf is defined by a tuple: component name, interface, method,
future identifier. Generalised references belong to the set of valid request ar-
guments (denoted by the variable arg), and can be used as a reference to the
future that can be transmitted to other components.

5.2. Principles and Illustrative example

Figure 9 is a simple scenario demonstrating the transmission of a future
value as a parameter of a remote request. The principle of this scenario is the
following. The component A first invokes a request on the component B (step
1); then the result of this invocation is sent as the single parameter of a request
invocation to the component C (step 2). Possibly, the component C can try
to access the future received, resulting in a wait-by-necessity (step 3). When
the result is computed by B, it is returned to A and then to C (step 4), which
releases the wait-by-necessity.

37

f:=C1.m1(arg)
x:=C2.m2(f)

return(res)

y:=f.foo()

4) Send future
value1) Future

creation

2) Future
transmission 3) Wait for

future

Figure 9: Scenario of first-class future transmission

The pNet for the scenario described above is shown in Figure 10. The
corresponding rules will be detailed in Section 5.3 and Tables 4 and 5. The
figure focuses on aspects related to the transmission of the future (denoted f
in the code snippet, and indexed p as a local proxy) and its update. Let gf
be the corresponding generalised reference. The figure shows how a generalised
future reference can be sent between two components, and handled afterwards.
Compared to the usual future proxy mechanism in Figures 4 and 7, it shows
new proxies for futures that can be sent and received as request parameters, as
detailed below:

Considering the emitting component, the proxy FProxy m1[p] for the lo-
cal future is slightly different; the only addition is that it is able to emit a
Forward(gf, val) action, when this is requested by the remote components C.

The generalised reference gf is sent upon the invocation of Q m2 (see the
arrow from Method m in A to Queue in C). It is built by the function call
GeneralisedRef(CName, Itf,MethodLabel, p).

On the receiver side, when the request is handled by the component C, the
call to the local method is intercepted by a specific pNet FutDetect m*. This
pNet creates a local proxy for representing gf (Proxy F1, indexed locally by q); q
then replaces gf in the invocation. This local future proxy waits for the iForward
communication coming from the remote proxy, and can then be accessed by the
service method Method m2. We have a single PM F1 proxy manager for all the
first-class proxies (Proxy F1), it acts as any other proxy manager except that the
first-class proxy is given the generalised reference gf when defining the semantics,
and it transmits gf when creating the proxy. It thus has a similar behaviour
to the proxy manager for a composite component; it does not correspond to
any method name, we re-use the proxy manager semantics, giving it a pseudo
method name: F1. Consequently PM F1 = JF1KproxyManager.

In primitive components, two changes have to be made. First each primitive
component that can receive a first-class future is equipped with first-class future
proxies and a first-class proxy manager. A new kind of proxy, Proxy F1, needs
to be created; those proxies act as a local future proxy for a proxy received
as request parameter. The first-class future proxy receives the future value
thanks to an iForward event. Second, at the other side, proxies of futures that

38

PM_F1

A

Method_m2

Proxy_m2[p2]
Method_m

B

C

PM_m2

Queue

PM_m1

x:=C2.m2(f)

FutDetect_m2

Body

Queue

f:=C1.m1(arg) Body

iForward(gf,?val)

Proxy_F1[q]

Forward(gf,val) GetValue_F1(val)

New_F1(?gf)

FProxy_m1[p]

P3.6

P3.3

P2.4

C8

C7.1

P1.2

P2.3 P1.1

P2.1

P1.4

P2.2

P1.2

P1.3

P4

C7.2

P3.1

P3.2

C7.2

P1.1

P2.1

C7.1

P2.3

P2.5

P2.2
P2.6

P3.4

P3.5

Serve m(...)

Call m(...)

GetProxy m1

New m1(p)

Recycle m1(p)

GetValue m1(p,val)

Q m1(p,arg)

Forward(gf,val)

New F1(q,gf)
GetValue F1(q,val)

Call m2(q)

Call m2(gf)

Serve m2(p2,gf)

R m2(p2,res)

Q m2(p2,gf)

New m2(p2)

iQ m(...)

GetProxy F1(gf)

R m1(p,val)
P2.4

Figure 10: Transmitting a future as a method call parameter

can be transmitted are unchanged but the synchronisation vector of primitive
components must be able to forward the value of a future if this future can be
forwarded. We create a Forward action label for that. Note that any component
that received a first-class future can send it again, this is why first-class future
proxies must also be able to send a Forward event.

Concerning composite components, they do not need specific future proxies
as they never need the value of a future. Instead they must transmit adequately
the Forward communication from the component that holds the proxy created
at method invocation to the component that may receive the first-class future,
triggering the iForward action in the first-class proxy.

In the GCM/ProActive implementation a similar mechanism occurs at run-
time. Indeed when a future is received as a request parameter, during the de-
serialisation of the future reference, a local proxy for future is created, awaiting
for the reception of the future value.

5.3. Primitive Components: pNets and Synchronisation Vectors

This section defines J KF1 the semantics of components with first-class fu-
tures. As shown in the illustrative example, the pNet of the primitive component
must be extended with proxies for storing locally first-class futures received as
parameters, called Proxy F1 in Figure 10 and in the rules below, and a proxy
manager managing those proxies. The proxy manager for first-class futures is
very similar to the ones shown before; like for composite components it receives

39

FutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_m
gf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRef
q:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:nat

Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)Intercept_m(?gf)

GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)GetProxy_F1(gf)

New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)New_F1(?q,gf)

Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)Call_m(q)

Figure 11: Proxy for a first-class future and Future Detector machine

a future reference and transmits it upon proxy creation, except this time the ref-
erence is a generalised one. Let GRef be the set of all generalised references and
let gf range over GRef. GeneralisedRef is a constructor of generalised references:

GeneralisedRef : CName× Itf×MethodLabels× N→ GRef

Figure 11 shows the pLTS of a FutDetect process that intercepts the local
service of requests with a future as parameter. It creates a local proxy before
delegating the call. FutDetect m defines the pLTS denoted by JmKFutDetect in
the following. The handling of a service method that can receive a future as a
parameter is managed by an intermediate FutDetect m process. This process,
denoted FDl below, creates a local proxy representing the transmitted future.

ml∈L
l = MethLabel(SItf) the methods ml∈L′

l can receive a future as parameter
PM F1 = JF1KproxyManager

∀l ∈ L′. FDl = JmlKFutDetect SVF1 = SVF1
S (ml∈L′

l , L) ∪ SVF1
C (CItf,CName)

JCName < SItf,CItf,M >KF1 =JCName < SItf,CItf,M >K ; call ml∈L′

l

⊕ 〈〈
〈〈←−−−→

FDl
l∈L′〉〉

,PM F1,
〈〈←−−−−−−−−→

Proxy F1n
n∈N〉〉,SVF1〉〉

The new pNet extends the old one thanks to the operator ⊕ defined pre-
viously. Concerning methods that can receive a future as parameter, direct
Call invocations from the body to the service methods are removed by the ;
operator. The new synchronisation vectors are defined in Table 4.

There are seven entries in the new synchronisation vectors of Rule [P3]. The
two first ones, [P3.1] and [P3.2] intercept the invocation from the body to the
service method, those invocations now are intercepted by the FutDetect process.
Note that what was previously a “call” action from the body to the service
method is now split into two steps. We use an Intercept action and a Call action
to distinguish the interaction between the FutDetect process and the body from
the interaction between the FutDetect process and the service method. [P3.3]
and [P3.4] deal with the creation of proxies for futures received as argument,
which is quite similar to a classical proxy creation, shown in Section 4.1. All the

40

Table 4: Synchronisation vectors related to client and server interfaces of primitive components
for first class futures. The synchronised sub-pNets are defined above:
〈〈Queue,Body,ServiceMethods,ProxyManagers,Proxies,FutDetect,PM F1,Proxies F1〉〉

i ∈ L′ gf ∈ GRef q ∈ N j ∈ L

{〈−,Call mi(gf),−,−,−, i 7→Intercept mi(gf),−,−〉 → Call mi(gf), [1]
〈−,−, i 7→Call mi(q),−,−, i 7→Call mi(q),−,−〉 → Call mi(q), [2]
〈−,−,−,−,−, i 7→GetProxy F1(gf),GetProxy F1(gf),−〉 → GetProxy F1(gf), [3]

〈−,−,−,−,−, i 7→New F1(q, gf),New F1(q), q 7→New F1(gf)〉→New F1(q, gf), [4]
〈−,−, j 7→GetValue F1(q, val),−,−,−,−, q 7→GetValue F1(val)〉 → GetValue F1(q, val), [5]
〈−,−,−,−,−,−,−, q 7→iForward(gf, val)〉 → iForward(gf, val), [6]
〈−,−,−,−,−,−,−, q 7→Forward(gf, val)〉 → Forward(gf, val)} [7]

⊆ SVF1
S (mi∈L′

i , L)

P3

j ∈ J mi∈I
i = MethLabel(CItfj) i ∈ I

Futures for requests on mi can be sent as parameter
p ∈ N gf = GeneralizedRef(CName,CItfj ,mi, p)

〈−,−,−,−, j 7→i 7→p 7→GetV alue mi(val),−,−,−〉 → Forward(gf, val)∈SVF1
C (CItf j∈Jj ,CName)

P4

service methods can access the Proxy F1 proxies by a GetValue F111, which is
expressed by [P3.5]. The new future proxies are updated by a iForward action
[P3.6], instead of a iR action for usual proxies. Finally, [P3.7] emits a forward
from the first-class future proxy. Indeed, if the component that received a first-
class future itself forwards the future to another component, it also needs to
forward the future value when its value is received.

Rule [P4] defines new synchronisation vectors on the client side of the prim-
itive component; they allow the emission of Forward actions. When a future
proxy of kind FProxy m emits a GetValue, i.e. as soon as the future value
is known, a Forward event can be emitted by the component. The proxy de-
fined in Section 4.1.5 is unchanged, only additional synchronisation vectors are
added for first-class futures: when building the synchronisation vector of the
primitive component, a generalised reference is computed from the name of the
corresponding interface and method, it is used to send a Forward event to the
outside of the component.

5.4. Composite Components: New Synchronisation Vectors

Concerning composite components, the composition of the pNets is un-
changed, we only add new synchronisation vectors for transmitting Forward

11If the component is stateful then the future references can be transferred between two
service methods; this is why we consider that the generalised reference can be accessed from
any service method.

41

Table 5: Binding synchronisation vectors for first class futures. The synchronised sub-pNets
are unchanged from the behavioural semantics of composite components (see Section 4.2.2):
〈〈Queue,Body,DelegationMethods,ProxyManagers,Proxies,Subcomponents〉〉

(C.CI, C′.SI)∈Binding
C 6= CName k, k′∈K C=Name(Compk) C′=Name(Compk′)

CItf ′ = GetItf(C.CI,CName<SItf,CItf,Compk∈K
k ,Binding>)

gf ∈ GRef ∃mn ∈ MethLabel(CItf ′). mn can pass a future as parameter

〈−,−,−,−,−, (k 7→Forward(gf, val), k′ 7→iForward(gf, val))〉 → Forward(gf, val)

∈ SVF1
B (CName<SItf,CItf,Compk∈K

k ,Binding>)

C8

(CName.SI, C.SI2) ∈ Binding k∈K C=Name(Compk)

SItf ’ = GetItf(CName.SI,CName<SItf,CItf,Compk∈K
k ,Binding>)

gf ∈ GRef ∃mn ∈ MethLabel(SItf ′). mn can pass a future as parameter

〈−,−,−,−,−, k 7→iForward(gf, val)〉 → iForward(gf, val)

∈ SVF1
B (CName<SItf,CItf,Compk∈K

k ,Binding>)

C9

(C.CI,CName.CI2) ∈ Binding C = Name(Compk)

CItf ’ = GetItf(C.CI,CName<SItf,CItf,Compk∈K
k ,Binding>)

gf ∈ GRef ∃mn ∈ MethLabel(CItf ′). mn can pass a future as parameter

〈−,−,−,−,−, k 7→Forward(gf, val)〉 → Forward(gf, val)

∈ SVF1
B (CName<SItf,CItf,Compk∈K

k ,Binding>)

C10

actions between components:

JCName < SItf,CItf,Comp,Binding >KF1 =

JCName < SItf,CItf,Comp,Binding >K⊕ 〈〈SVF1
B (Binding,SItf,CItf,Comp)〉〉

Table 5 defines the transmission of forward events. Rule [C8] deals with
brother bindings: consider two components at the same level, if one forwards
a future value, the other should receive it. Rule [C9] (resp. [C10]) transmits
forward reception (resp. emission) along import (resp. export) bindings.

Note that generating synchronisation for all possible generalised reference
will not scale in practice but each gf∈GRef can easily be restricted; indeed the
origin of the future (component, method label) is known and the future flow
can be approximated.

6. Validation

The purpose of this section is to provide arguments validating the semantics
given in this article. The first part shows formally that we did not forget any
synchronisation in our formalisation process; the second part focuses on an
example to show how our behavioural specification works in practice.

42

6.1. Correctness Theorems

The objective of this section is to exhibit two theorems that can be used
to assert the validity of our semantics. Proving the equivalence between our
behavioural semantics and another semantics for GCM components (like [13]) is
out of the scope of this article, but we will briefly sketch the points of comparison
between the two semantics.

We first prove that our semantics features a complete synchronisation be-
tween the pNets. More precisely, we show that all the actions emitted or received
by a pNet are synchronised and composed with pNets able to emit the corre-
sponding actions. This can only be verified if all the interfaces of the component
are connected so that every message that can be received (resp. emitted) has
a source (resp. a target). Hence, we will reason on fully connected components.
Additionally, due to sub-typing some methods can belong to a server interface
and not be invocable by the interface bound to this server interface. To sim-
plify the formulation of the theorem, we restrict ourselves to the case where no
sub-typing is allowed, i.e. the sub-typing relation E is the identity.

Fractal and GCM components support the notion of mandatory and optional
interfaces. A component cannot be started if one of its mandatory interfaces
is not connected. Based on this notion, we define a fully connected component
as a component that has all its interfaces bound, it corresponds to a Fractal
component that only has mandatory interfaces.

Definition 3 (Fully connected component). We state that a composite
component is fully connected (denoted by FC(C) = true) if all its inner in-
terfaces and all the interfaces of the components it contains are connected, and
also all the components it contains are themselves (recursively) fully connected.
Primitive components are always considered fully connected. Formally:

The component C is fully connected if either C is a primitive, or C is a
composite of the form C = CName < SItf,CItf,Compk∈Kk ,Binding > and

FC(C) ⇔

WF(C) ∧ ∀k ∈ K.FC(Compk) ∧
∀SItf ∈ SItf. ∃QN. (CName.SItf,QN) ∈ Binding ∧
∀CItf ∈ CItf. ∃QN. (QN,CName.CItf) ∈ Binding ∧
∀k ∈ K.∀Itf ∈ Interfaces(Compk).

∃QN. (Compk.Itf,QN) ∈ Binding ∨ (QN,Compk.Itf) ∈ Binding

We now define the set of unsynchronised action terms, in order to prove that
this set is empty (or reduced to an acceptable set of actions).

Definition 4 (Unsynchronised actions). An action is unsynchronised in
pNet P if it is either 1) in the sort of a sub-pNet of P but it is never used
in a synchronisation vector12, or 2) in the sort of P but the synchronisation

12To formalise the case 1 we use valuations (denoted φ) which are mappings from variable
names to expressions. They are used here to check that there is an instantiation of the
variables such that an action of a sub-pNet matches a label of the synchronisation vector.

43

vector producing this action can never be triggered, or 3) an unsynchronised
action of one sub-pNet of P .

Unsynchronised(〈〈pNeti∈Ii ,SV〉〉) =⋃
i∈I
{a ∈ Sort(pNeti)|∀αj∈Jkj → α′k ∈ SV.

(i /∈ Jk ∨ @φ, φ′. αiφ = aφ′ ∨ ∃j ∈ Jk.@φ, φ′. αjφ ∈ Sort(pNetj)φ
′)}

∪ {a ∈ Sort(〈〈pNeti∈Ii ,SV〉〉)|∀αj∈Jkj → α′k ∈ SV.

(α′k 6= a ∨ ∃j ∈ Jk.@φ, φ′. αjφ ∈ Sort(pNetj)φ
′)}

∪
⋃
i∈I

Unsynchronised(pNeti)

A pLTS is always fully synchronised because all actions of the sort can be
emitted (see Definition 2):

Unsynchronised(〈〈S, s0, L,→〉〉) = ∅
A queue is always fully synchronised:

Unsynchronised(Queue(m)) = ∅
Note that this definition is quite static, because an action is in the sort of a

pLTS if it is the label of one of its transitions, and an action is in the sort of a
pNet if it is produced by one synchronisation vector. Additionally, Unsynchro-
nised does not deal with the actions that are indirectly unsynchronised. Indeed
if an action is unsynchronised then all the synchronisation vectors triggered
by this action will never be triggered, however the resulting action of those
un-triggered synchronisation vectors will not belong to Unsynchronised(JCK)
because the unsynchronised actions of a pNet belong to its sort.

A basic correctness theorem for our semantics is that, if a component is fully
connected, then there is no unsynchronised action in the behavioural semantics
except the ones involving subtyped method labels or the ones involving methods
that are never used. The proof of this theorem is presented in Appendix C.

Theorem 1 (Complete synchronisation) If the component C is fully con-
nected, i.e. if FC(C) = true, then

Unsynchronised(JCK)⊆{Q mi|mi is never invoked}
In particular, if all methods of client interfaces of primitive components are

called by at least one service method, then Unsynchronised(JCK) = ∅.
The definitions presented in this section are static. In particular, we did

not check that actions in the LTS are reachable. Concerning the pLTSs we
define in this article, this can easily be checked. Concerning (user-defined)
service methods, verifying reachability of actions is not decidable. However
we suppose here that method bodies start by Call and end by R, and that
remote invocation are preceded by a proxy creation (Request emission is encoded
by the sequence: GetProxy, New, Q). These well-formedness conditions can
automatically be checked.

44

Discussion about the theorem. The applicability conditions of Theorem 1 are
quite restrictive. To be closer to its practical application, the theorem should
be strengthened in two ways. 1) Sub-typing : In our tools, sub-typing between
interfaces is allowed, generating some input actions that are never triggered.
2) Unbound server interface: It is safe to have not fully connected components
and allow server interfaces not to be bound (provided all client interfaces are).
In both cases, the theorem can be generalised and written such that some of
the actions for incoming requests are never triggered. Such a generalisation
of the theorem raises no technical difficulty concerning the proof but makes
the theorem statement more complex. In the generalised theorem, the set of
unsynchronised actions would also include actions related to the methods that
belong to the interface of a sub-type but not to the corresponding super-type,
and actions related to unbound server interfaces.

Theorem 1 ensures that, in the model, we generate all the necessary syn-
chronisation vectors. This is the first step to ensure that bugs that are found
when model-checking the generated pNet model are due to errors in the spec-
ification of service methods or in the design of the distributed system, rather
than bugs in our generation rules. The theorem above is however not sufficient
to ensure this property: we additionally need to prove that the necessary ac-
tions can be triggered by the different pNets involved in the composition. The
theorem below will prove this property concerning the routing of requests. The
other operations (replies, service of requests, etc.) should be proven correct in
the same way.

Correct routing of Requests

We will prove that whenever the pNet representing a component sends a
request on one of its client interfaces, then the pNet encoding its environment
will indeed transmit this request properly (through all required queues, proxies,
and component boundaries) to a pNet representing a primitive component able
to receive and process this request.

We start with a lemma stating that each emitted request will be received
by another component. This shows that requests can follow one binding. In
a second step we will prove that the request arrives at a primitive component
(where it will be treated) by recursively applying the first lemma. To transmit
a request to its destination, several bindings and intermediate components have
to be traversed. In order to ensure the recursive applicability of the first lemma,
we also prove that every composite that receives a request will emit a new one
through its Deleg pNet.

This section relies on the semantics of pNets defined in Appendix A. The
semantics of a pNet ‖pNet‖Φ is an LTS where states are tuple representing the
states of the pLTSs composing pNet. In this section, we use the notation s̈pNet
to refer to the set of reachable states of the semantics of pNet. −→ denotes the
transition of the semantics ‖pNet‖Φ. Also, we consider that we have infinite
families of future proxies so that it is always possible to create a new one. We
use si ⊆ s where s, si are pNet states to stand for si is a sub-tuple of s.

45

Let us consider a complete model of an application pNet, let us denote by
pNet the set of pNets, representing only components (primitive and composite
components) that are included in pNet. In fact, a pNet is formed of a tree of
pNets: those representing components, and others added for handling the vari-
ous mechanisms of the components (routing, forwarding, delegating...), but also

the intermediate pNets that are built by the
〈〈←−−−→
PN i∈I

i

〉〉
operator to encapsulate

pNet families. Additionally, for any pNet ∈ pNet, when pNet is a composite
component, we denote Deleg(pNet) the set of delegation sub-pNets of pNet and
Deleg(pNet) the set of delegation sub-pNets of all pNets in pNet.

Lemma 1 (Request routing)

Let pNeti ∈ pNet ∪Deleg(pNet). Let si, s
′
i ∈ s̈pNeti

such that si
Q m−−−→ s′i

then ∃pNetj ∈ pNet, ∃sj , s′j ∈ s̈pNetj
sj

iQ m−−−→ s′j and ∃s, s′ ∈ s̈pNet.s −→∗
Q m
−−−→

s′ where si ⊆ s, and sj ⊆ s, and s′i ⊆ s′, and s′j ⊆ s′.
Additionally, if pNetj is the pNet of a composite component then

∃s′′j ∈ s̈pNetj
. s′j −→∗ s′′j such that ∃sk, s′k ∈ s̈Deleg(pNetj)

. sk
Q m−−−→ s′k.

This lemma states that each request emitted by either a component or a
delegation method will arrive at a destination component where the request
reception is synchronized with the request emission. Each element involved in
the communication progresses into a state of the global pNet that represents
the instant when the communication has been performed.

Proof Sketch. We proceed in two steps, first we prove the part of the lemma
preceding the “additionally”.

We then distinguish the case where the request is emitted from the pNet
of a component or from the pNet of a Deleg. We start by the case where the
emitter pNeti is the pNet of a component C. The request must correspond by
construction to the signature of a client interface. The binding is defined in the
super-component of C in the hierarchy. Due to well-formedness the binding is
ensured to exist and the destination interface to provide the method m. Two
cases are possible depending on which interface is bound to the client interface13.
• Brother bindings: In this case, the request Q m is emitted from the pNet
of a component that is connected to another component of the same hierarchical
level following a brother binding of the form (C.CI, C ′.SI) where C and C ′ are
two sub-components of the same composite. As m belongs to the interface
SI, the pNet of the destination component C ′ must accept m in its queue and
provide the action iQ m, and rule [C7.1] encodes the synchronisation between
the emitter and the receiver. This proves the main statement of the lemma

13This corresponds at the same time to the two possibilities offered by the component
structure and to the synchronisation vectors able to synchronise an action Q m.

46

where pNetj is the pNet of the component C ′14. The global action Q m is
emitted.
• Export bindings: If the request Q m is emitted from the pNet of a sub-
component to a parent composite: binding of the form (C.CI, C ′.SI) where C is
a sub-component of C ′. The request can be received in the queue of the super-
component C ′ as iQ m, and rule [C6.1] encodes the synchronisation between
them, and returns to the top-level the action Q m.

If the request Q m is emitted from the pNet of a Deleg either to an inner or
to an external component, two cases are again possible.
• Deleg for a server interface: This corresponds to a request following an
import binding. The synchronisation vector defined by rule [C5.1] allows
synchronisation with inner sub-components. The inner sub-component must
provide an iQ m action for the same reasons as above.
• Deleg for a client interface: The synchronisation vector defined by rule
[C3] allows synchronisation with external components; more precisely, this syn-
chronisation vector allows the pNet of the composite component containing the
Deleg pNet to emit a Q m action. Then we can apply the case where Q m is
emitted by the pNet of a component (detailed above).

Finally, we prove the “additionally” clause of the theorem. The objective
is to show that, for any request entering the queue of a composite component,
this request will be eventually emitted by a Deleg pNet. This part is proved by
induction on the number of elements before the request Q m in the queue: if
Q m is first, we will show that the request can be emitted by a Deleg, if it is not
then the same arguments show that another request can be dequeued and thus
by recurrence we show that eventually the request Q m is served and emitted
by a Deleg pNet.

Suppose that all the involved pLTSs (body, Deleg, not-yet allocated futures,
proxy manager) are in their initial state. When the Body pLTS is in its initial
state, it serves the oldest request of the queue (enabled by rule [C2.1]). Then,
it synchronises with the Deleg pLTS (by synchronisation vector rule [C2.2])
that starts its execution and then requires a new future proxy (synchronised
by rules [C4]); the creation of a future proxy necessarily succeeds because
we supposed that the proxy families are infinite (and proxy manager is well-
synchronized with the future proxy and the Deleg pNet). After those steps the
Deleg pNet sends a Q m action. Note that after this emission of Q m action,
the Deleg, Body, and proxy manager pLTSs return to their initial states.

The paragraph above supposed that the concerned pNets are in their initial
state and proved that the delegation process succeeds. As the Body pLTS only
serves requests that will be delegated, if the prerequisite for this process to
succeed is not met and theBody pNet is not in its initial state then it is currently
delegating a request; it is in the middle of the delegation process. The paragraph
above ensures that it will eventually return to its initial state and be ready to

14Note that the queue is always able to receive the incoming request, whatever the state of
pNetj is.

47

serve another request. The same reasoning applies to the Deleg pLTS and the
proxy manager that also return to their initial state.

Lemma 2 (No infinite loops) For a well-formed GCM system, and a method
m, in the (finite) tree pNet of the pNets representing components, consider the

transitions
Q m
−−−→ occurring in Lemma 1. Then all

Q m
−−−→ chains reach, in a finite

number of steps, a state of the global pNet representing the application state
where a primitive component has received the request Qm.

Proof. From the well-formedness definition, we know that bindings cannot
relate a client and a server interface of the same component. This forbids

immediate loops of
Q m
−−−→, inside or outside the pNet representing a composite.

Then we have to prove that we have no infinite loops going only through
composite components pNets. Observing the cases from the proof of Lemma 1:

• when a
Q m
−−−→ transition is going up in the component hierarchy (export

binding), it corresponds to a request emitted by a client interface of a compo-
nent, so in the context of its parent composite, it can either go the a sibling
sub-component (horizontally), or go up to a client interface of the parent (up
again).

• when a
Q m
−−−→ transition goes horizontally to a sibling sub-component (brother

binding), either this one is a primitive, which is sufficient to ensure the lemma,

or it is a composite, and there exists necessarily a (delegate)
Q m
−−−→ reaching

down.

• when a
Q m
−−−→ transition goes down to a sub-component (import binding),

similarly, either its a primitive, which is sufficient to ensure the lemma, or it is

a composite, and there exists again a (delegate)
Q m
−−−→ reaching down.

So navigating in the component hierarchy can only go up some steps, then
horizontally once to another sibling component, then some steps down in the
component hierarchy. The tree forming the component hierarchy being finite,
the chain of request transmission is of course finite.

Finally, we can state the following theorem:

Theorem 2 (Correct requests transmission) In the pNet expressing the
semantics of a well-formed and fully connected GCM system, provided the fam-
ilies of future proxies are large enough, every emitted request m is necessarily
received by a primitive component.

This is a direct consequence of Lemma 2. We can prove similar results for
the transmission of replies (R m).

Together with Theorem 1, this shows that deadlocks in a GCM system can-
not come from the mechanics of our semantics, but either from a violation of
the assumptions of the theorems (well-formedness or full-connection), a prob-
lem with the approximation of the model construction (finiteness of queues and
proxy families), or a problem in the user application logics, like components not

48

ready to process a request when needed, typically when several futures would
wait for each other.

6.2. Informal comparison with existing semantics

As stated along this paper, we tried to keep the structure of the behavioural
semantics as close as possible to the implementation of GCM/ProActive. We
also provide a behavioural semantics respecting the operational semantics of
ASP [32] and of ASP components [14]. The technicalities and the formal proof
of the equivalence between the two semantics, while difficult, could be partially
inspired by previous works. In particular [33] proved the equivalence between a
higher-level and a lower-level semantics of actors. One strength of this contri-
bution is the compositionality of the actor semantics that could fit closely with
our components. However, the differences between the target languages (func-
tional vs. labelled-transitions) make the direct adaptation far from trivial. The
semantics of futures and the structural aspects of components should also be
adapted to the framework of [33] if we want to reuse it. Also the work of Palm-
skog et al. [34] could be inspiring to choose how to model a more operational
routing of requests in active object languages and prove semantic equivalence in
this context (the definition of observational equivalence of [34] could be reused).
Overall the previous works dealing with equivalence of actor semantics brought
valuable tools and approaches but also showed the technical difficulties that can
be raised when formally proving equivalence between two actor semantics.

We provide below a few arguments explaining how the semantics presented
here could be related to the one shown in [14] (which is the closest). The struc-
ture of the component description is similar to the one presented in this paper
and the two notions of well-formed components coincide approximately. Then
the semantics is given in terms of transition rules for primitive and composite
components, but [14] uses complex structures (maps, stateful objects, functions
over structured objects, etc.) for representing component state, requests, and
futures instead of labelled transition systems. Proving the equivalence between
the semantics will require to exhibit a translation between the two representa-
tions of the internal state of the components and proving that each rule of the
operational semantics can be simulated by the other semantics, and conversely.

Concerning primitive components there is one rule for sending requests, and
one for serving them; there is also one rule for sending and one for receiving
request results. Concerning composites, there are three communication rules
for each kind of binding (brother, import, export), one rule for a composite
emitting a request, one for a composite receiving a result. Concerning request
reception, it is handled uniformly by an operator that enqueues a request in the
request queue of a component.

Each of the rules is simulated by the coordinated action of several synchro-
nisation vectors and several intermediate pNets. The proof of the lemma above
exhibits parts of the arguments that should be used to prove the equivalence,
but the exact match between the different rules is way beyond the scope of
this paper. It is interesting to notice that among the rules of [14], the ones
that correspond to request emission are labelled rules that will be synchronized

49

Figure 12: Architecture model for the Workflow application, in VerCors Component Editor

with the arrival of the request in the queue on the other side of the binding
in a similar way as what is ensured by the different synchronisation vectors
that transmit the requests between pNets. Concerning the flow of futures, it is
greatly simplified and abstracted away in [14], but we could refer to [35] for a
more operational version of the transmission of the request results, that would
fit more closely to the behavioural semantics presented in this article.

6.3. Full example

We will sketch here a small example illustrating the most important of the
constructs defined in this article. This example was specified and verified using
our VerCors tool-suite; Vercors consists of a graphical editor based on a UML
designer, a generator of a behavioural model that implements the semantics
specified in this article, and an executable code generator. The generator of
the model-checkable behaviour follows the semantics described in the previous
section and is done automatically by the Vercors platform [10]. It relies on
the CADP toolset to verify correctness properties of the generated behaviour.
An overview of the VerCors tool-suite can be found in [31]. Additionally, the
graphical editor relies on the static verification of the component architecture
[36].

The example is an application called Workflow15, used as a pedagogical

15https://github.com/Scale-VerCors/VCEv4/tree/master/Examples/Workflow 01

50

TaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributor

QueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueue

BodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBody

PM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_ValidatePM_Validate

runWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflowrunWorkflow

Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]Proxy_Validate[px0]

PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1PM_Task1

Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]Proxy_Task1[px1]

iQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflowiQ_runWorkflow

R_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflowR_runWorkflow

iR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_ValidateiR_Validate

Q_ValidateQ_ValidateQ_ValidateQ_ValidateQ_ValidateQ_ValidateQ_ValidateQ_ValidateQ_ValidateQ_ValidateQ_ValidateQ_ValidateQ_ValidateQ_ValidateQ_ValidateQ_ValidateQ_Validate

Call_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflowCall_runWorkflow

New_ValidateNew_ValidateNew_ValidateNew_ValidateNew_ValidateNew_ValidateNew_ValidateNew_ValidateNew_ValidateNew_ValidateNew_ValidateNew_ValidateNew_ValidateNew_ValidateNew_ValidateNew_ValidateNew_Validate

Recycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_ValidateRecycle_Validate

GetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_ValidateGetProxy_Validate

GetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_ValidateGetValue_Validate

iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1iR_Task1

ErrorQueueErrorQueueErrorQueueErrorQueueErrorQueueErrorQueueErrorQueueErrorQueueErrorQueueErrorQueueErrorQueueErrorQueueErrorQueueErrorQueueErrorQueueErrorQueueErrorQueue

GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1GetProxy_Task1
New_Task1New_Task1New_Task1New_Task1New_Task1New_Task1New_Task1New_Task1New_Task1New_Task1New_Task1New_Task1New_Task1New_Task1New_Task1New_Task1New_Task1

Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1Recycle_Task1

GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1GetValue_Task1

Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1Q_Task1

Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2

Figure 13: pNet model for the TaskDistributor Primitive component

example to illustrate the notion of futures in GCM. Figure 12 shows the archi-
tecture of the application, the signature of interfaces, and the behaviour of its
service methods, as shown in our graphical editor. The use-case consists of a
workflow execution composite component. This component accepts on its server
interface runWorkflow requests and uses a TaskDistributor primitive compo-
nent to perform two consecutive tasks handled by two worker components, W1
and W2. Each worker has a single interface receiving tasks to be performed. The
TaskDistributor is more complex: it receives runWorkflow requests on its S1

interface, and then sequentially calls Task1 on its client interface C1 and Task2

on its interface C2. It finally calls a Validate request with the result of Task1
and returns the validation result as a reply to the runWorkflow request. The
validation step is handled by a component external to the composition.

This example allows us to illustrate the construction of pNets for primitive
and composite components, with their queues and bodies, future proxies, service
and client delegation processes.

Additionally, this gives us the opportunity to discuss a number of implemen-
tation issues, and in particular of simplification of the generated pNet structure
depending on the configuration of the GCM components considered. A brute
application of the semantic rules from this article would produce an unnecessary
number of management pNets, and we give an example of optimisations that
are applicable in a significant number of situations. A full description of the
implementation of the pNets construction, and of the optimisations, is out of
the scope of this article.

6.3.1. Structure of the pNets model

We illustrate here, in an informal manner, the construction of the pNets
semantics of the Workflow example. We focus on the pNets hierarchy and their
synchronisation vectors, defined graphically. We evaluate the complexity of this

51

Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()Call_runWorkflow()

Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()Get_Proxy_Task1()

New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)New_Task1(?p0)

Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)Q_Task1(p0)

Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()Q_Task2()

Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)Get_Value_Task1(p0)

Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()Recycle_Task1()

Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()Get_Proxy_Validate()

R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)R_Get_Value_Task1(?x)

New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)New_Validate(?p1)

Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)Q_Validate(p1)

Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)Get_Value_Validate(p1)

R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)R_Get_Value_Validate(?b)

Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)Recycle_Validate(p1)

R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)R_runWorkflow(b)

runWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_methodrunWorkflow_method

p0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: natp0,p1: nat
x: natx: natx: natx: natx: natx: natx: natx: natx: natx: natx: natx: natx: natx: natx: natx: natx: nat
b: boolb: boolb: boolb: boolb: boolb: boolb: boolb: boolb: boolb: boolb: boolb: boolb: boolb: boolb: boolb: boolb: bool

Figure 14: pLTS model for the runWorkflow method

construction.
We start, in Figure 13, with the pNet structure representing the seman-

tics of the TaskDistributor primitive component. The pLTSs involved in the
composition are not shown here, we only show the pNet structure. This pNet
contains:

• The standard Queue and Body pNets which process the runWorkflow re-
quest before it is forwarded to the method pLTS.

• The proxy manager and proxy pLTSs for the methods of C1 and C3 in-
terfaces that have a return value. The pLTSs treat the requests from
runWorkflow and forward them to outside of TaskDistributor. The
only method of C2 does not return any value, hence, the corresponding
proxy and proxy manager are not generated. The requests to Task2 are
simply forwarded to the corresponding worker.

• A pLTS for the runWorkflow method which is shown in Figure 14. This
is a simple case as the original state machine (in Figure 12) is linear.
When comparing the pLTS with the original state machine, notice how
the Get Proxy*, New*, Get Value*, ..., Recycle* events have been inserted
in the flow.

Each worker is a primitive containing a business process represented here by
a Task pLTS generated form the corresponding UML state machine.

Figure 15 illustrates the structure of the Workflow composite. This part
features a complete pNet infrastructure in the composite membrane.

The pNet of the Workflow component has three sub-pNets for its internal
sub-components, and a full set of pNets modelling its membrane, namely: a
Queue receiving requests both from its external methods (iQ runWorkflow) and
from the TaskDistributor sub-pNet (Q Validate). A Body dispatches these

52

QueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueue

CPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflowCPM_runWorkflow

CProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflowCProxy_runWorkflow

Deleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflowDeleg_runWorkflow

TaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributorTaskDistributor

Deleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_ValidateDeleg_Validate

W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1W1

BodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBody

CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]CProxy_Validate[p]

WorkflowWorkflowWorkflowWorkflowWorkflowWorkflowWorkflowWorkflowWorkflowWorkflowWorkflowWorkflowWorkflowWorkflowWorkflowWorkflowWorkflow

W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2

CPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_ValidateCPM_Validate
Serve*Serve*Serve*Serve*Serve*Serve*Serve*Serve*Serve*Serve*Serve*Serve*Serve*Serve*Serve*Serve*Serve*

New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)New_runWorkflow(fid,q)

iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)iQ_runWorkflow(q)

iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)iR_Validate(f1,b)

Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)Q_Task1(fid)

Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)Call_Validate(f1,x)

Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)

Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid)Call_runWorkflow(fid) R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)

R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()R_Validate()

R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)R_Validate(f1)

iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)iQ_runWorkflow(fid)

R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)R_runWorkflow(fid)

Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)Q_Validate(p,x)

iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)iR_Validate(p,b)

Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2Q_Task2

R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)R_Task1(fid,val)

New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)New_Validate(f1,p)

iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)iRecycle_Validate(p)

Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)Q_Validate(f1,x)

Figure 15: pNet model for the Workflow composite component

requests to the TaskDistributor pNet or exports them; in both cases the com-
munication passes through (Deleg *) pLTSs. Because the Validate method
requires an answer, the pNet has an indexed family of future proxies, managing
the R Validate return messages. Similarly, a proxy manager and a proxy family
deal with the return of the runWorkflow result to the outside.

6.3.2. Properties

From a (finite) pNet model, we have computed the state-space using the
CADP verification toolset [37]. For the Workflow use-case, we proved two cor-
rectness properties (defined in the Model-Checking Language MCL; we refer
to [38] for a description of the languages). MCL formulas are logical formu-
las using regular expressions, boolean operators, branching modality operators
(necessity operator denoted by [] and possibility operator denoted by 〈 〉), and
maximal fixed point operator (denoted by µ).

First, we check that after a call to the runWorkflow method it is inevitable
that either the result is returned, or the queue of the composite is saturated.
We use an inevitability operator in the formula below in order to check that any
path in the behaviour graph that starts by iQ runWorkflow will inevitably lead
either to Workflow ErrorQueue or to R runWorkflow.

[’iQ_runWorkflow.*’] inev(’Workflow_Errorqueue.*’ or ’R_runWorkflow.*’)

The formula is evaluated to TRUE if the size of the TaskDistributor queue is
greater or equal to the size of the Workflow queue

53

Second, we show that the distributor can send a Task2 request before re-
ceiving the answer from the Task1 request. This illustrates that the future
mechanism works and provides automatic parallelisation of request treatment.
The formula below states that there exists a path in the behavior graph where
Task2 is requested before the result of Task1 is returned. The model-checker
answers TRUE.

<’iQ_runWorkflow’ . (not ’R_Task1.*’)* . ’Q_Task2.*’> true

6.3.3. Experimental sizes

This example is very small, compared to other case-studies that we published
before [9, 11]. The novelty here is that the input files for the model-checking
platform were 100% automatically generated from the mode editors of VerCors.

We give here some figures indicating the size of the model, and the speed
of the verification steps. The W1 and W2 components pNets have each a single
method, a queue and a body. The TaskDistributor additionally has 2 proxy
managers and 2 ∗ 2 proxy families. The Workflow composite also has a queue
and a body, 2 delegate processes, 2 proxy managers, and 2 proxy families. Let p
be the number of proxies per proxy family, then we have (17+4∗p) basic pNets
generated, and also 25 + 2 ∗ p (parameterised) synchronisation vectors. For a
minimal instantiation of p = 2, we obtain 25 basic pNets and 29 parameterised
vectors, which is a reasonably small structure. With this proxy size, we also
prove that the “Error(NoMoreProxy)” action is not reachable, that proves that
this bound is sufficient for all our analyses (see section 4.1.5).

Choosing again minimum values for the domain of parameters to prove our
properties, i.e. [0..1] intervals for all data, and for future identifiers, and 4 for
the length of request queues, we obtain an LTS with 4 million states and 15
million transitions (noted (4M/15M)) for the queue of the composite, reduced
to (9K/65K) by branching bisimulation minimisation. The strategy for hiding
and reducing intermediate systems is to consider as unobservable all internal
communications (marked as “synchronised” in the result of a synchronisation
vector) that do not occur in some of the formulas we want to prove. This is the
biggest intermediate LTS generated, while most LTSs encoding state machine or
controllers have a very small size, with typically less than 30 states. The product
LTS of the TaskDistributor pNet has a size of (2145/7633), after hiding and
minimisation. And the global system product has a size of (746K/3M) before
minimisation, that reduces to (35K/156K).

The full verification workflow takes approximatively 6 minutes of processing,
when performed sequentially on a Intel Xeon E5-2630 @ 2,6Ghz, running under
Fedora 21 (x86-64). The use-case presented here is quite small, however we
demonstrated in previous works that the process can scale and be run in a
distributed manner. Indeed, many tasks in the hierarchical model generation
are independent, and can be run in parallel, with the product and minimisation
steps depending on previous tasks, as we demonstrated in [9].

54

7. Extensions towards Full GCM

Here, we briefly discuss two features from Full GCM, namely the manage-
ment of component attributes, which allow the implementation of stateful com-
ponents; and reconfiguration capacities.

Dealing with stateful components

The semantics we presented here does not allow components to have an in-
ternal state, however it is easy to add variables to primitive components. Indeed
it is sufficient to add an additional sub-pNet to the pNet of the component that
stores the value of the variables and accepts set and get actions. Those ac-
tions will be triggered by the service methods (synchronisation vectors for those
setters and getters are also necessary).

Such a state management pNet can also be used to express the behaviour
of an attribute controller. In Fractal, an attribute is a configurable property of
a component, it can be accessed and modified by setter and getter functions,
exposed outside the component as a non-functional interface. The attribute
controller interface is a non-functional interface exposed by the component.
Attributes that can be stored and modified can be expressed in pNets by adding
the getter and setter functions to the requests that can be enqueued, and by
adding synchronisation vectors from the body to the sub-pNet dedicated to state
management for getter and setter actions.

About reconfiguration

While we do not show reconfiguration scenarios in this article, we enforce a
structure of the models that allows the encoding of reconfiguration primitives.
Defining statically the complete structure of the application is often too restric-
tive. Indeed, especially in a distributed setting, applications must evolve at
runtime in order to adapt to changes in the execution environment or to pro-
vide improved functionalities. Some component models keep a trace at runtime
of the component structure and their dependencies. Knowing how components
are composed and being able to modify this composition at runtime provides
great adaptation capabilities: the application can be adapted by changing some
of the components taking part in the composition or changing the dependen-
cies between the involved components. Reconfigurations consist in changing at
runtime the component structure, by adding or removing components in the
system, or by changing the way components are bound together. In practice,
many component models allow the modification of the architecture at runtime,
through a specific set of APIs, like for example Acme [39], SOFA 2.0 [40], Frac-
tal, and GCM. Usually, the set of allowed modifications is constrained by the
types, and the architectural style of the involved components.

Verifying reconfigurable component applications is still easier than verifying
full fledge object-oriented applications because possible reconfigurations are gen-
erally well-identified, and the possible changes can be statically approximated.
In the model presented in this article, we keep trace of the component structure
when building the model of the application; this not only allows us to build the

55

model in a compositional manner, but also to encode reconfiguration procedures
and to verify the properties of the system when some reconfigurations occur.

Our research report [41] explains how to reason on reconfigurations based on
the model presented in this article. The PhD dissertation [10] describes in details
the formalisation of non-functional aspects, in particular attribute controllers
and interceptors, and collective communications and their reconfiguration.

8. Related Work

Component-based development has in recent years become an established
approach. It has shown successes in many application domains such as in dis-
tributed and embedded systems. There are several component models that
are supplied for building complex systems: Fractal [21], Ptolemy [42], CCM
[1, 2, 3], AADL, and GCM [4, 43]. But there are only a few that have a theoret-
ical framework that allows reasoning about modelled systems and verification
of their behavioural properties.

Some of the formal developments around components are done with objec-
tives very different from ours. For example, the formalisation of the Fractal
model in Alloy [44] brings several interesting properties, but they are mainly
related to the model itself more than to the component applications. Similarly,
a formal model of GCM has been specified in Isabelle/HOL [14], while it gives
an interesting framework to reason on the component model and prove some
of its properties, it is not adapted to prove the correct behaviour of applica-
tions. A formal framework for reasoning on futures has been defined in [45],
but the authors did not provide, to our knowledge, the tools to use their equa-
tions in order to automatically or semi-automatically prove properties on pro-
grams. Behavioural specification, on the contrary, is better adapted to the cor-
rectness proofs for given applications. Among the researches dedicated to the
component-oriented behavioural verification that we are aware of, the closest
are SOFA, Kmelia, STSLib, and BIP.

The SOFA system [40] is a development and verification framework for large-
scale distributed software systems based on hierarchical components. It uses
behaviour protocols [46, 47] to specify interactions between components in terms
of ordering of method invocation events. Behaviour protocols are also used, at
each level of the component hierarchy, to define a black box specification of
the subsystem. The behaviour compliance and consent relations are defined
on behaviour protocols based on their trace semantics, allowing one to prove
separately, at each level of the hierarchy, the compliance of an implementation
(called architecture) with its specification (protocol). Behaviour protocols can
also be encoded e.g. in Promela, that allows for classical LTL model-checking
[48].

Kmelia [49, 50, 51] is a component specification model based on the descrip-
tion of complex services. Kmelia and its toolbox COSTO can be used to model
software architectures and their properties, these models being later refined to

56

execution platforms. It can also be used as a common model for studying compo-
nent or service model properties (abstraction, interoperability, composability),
using various verification toolsets, including CADP, MEC5, and Atelier-B. To
our knowledge, though, there is no explicit behavioural semantics defined for
Kmelia applications.

The STSLib library [52] provides a formal component framework that syn-
thesises components from symbolic protocols in terms of Symbolic Transition
Systems (STS). Just as pNets, STS concisely represent infinite systems, how-
ever STS rely on Abstract Data Types (ADT) which are more expressive than
the Simple Types used in pNets but less intuitive for software engineers. Both
formalisms rely on (N-ary) synchronisation vectors, but in STS they are static
whereas in pNets they are dynamic. STSLib synthesises components based on
their STS protocols; a controller interprets the STS protocol and data from
which the ADT is implemented (and generated) in Java. The communication
in STS components is rather low level ; both emitter and receiver must agree
to exchange a message, and there is no explicit notion of required nor provided
services.

On the implementation side, the two approaches are quite different: the
implementation of STS simulates the synchronisation vectors that can be ex-
pressed in the specification, whereas in our approach, we write only the synchro-
nisation vectors corresponding to the possible communications between compo-
nents. Our specification language is more independent from the middleware,
and it allows us to express complex synchronisations. This allows us to reason
on efficient, expressive, and proved communication mechanisms. Overall, even if
the pNet formalism is approximately at the same level of abstraction as STS, in
our approach, the programmer is rather exposed to a higher-level composition
framework, closer to his usual programming and composition concerns.

BIP [53, 54] is a formal framework that allows building and analysing com-
plex component-based systems, both synchronous (reactive) or asynchronous
(distributed) by coordinating the behaviour of a set of primitive and hetero-
geneous components. A component’s behaviour is described as a Petri net
extended with data and functions, whereas coordination is described as interac-
tions between components and scheduling policies between interactions. Even
if the BIP framework allows powerful compositional reasoning on the system,
it does not support the definition of hierarchical architectures composing data-
sensitive models.

BIP is supported by a toolset including translators from various program-
ming languages as Lustre and C into BIP, a compiler for generating code exe-
cutable by a dedicated engine, and the verification tool D-Finder. This last tool
[55] is not a generic model-checker, but a specific tool for deadlock detection
and diagnosis, able to address systems of large size, as shown e.g. in [56, 53].

In the context of the ABS [19] specification language, several verification
frameworks exist. ABS is a behavioural specification language that takes the
form of a simple object oriented language featuring active objects and futures.
Several tools have been developed for the language but three major tools target

57

program verification.
A precise deadlock analysis [57] has been designed based on behavioural

types and resource; and a cost analysis [58] is provided, it is based on static
analysis and cost evaluation techniques. Those two works provide verification
engines for programs of any size, their limitation reside in the abstraction that
is made from the code, which is often precise enough to reason on a wide set of
interesting program. Those works are fully automatic but they only reason on
one specific property and a new analysis has to be designed if a new property of
the program is to be investigated. The advantage of our approach is that it is
better adapted to the verification of temporal properties of program where the
user specifies the behavioural property of the application that interests her/him.

Probably closer to this article is the Key-ABS framework; Key-ABS [59].
Key-ABS is a framework for reasoning on ABS programs, mostly based on in-
variant definition and deductive verification techniques. Key-ABS can deal with
any kind of functional properties and allows the definition of precise invariant,
allowing the user to prove properties on systems of infinite size with a power-
ful reasoning engine. The main difference is that in Key-ABS the user must
have a strong expertise in the programming language and in the definition on
invariant annotations which involve the status of a distributed application. The
pNets approach allows the automatic generation of a behavioural model and the
only expertise from the programmer that is required is to write adequately the
properties of his/her application.

Another approach that is very close to the one presented in this paper is
the work on the Rebeca system [60, 61]. Rebeca is a Java-like actor program-
ming language which shares a lot of similarities with our language. The Rebeca
model has been designed to be at the same time easy to program and easy to
verify, particularly using model-checking techniques. While the communication
system ensures FIFO communication similarly to GCM/ProActive, the absence
of futures and of synchronisation points makes Rebeca easier to analyse and
allow the Rebeca verifier to have very good results. Our programming model
allows the programmer to write applications with futures ensuring data-driven
synchronisation that make programming more natural but also makes building
the model and optimising its verification more challenging. Compared to Re-
beca models, this article showed how to model futures, transmission of future
references, and hierarchical composition of components which is more difficult
to model and verify but more compositional and easier to program. Our pre-
vious case-studies (see Section 1) somehow show that the verification of these
richer systems is still possible.

Our current verification techniques rely on model-checking which limits us
concerning the size of the verifiable system, but the parameterised nature of
pNets is particularly adapted to the use of SMT solvers, which would allow us
to reason on systems of infinite size. The use of SMT solvers on pNets is still
a mid-term perspective, but it would make our results even easier to compare
with the ABS tools.

58

9. Conclusion

This article provides a formal framework for the generation of behavioural
semantics of asynchronous distributed software components. Asynchronous soft-
ware components provide a convenient programming abstraction for designing
large-scale distributed systems, where each component acts as an autonomous
entity, only communicating with the others using requests and replies. This
article describes the behavioural semantics of such components. Behavioural
semantics enable the generation of a model of the program behaviour; then
the correctness of the application can be verified using dedicated platforms, for
example based on model-checking techniques. The main contributions of this
article are:

• a minimal formal definition of pNets. This definition does not cover all
aspects previously published, but constitutes a simple core definition, self-
contained and sufficient for this article,

• a formal definition of GCM components, their abstract syntax, and an
informal semantics,

• a precise formal definition of the behavioural semantics of GCM, in the
form of structural rules constructing pNets, these rules encode hierarchical
component composition, asynchronous requests, and futures into pNets,

• arguments validating our approach by showing that each action emitted
by a component is synchronised at the upper level,

• an example illustrating the approach and showing the practical use of the
behavioural semantic rules.

Among these contributions, the main part concerns the behavioural speci-
fication of the most important Fractal/GCM features. For some of these, we
have already described a behavioural semantics in previous conference papers,
but only in an informal way. Here we have given a full definition, and a proce-
dure for building their pNet models. This includes the basic structure for GCM
components, request queues, body expressing the service policy, future proxies
and proxy managers; it also defines the semantic artefacts needed for first class
futures.

The example described in the last section features all the aspects listed
above, except for first class futures. We also use this example to comment on
the complexity of our semantic model generation.

A first version of the VerCors specification and verification platform is now
available [31]; it implements the semantics provided in this article. The example
of Section 6.3 has been entirely generated by the platform. We also plan to
extend this work in several directions. First there are still some GCM features
that are not included in the current core semantics, and that are important
in practical applications. This is the case of collective interfaces (see [4]), and
reconfiguration procedures, either considering explicit reconfiguration scripts,

59

or autonomic components. Some of these features have already been partially
investigated in [41].

The approach presented in this article can also be applied to other types
of distributed languages or formalisms, in the way we have dealt with Active
objects, Fractal components, and GCM. pNets encode in a very flexible and
expressive way any kind of process composition, communication, and synchro-
nisation, provided it stays within the family of first-order hierarchical structures.
This rules out formalisms such as the π-calculus or the chemical machine, but
includes other process calculi à la CCS, and most component models (CCM,
SCA, Creol, ...) and their implementations. Indeed, the core semantics pre-
sented here can be mostly re-used outside the strict scope of ProActive/GCM.
First, the notions related to component composition are slightly different from
one component model to another but rely on the same bases, adapting the com-
ponent structure to another component model like SCA or CCM for example
would raise no major difficulty. Concerning the execution model, active objects
are some form of actors (which is probably the programming model the most
adapted to asynchronous distributed components) and adapting our semantics
to other actor models (e.g. Erlang, Salsa, Rebeca, ABS, Creol, Akka) would re-
quire slight changes in the pNet generation rules to reflect the slightly different
operational semantics of those languages. Adapting our model to tightly cou-
pled components communicating more synchronously than the ones presented
here (e.g. MPI, BSP) would be more difficult.

In another direction, we plan to relate the behavioural semantics of this
article with the more “operational” one defined in [13]. We have used the
latter in our research on theorem-prover based formalisations and proofs for
GCM, and relating the two semantics would give us powerful tools for dealing
with properties of dynamically evolving applications, and for combining model-
checking and theorem proving methods to reason about realistic applications.

Acknowledgements. This work was partially funded by the French FSN project
OpenCloudware (Fond national pour la Société Numérique).

References

[1] CCA forum, The Common Component Architecture (CCA) Forum home
page, http://www.cca-forum.org/ (2005).

[2] Object Management Group, Inc. (OMG), CORBA Component Model
Specification, OMG Headquarters Edition, http://www.omg.org/

cgi-bin/apps/doc?formal/06-04-01.pdf (April 2006).

[3] M. Beisiegel, H. Blohm, D. Booz, M. Edwards, O. Hurley, SCA Service
Component Architecture, Assembly Model Specification, Tech. rep., OSOA
(March 2007).

60

[4] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio,
C. Pérez, GCM: A Grid Extension to Fractal for Autonomous Distributed
Components, Annals of Télécommunications 64 (1-2) (2009) 5–24.

[5] T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio, E. Madelaine,
Behavioural Models for Distributed Fractal Components, Annals of
Télécommunications 64 (1-2) (2009) 25–43.

[6] L. Henrio, E. Madelaine, M. Zhang, A Theory for the Composition of Con-
current Processes, in: E. Albert, I. Lanese (Eds.), 36th International Con-
ference on Formal Techniques for Distributed Objects, Components, and
Systems (FORTE), Vol. LNCS-9688 of Formal Techniques for Distributed
Objects, Components, and Systems, Heraklion, Greece, 2016, pp. 175–194.
doi:10.1007/978-3-319-39570-8 12.
URL https://hal.inria.fr/hal-01432917

[7] T. Barros, L. Henrio, E. Madelaine, Verification of Distributed Hierarchical
Components, in: International Workshop on Formal Aspects of Compo-
nent Software (FACS’05), Electronic Notes in Theoretical Computer Sci-
ence (ENTCS), Macao, 2005.

[8] A. Cansado, L. Henrio, E. Madelaine, Transparent First-class Futures and
Distributed Component, in: International Workshop on Formal Aspects of
Component Software (FACS’08), Malaga, 2008.

[9] R. Ameur-Boulifa, R. Halalai, L. Henrio, E. Madelaine, Verifying Safety
of Fault-Tolerant Distributed Components, in: International Workshop on
Formal Aspects of Component Software (FACS’11), Oslo, 2011.

[10] O. Kulankhina, A framework for rigorous development of distributed com-
ponents: formalisation and tools, Ph.D. thesis, Université de Nice Sophia
Antipolis (Octobre, 2016).

[11] N. Gaspar, L. Henrio, E. Madelaine, Formally Reasoning on a Reconfig-
urable Component-Based System - A Case Study for the Industrial World,
in: International Symposium on Formal Aspects of Component Software
(FACS 2013), Lecture Notes in Computer Science, Springer, Nanchang,
China, 2013.

[12] R. A. Boulifa, L. Henrio, E. Madelaine, Behavioural models for group com-
munications, in: WCSI-10: International Workshop on Component and
Service Interoperability, Malaga, Spain, 2010.

[13] L. Henrio, F. Kammüller, M. Rivera, An Asynchronous Distributed Com-
ponent Model and Its Semantics, in: F. de Boer, M. Bonsangue, E. Made-
laine (Eds.), FMCO’08, Vol. 5751 of LNCS, Springer, Heidelberg, 2008, pp.
159–179.

61

[14] L. Henrio, F. Kammüller, M. U. Khan, A Framework for Reasoning on
Component Composition, in: FMCO 2009, Lecture Notes in Computer
Science, Springer, 2010.

[15] E. Bruneton, T. Coupaye, M. Leclerc, V. Quéma, J.-B. Stefani, The Fractal
Component Model and Its Support in Java, Software Practice and Experi-
ence, special issue on Experiences with Auto-adaptive and Reconfigurable
Systems 36 (11-12).

[16] E. B. Johnsen, O. Owe, I. C. Yu, Creol: A types-safe object-oriented model
for distributed concurrent systems, Journal of Theoretical Computer Sci-
ence 365 (1–2) (2006) 23–66.

[17] J. Dedecker, T. V. Cutsem, S. Mostinckx, T. D’Hondt, W. D. Meuter,
Ambient-Oriented Programming in AmbientTalk, in: D. Thomas (Ed.),
ECOOP, Vol. 4067 of Lecture Notes in Computer Science, Springer, 2006,
pp. 230–254.

[18] J. Schäfer, A. Poetzsch-Heffter, JCoBox: Generalizing Active Objects to
Concurrent Components, ECOOP 2010 – Object-Oriented Programming
(2010) 275–299.

[19] E. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, M. Steffen, ABS: A Core
Language for Abstract Behavioral Specification, in: Formal Methods for
Components and Objects, Vol. 6957 of LNCS, Springer Berlin Heidelberg,
2012, pp. 142–164. doi:10.1007/978-3-642-25271-6.

[20] R. Ziaei, G. Agha, Synchnet: A petri net based coordination language for
distributed objects, in: F. Pfenning, Y. Smaragdakis (Eds.), GPCE, Vol.
2830 of Lecture Notes in Computer Science, Springer, 2003, pp. 324–343.

[21] E. Bruneton, T. Coupaye, M. Leclerc, V. Quema, J. B. Stefani, An
Open Component Model and Its Support in Java, in: 7th Int. Symp. on
Component-Based Software Engineering (CBSE-7), LNCS 3054, 2004.

[22] E. Bruneton, T. Coupaye, J. B. Stefani, The Fractal Component Model,
Tech. rep., ObjectWeb Consortium, http://fractal.objectweb.org/

specification/index.html (February 2004).

[23] G. Agha, I. A. Mason, S. F. Smith, C. L. Talcott, A foundation for actor
computation, Journal of Functional Programming 7 (1) (1997) 1–72.
URL citeseer.nj.nec.com/article/agha97foundation.html

[24] F. Mattern, S. Fünfrocken, A non-blocking lightweight implementation of
causal order message delivery, in: K. P. Birman, F. Mattern, A. Schiper
(Eds.), Theory and Practice in Distributed Systems: International Work-
shop Dagstuhl Castle, Germany, September 5–9, 1994 Selected Papers,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1995, pp. 197–213.

62

[25] B. Charron-Bost, F. Mattern, G. Tel, Synchronous, asynchronous, and
causally ordered communications, Distributed Computing 9:173–191.
URL citeseer.ist.psu.edu/charron-bost95synchronous.html

[26] C. A. Varela, Programming Distributed Computing Systems: A Founda-
tional Approach, The MIT Press, 2013.

[27] D. Caromel, L. Henrio, B. Serpette, Asynchronous and deterministic ob-
jects, in: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, ACM Press, 2004, pp. 123–134,
iSBN 1-58113-729-X.

[28] L. Henrio, Formal models for programming and composing correct dis-
tributed systems, Ph.D. thesis, Université de Nice Sophia-Antipolis, HDR
Thesis (Jul. 2012).

[29] L. Henrio, E. Madelaine, M. Zhang, pNets: an Expressive Model for Pa-
rameterised Networks of Processes, in: Formal Approaches to Parallel and
Distributed Systems (4PAD)-Special Session of Parallel, Distributed and
network-based Processing (PDP), Turku, Finland, 2015, extended version
in https://hal.inria.fr/hal-01055091.
URL https://hal.inria.fr/hal-01139432

[30] R. Cleaveland, J. Riely, Testing-Based Abstractions for Value-Passing Sys-
tems, in: J. P. B. Jonsson (Ed.), Int. Conf. on Concurrency Theory (CON-
CUR’94), Vol. 836 of LNCS, Springer, Heidelberg, 1994, pp. 417–432.

[31] L. Henrio, O. Kulankhina, S. Li, E. Madelaine, Integrated Environment
for Verifying and Running Distributed Components, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2016, pp. 66–83. doi:10.1007/978-3-662-49665-
7 5.

[32] D. Caromel, L. Henrio, A Theory of Distributed Objects, Springer-Verlag
New York, Inc., 2005.

[33] I. A. Mason, C. L. Talcott, Actor languages their syntax, semantics, trans-
lation, and equivalence, Theoretical Computer Science 220 (2) (1999) 409
– 467. doi:http://dx.doi.org/10.1016/S0304-3975(99)00009-2.

[34] M. Dam, K. Palmskog, Location-independent routing in process net-
work overlays, Serv. Oriented Comput. Appl. 9 (3-4) (2015) 285–309.
doi:10.1007/s11761-014-0173-7.
URL http://dx.doi.org/10.1007/s11761-014-0173-7

[35] L. Henrio, M. U. Khan, Asynchronous components with futures: Semantics
and proofs in isabelle/hol, in: Proceedings of the Seventh International
Workshop, FESCA 2010, ENTCS, 2010.

63

[36] L. Henrio, O. Kulankhina, D. Liu, E. Madelaine, Verifying the correct
composition of distributed components: Formalisation and Tool, in: FO-
CLASA, Rome, Italy, 2014.
URL https://hal.inria.fr/hal-01055370

[37] H. Garavel, F. Lang, R. Mateescu, An overview of CADP 2001, European
Association for Software Science and Technology Newsletter 4 (2002) 13–24.

[38] R. Mateescu, D. Thivolle, A Model Checking Language for Concurrent
Value-Passing Systems, in: K. S. J. Cuellar, T. S. E. Maibaum (Ed.),
FM’08, Vol. 5014 of LNCS, Springer, Heidelberg, 2008.

[39] D. Garlan, R. T. Monroe, D. Wile, Acme: Architectural description of
component-based systems, Foundations of component-based systems 68
(2000) 47–68.

[40] T. Bures, P. Hnetynka, F. Plasil, SOFA 2.0: Balancing Advanced Features
in a Hierarchical Component Model, in: Proceedings of SERA 2006, IEEE
CS, 2006, pp. 40–48.

[41] R. Ameur-Boulifa, L. Henrio, E. Madelaine, A. Savu, Behavioural Se-
mantics for Asynchronous Components, Research Report RR-8167, INRIA
(Dec. 2012).
URL http://hal.inria.fr/hal-00761073

[42] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. R. Sachs, Y. Xiong, Taming Heterogeneity - the Ptolemy Approach,
Proceedings of the IEEE 91 (1) (2003) 127–144.

[43] M. Aldinucci, C. Bertolli, S. Campa, M. Coppola, M. Vanneschi, C. Zoc-
colo, Autonomic Grid Components: the GCM Proposal and Self-optimising
ASSIST Components, in: Joint Workshop on HPC Grid programming En-
vironments and COmponents and Component and Framework Technology
in High-Performance and Scientific Computing at HPDC’15, 2006.

[44] P. Merle, J.-B. Stefani, A formal specification of the Fractal component
model in Alloy, Research Report RR-6721, INRIA (2008).
URL http://hal.inria.fr/inria-00338987/en/

[45] F. S. de Boer, D. Clarke, E. B. Johnsen, A Complete Guide to the Future,
in: R. De Nicola (Ed.), Programming Languages and Systems, Vol. 4421 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2007, pp.
316–330. doi:10.1007/978-3-540-71316-6.

[46] F. Plasil, S. Visnovsky, Behavior protocols for software components,
IEEE Transactions on Software Engineering 28 (11) (2002) 1056–1076.
doi:10.1109/TSE.2002.1049404.

64

[47] T. Poch, O. Sery, F. Plasil, J. Kofron, Threaded behavior protocols, Formal
Aspects of Computing 25 (4) (2013) 543–572. doi:10.1007/s00165-011-0194-
3.

[48] J. Kofron, Checking Software Component Behavior Using Behavior Proto-
cols and Spin, in: proceedings of Applied Computing 2007, Seoul, Korea,
2007.

[49] P. André, G. Ardourel, C. Attiogbé, Adaptation for hierarchical compo-
nents and services, Electron. Notes Theor. Comput. Sci. 189 (2007) 5–20.
doi:http://dx.doi.org/10.1016/j.entcs.2007.05.045.

[50] C. Attiogbé, P. André, G. Ardourel, Checking Component Composabil-
ity, in: 5th International Symposium on Software Composition (ETAP-
S/SC’06), Vol. 4089 of Lecture Notes in Computer Science, Springer Verlag,
2006.

[51] P. André, G. Ardourel, C. Attiogbé, Composing Components with Shared
Services in the Kmelia Model, in: 7th International Symposium on Software
Composition, SC’08, Vol. 4954 of LNCS, Springer, 2008.

[52] F. Fernandes, J.-C. Royer, The STSLib project: Towards a formal com-
ponent model based on STS, Electronic Notes in Theoretical Computer
Science 215 (2008) 131–149.

[53] S. Bensalem, M. Bozga, T.-H. Nguyen, J. Sifakis, Compositional verifi-
cation for component-based systems and application, IET Software 4 (3)
(2010) 181–193.

[54] A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,
J. Sifakis, Rigorous Component-Based System Design Using the BIP
Framework, IEEE Software 28 (3) (2011) 41–48.

[55] S. Bensalem, M. Bozga, T.-H. Nguyen, J. Sifakis, D-Finder: A Tool for
Compositional Deadlock Detection and Verification , in: Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France,
June 26 - July 2, 2009. Proceedings, Vol. 5643 of Lecture Notes in Computer
Science, Springer, 2009, pp. 614–619.

[56] A. Basu, M. Gallien, C. Lesire, T.-H. Nguyen, S. Bensalem, F. Ingrand,
J. Sifakis, Incremental component-based construction and verification of a
robotic system, in: ECAI 2008 - 18th European Conference on Artificial
Intelligence, Patras, Greece, July 21-25, 2008, Proceedings, Vol. 178 of
Frontiers in Artificial Intelligence and Applications, IOS Press, 2008, pp.
631–635.

[57] E. Giachino, C. Laneve, M. Lienhardt, A framework for deadlock detection
in ABS, Journal of Software and Systems Modeling (2015) 1–36.

65

[58] E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gómez-Zamalloa,
E. Martin-Martin, G. Puebla, G. Román-Dı́ez, SACO: Static analyzer for
concurrent objects, in: Tools and Algorithms for the Construction and
Analysis of Systems, Vol. 8413 of LNCS, Springer Berlin Heidelberg, 2014,
pp. 562–567. doi:10.1007/978-3-642-54862-8 46.
URL http://dx.doi.org/10.1007/978-3-642-54862-8_46

[59] C. C. Din, R. Bubel, R. Hähnle, KeY-ABS : A deductive verification tool
for the concurrent modelling language ABS, in: Proceedings of the 25th
International conference on Automated Deduction (CADE 2015), Springer,
2015, pp. 517–526.

[60] M. Sirjani, F. S. de Boer, A. Movaghar, A. Shali, Extended rebeca: A
component-based actor language with synchronous message passing, in:
Fifth International Conference on Application of Concurrency to System
Design (ACSD 2005), 6-9 June 2005, St. Malo, France, IEEE Computer
Society, 2005, pp. 212–221. doi:10.1109/ACSD.2005.12.
URL http://dx.doi.org/10.1109/ACSD.2005.12

[61] M. Sirjani, A. Movaghar, A. Shali, F. S. de Boer, Model checking, auto-
mated abstraction, and compositional verification of rebeca models, J. UCS
11 (6) (2005) 1054–1082. doi:10.3217/jucs-011-06-1054.
URL http://dx.doi.org/10.3217/jucs-011-06-1054

66

Appendix A. An operational semantics for pNets

This appendix provides an operational semantics for the pNet model; it is
based on a valuation domain for the variables of the pNet, that can be finite,
infinite, or even contain new variables.

To give a semantics to pNets, we need a unique valuation domain D. This
domain can possibly be a countable instantiation domain for each variable. To
simplify the semantics, we require that it is possible to decide whether a boolean
expression in D is true, and to decide whether two expressions have the same
value (e.g. when two action labels are the same). If we choose a finite domain
for each variable and if each pLTS has a finite set of states, the semantics of the
pNet will be a finite LTS that can be used in a finite-state model-checker.

pNets semantics is expressed as a labelled transition system with one state
for each potential state of the pNet composition; each state correspond to the
composition of the states of all the pLTSs involved in the composition, i.e. all
the leaves of the composition tree. Such states are denoted /si∈Ii . where I
corresponds to the indexes of the leaves. Transition between these nodes are
constructed by composing the synchronisation vectors that allow two pLTSs to
communicate.

We let φ = {xj → Vj |j ∈ J} be a valuation function where xj range over
variables of the considered pNet (each variable must be given a value), and
Vj ∈ D. Such a valuation maintains a mapping from variables to values. For a
term t ∈ T , tφ ∈ D is the value of the term obtained by replacing each variable
by their values given by φ. A valuation can be applied to expressions, actions,
or even indexed sets. In all cases, the variables are replaced by their value and
the new expressions are evaluated. The set of valuation functions, Φ, allows the
precise definition of the state-space to be considered: only valuation functions
such that φ ∈ Φ are considered. We define an update operator + on valuations,
where φ1 + φ2 replaces some of the values defined in φ1 by the ones in φ2; also
φ2 might define new entries, formally:

{xj → Vj |j ∈ J}+{x′j → V ′j |j ∈ J ′} = {x′j → V ′j |j ∈ J ′}∪{xj → Vj |j ∈ J \J ′}
Note that variables could be used locally to each pNet/pLTS, it is thus pos-

sible to use qualified names to avoid collision of variable names in the valuation.
To simplify notations, in the semantics we suppose that variable names are
unique.

Definition 5 (Operational semantics of closed pNets). Let φ0 ∈ Φ be an
initial valuation associating a value to each variable of P . The semantics of a
pNet pNet is an LTS ‖pNet‖Φ = 〈〈SΦ(pNet), S0(pNet),→〉〉 where:

• states are (fully valuated) hierarchical composition of product states of
the sub-pNets, more precisely states are SΦ(pNet), constructed as:

SΦ(〈〈S, s0, L,→〉〉) = {(s, φ)|s ∈ S ∧ φ ∈ Φ}
SΦ(〈〈pNeti∈Ii ,SVk∈K

k 〉〉) = {/si∈Iφi . |φ ∈ Φ ∧ ∀i ∈ Iφ. si ∈ SΦ(pNeti)}
SΦ(Queue(M)) = {(Mjφj)

j∈[1..n]|n ∈ N ∧ ∀j. (Mj ∈M ∧ φj ∈ Φ)}

67

• The initial state S0(P) of P is the composition of initial states:

S0(〈〈S, s0, L,→〉〉) = (s0, φ0)

S0(〈〈pNeti∈Ii ,SVk∈K
k 〉〉) = /S0(pNeti).

i∈Iφ0

S0(Queue(M)) = []

• labels are {αφ|α ∈ Sort(pNet) ∧ φ ∈ Φ};
• and the set of transition is denoted JpNetKΦ, it is defined as the smallest

set verifying the rules below.

φ, φ′, φ′′∈Φ

s
〈α, eb, (xj:=ej)j∈J 〉−−−−−−−−−−−−−→ s′ ∈→ iv(α) = xi∈Ii ∀i ∈ I. Vi ∈ D

ebφ
′=True φ′=φ+{xi→Vi} φ′′ = φ′ + {xj→ejφ

′|j∈J}

(s, φ)
αφ{{(?xi←V i)i∈I}}−−−−−−−−−−−→ (s′, φ′′) ∈ J〈〈S, s0, L,→〉〉KΦ

Tr1

φ, φ′ ∈ Φ αj∈Jj → α ∈ SVk∈K
k ∀i ∈ Iφ \ Jφ. s′i = si

∀j ∈ Jφ. φj ∈ Φ ∧ sj
αjφj−−−→ s′j ∈ JpNetjKΦ φ′ = φ+]{φj}j∈Jφ

/si∈Iφi .
αφ′

−−→ /s′i
i∈Iφ′

. ∈ J〈〈pNeti∈Ii ,SVk∈K
k 〉〉KΦ

Tr2

n ∈ N ∀j ∈ [1..n+ 1].Mj ∈M ∧ φj ∈ Φ

(Mjφj)
j∈[1..n] Q Mn+1φn+1−−−−−−−−−→ (Mjφj)

j∈[1..n+1] ∈ JQueue(M)KΦ
Tr3

n ∈ N ∀j ∈ [1..n].Mj ∈M ∧ φj ∈ Φ

(Mjφj)
j∈[1..n] Serve M1φ1−−−−−−−−→ (Mj+1φj+1)j∈[1..n−1] ∈ JQueue(M)KΦ

Tr4

Note that states of pLTSs and Queues are associated with a valuation, but
states of the pNets also use the valuation to decide (expand) the set of sub-pNets
embedded in the pNet.

Rule Tr1 deals with transitions between states of the pLTS. The resulting
action is obtained by replacing input variables by values that can be received
(in D); φ is also applied to evaluate other parameters, i.e. output expressions.
Only input variables and assigned variables change value in the valuation; the
resulting valuation is obtained by the successive updates from the input variable
assignments, and the explicit assignments from the transition. Remark that
the predicate in a transition is evaluated in a valuation that includes the values
carried by the communication action, allowing for expressing non-local decisions
as in Lotos gate negotiation.

Rule Tr2 deals with transitions between states of the pNet; the resulting
valuation is obtained by the combination of all updates happening in the sub-
pNets involved in the synchronisation (φ]{φj}j∈Jφ in the rule); sub-pNets not
involved in the transition keep the same state. Note that, as pLTSs have disjoint
sets of variables, the domain of each valuation φj should be distinct.

Rule Tr3 and Tr4 defines a simple FIFO behaviour of the Queues.

68

Appendix B. Signature of Behavioural Semantics

The table below shows the signatures of the functions computing the be-
havioural semantics presented here:

Function Signature Description page

J K Component→ pNet basic behavioural semantics 23,
31

J KF1 Component→ pNet behavioural semantics for first-class fu-
tures

40

J Kservice

MethodLabels×
P(MSignature×Desc)
→ pNet

Service methods(not specified here)

J Kbody
P(MethodLabels)×
P(MethodLabels)→ pNet

The body: serves requests in a FIFO
order

24

J KproxyManager MethodLabels→ pNet Manages future proxies 26

J Kproxy MethodLabels→ pNet future proxy 26
overloaded for composite components 32

MethodLabels×GRef
→ pNet

overloaded for first-class futures 40

J KFutDetect MethodLabels→ pNet pLTS detecting a future received as re-
quest parameter

40

J Kdelegate MethodLabels→ pNet Delegation method (in composite com-
ponents)

32

Appendix C. Proof of the Complete Synchronisation Theorem

Let
W = {Q mi(arg) |mi is never invoked}

In order to prove the theorem, one must consider an induction on the structure
of the pNet JCK. And, at each structural level, i.e. in each pNet pNet included
in JCK, we prove that:

• The set of actions emitted by sub-pNets of pNet that is not synchronised
by the synchronisation vectors of pNet is included in W (first line of the
Definition 4, called case 1 in the following).

• Considering the set of actions in the sort of pNet that is not synchronised
because the synchronisation vector is never triggered; this set is included
in W (second line of the Definition 4, called case 2 in the following).

The inclusion of the last line of Definition 4 in W is guaranteed by the fact that
we consider each pNet included in JCK recursively (including the top level). It is
sufficient to prove that, at each level, the unsynchronised actions are included in
W to ensure that the recursive union of those unsynchronised actions is included
in W .

Overall, the proof consists in considering all labels of all sorts of all pNets
pNet in JCK, and showing that each such action is not in Unsynchronised(JCK)

69

or is in W . Also for pLTS, it must be checked that each action appears on at
least one label.

The proof can be organised as a double case analysis, first enumerating ex-
isting labels, then checking that each such label is synchronised by a synchroni-
sation vector, every time it can be emitted. Note that TauMonitor synchronises
implicitly all actions that are of the form a (section 3.3). Thus we only have
to consider, in the synchronisation vectors, actions that are not synchronised
actions. Those actions are emission and reception actions of the following labels
for the base semantics: Q mi, R mi, Serve mi, Call mi, New mi, GetValue mi,
Recycle mi, GetProxy mi. Then one should also consider Forward actions for
first class futures.

Note that in general, concerning arguments, it is easy to check that for
each variable present in the synchronisation vectors one single action defines
the value of this variable and the other instances of the variable are (directly
or indirectly) matched with input variables of pLTSs. However the case is a
little more complicated concerning future indexes: a future proxy with the right
index should exist to allow the synchronisation vector to be triggered.

In this proof sketch, we will focus on only some of the labels: we detail the
cases for Q mi (in any rule of the base semantics), and sketch the proof for
iQ mi (other cases are similar or simpler).
• Q mi(p, args) in the semantics of a primitive component

C = CName < SItf i∈Ii ,CItf j∈Jj ,Mk∈K
k >. Only service methods can emit

Q mi(p, args), thus only the service methods must be considered for the case
1. For case 2, we only have to check that Q mi(p, args) is indeed emitted by
JCK as a result of an emission by a service method.

• Q mi is emitted by a service method SMl = Jml,M
k∈K
k Kservice of a

server interface SItfn then there must be a client interface CItfj ∈ CItf j∈Jj

such that mi ∈ MethLabel(CItfj). Thus, Rule [P2.3] defines the following
synchronisation vector, ensuring the synchronisation of the action Q mi

emitted by the service method:

〈−,−, l 7→Q mi(p, arg),−,−〉 → Q mi(p, arg)

• Q mi ∈ Sort(JCK), by definition of JCK the only synchronisation trig-
gering Q mi is the one above, if the method is invoked by at least one
service method then the existence of the preceding synchronisation vector
is sufficient to conclude; else Q mi ∈W .

• Q mi(p, args) in the semantics of a composite

C = CName < SItf i∈Ii ,CItf j∈Jj ,Compk∈Kk ,Binding >. For case 1, Q mi can
be sent either by the service methods, i.e. the predefined Deleg mi pLTSs, or
by sub-components.

• Concerning service methods, two cases are possible depending whether it
is a method of a client interface or of a server interface (note that the
name of the service method emitting Q mi is mi).

70

For client interfaces, Rule [C3] specifies the following synchronisation vec-
tor for requests emitted by the component:

〈−, R mi(f), i7→Q mi(p, arg),−,−,−〉 → Q mi(p, arg)

It is necessary to check that the body sup-pNet emits the action R mi(f),
i.e. that R mi(f) ∈ Sort(Jml∈L

l Kbody), which is true because mi ∈ ml∈L
l .

The case above deals with the only synchronisation vector emitting re-
quests, i.e. the only case where case 2 has to be considered. The argu-
ment above ensures that each of the synchronisation vector of JCK emitting
Q mi can be triggered and thus each Q mi in Sort(JCK) is synchronised.

Concerning methods of the server interfaces; consider a server interface
SItfj and a method mi ∈ MethLabel(SItfj). Rule [C5.1] defines the fol-
lowing synchronisation vector that deals with Q mi :

〈−, R mi(f), i7→Q mi(q, arg),−,−, k 7→iQ m′i(q, arg)〉 → Q mi(q, arg)

Indeed, as the component is complete, there must be a binding between
the internal interface SItfj of the composite and a server interface of a

sub-component, i.e. (CName.Name(SItfj),Compk.SI2) ∈ Binding. Addi-
tionally, by definition of well-formed components, the type SI2 must be a
subtype of the type of SItfj ; consequently m′i ∈ MethLabel(SItf2) (where
SItf2 is the interface named SI2 and m′i = mi{{Name(SItfj) ← SI2}})
and iQ m′i(q, arg) ∈ Sort(JCompkK). Finally, as mi ∈ ml∈L

l , we have
R mi(f) ∈ Sort(Jml∈L

l Kbody). This shows that the synchronisation vec-

tor can be triggered.

• Concerning request emission by sub-components, there is a client interface
CItf of Compk, such thatmi ∈ MethLabel(CItf). As the component is fully
connected, the client interface must be connected, two cases are possible:

– Either there is a server interface SItf of another sub-component
Compk′ such that CItf is bound to SItf in bindings:
(Compk.Name(CItf),Compk′ .Name(SItf)) ∈ Binding. In that case,
Rule [C7.1] defines the following synchronisation vector that synchro-
nises Q mi:

〈−,−,−,−,−, (k 7→Q mi(f, arg), k′ 7→iQ m′i(f, arg))〉 → Q mi(f, arg)

Additionally, because of subtyping entailed by bindings we have m′i ∈
MethLabel(SItf2) (where m′i = mi{{Name(CItf)← Name(SItf)}}) and
iQ m′i(f, arg)) ∈ Sort(JCompk′K). The synchronisation vector can
thus be triggered.

– Else, the client interface must be connected to an interface SItf
of the component C: (Compk.Name(CItf),Name(C).Name(SItf)) ∈
Binding. In that case, Rule [C6.1] synchronises the request emission

71

with the acceptance of the request by the queue of C, according to
the following synchronisation vector:

〈iQ m′′i (f, arg),−,−,−,−, k 7→Q mi(f, arg)〉 → Q m′′i (f, arg)

where m′′i = mi{{Name(CItf)← Name(SItf)}}. Because of sub-typing,
the queue must accept the incoming request.

• The case of iQ mi

Showing that iQ mi actions are synchronised is mostly similar to the cases
above. iQ mi actions received by the queue are always synchronised. We use
here the fact that we forbid sub-typing Indeed, in a composite if iQ mi can
be received by a sub-pNet corresponding to a sub-component, then this request
invocation may not be sent by the sub-component connected to it for sub-typing
reasons. In the conditions stated in the theorem however, this case raises no
particular difficulty.

72

