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Abstract

The Kmelia component model is an abstract formal component model based on services. It is dedicated to
the specification and development of correct components. This work enriches the Kmelia language to allow
the description of data, expressions and assertions when specifying components and services. The objective
is to enable the use of assertions in Kmelia in order to support expressive service descriptions, to support
client/supplier contracts with pre/post-conditions, and to enhance formal analysis of component-based sys-
tems. Assertions are used to perform analysis of services, component assemblies and service compositions.
Additionally we enable the definition of virtual contexts for required services and the corresponding observ-
able state space for the components which provide the services. We illustrate the work with the verification
of consistency properties involving data at component and assembly levels.
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1 Introduction

In the design of service and component-based software systems, formal models are
helpful to specify and document components and systems, to find components and
services in libraries according to formal search requirements, to check various kind of
properties (correctness, liveness, safety) for component certification, to refine mod-
els and generate executable components. Formal models are mandatory to build
trusted components [24]. In [9], we proposed a formal component model, called
Kmelia, where i) the services are more than simple operations; they includes con-
tracts, communication interactions, dynamic evolution rules and composition, ii) the
components are designed independently from their environment by setting assump-
tions, iii) the component assemblies are governed by strict service composability
rules, iv) the composite components are governed by encapsulation and promotion
policies.
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The Kmelia model [9] is an abstract formal component model dedicated to the
specification and development of correct components; abstract means that compo-
nent and assemblies are independent from execution platforms. They can be imple-
mented later in centralised or distributed execution platforms. The formal definition
of concepts is necessary to express and to ensure the verification of system specifica-
tion properties. One key feature of Kmelia is the central role of services. A service
specification describes a behaviour that corresponds to some desired functionalities.
Assembling two components consists in linking their required and provided services.
Linking components by their services in assemblies establishes a possible bridge to
Service Oriented Architectures.

In [9] we introduced the syntax and semantics for the core model and language.
It has been incrementally enriched later. We focused on the dynamic aspects of
composition: interaction compatibility in [9], on component protocols with service
composition in [7]. Following this incremental approach, we consider in the current
article an enrichment of the data and expressions in Kmelia and its impact on the
language syntax, its semantics and the verification of properties. Our objective is
twofold:

• Enable the definition of assertions (with invariant, pre/post conditions, and prop-
erties of services, components, and composites),

• Increase the expressiveness of the action statements so as to deal with real size
case studies.

Assertions are useful i) to define contracts 1 on services (with pre/post-conditions);
contracts increase the confidence in assembly correctness (by constraining the pre/post-
conditions of the involved services) and enable rich query expression when searching
for a component in libraries, ii) to ensure the consistency of components with re-
spect to the invariant. The actions implement a functional part of the services which
should then be proved to be consistent with the contracts. Therefore the correctness
verification aspects of the Kmelia model is enhanced via the use of assertions.

Motivations. Modelling real life systems requires to cover the static and dynamic
aspects of components (structure, links, actions, interactions). We want to verify
early the development step, whether assemblies are well-formed; it is important to
cover structural, dynamic and functional aspects of systems to tackle various kind
of applications. The state of the art shows that most of the abstract component
models [4,15,28,14] enable various verifications of the interaction correctness but they
lack expressiveness on the data types; they do not provide assertions and the related
verification rules. As an example, in Wright the dynamic part based on CSP is well
detailed (specification and verification) while the data part is less well dealt with [4].
In the proposal of [26] the data types are defined using algebraic specifications, which
are convenient to use symbolic model checking of state transition systems but this
proposal does not deal with contracts and assertions.

Contribution. In this work, we enrich the Kmelia model with data and assertions
in order to cover the whole static and dynamic aspects and hence to deal with safe

1 Our contract definitions are related to results of works such as design-by-contracts [23].
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services, consistent components and correct contract-based assemblies. First, the
Kmelia language is enriched with data and assertions so as to cover in an homoge-
neous way structural, dynamic and functional correctness with respect to assertions.
Second, we deal with state space visibility and access through different levels of
nested components; in addition to service promotion we define variable promotions
and the related access rules from component state in component compositions. Last,
feasibility of proving component correctness using the assertions is introduced. We
show how structural correctness is verified and how the associated properties are
expressed with the new data language.

The article is structured as follows. Section 2 gives an overview of the Kmelia
abstract model and introduces its new features. In Section 3 a working example is
introduced to illustrate the use of data and assertions. The formal analysis is treated
in Section 4; we present various analysis to be performed, the ones that are currently
implemented and we focus on component consistency and on checking assembly links.
Section 5 concludes the article and draws discussions and perspectives. This work is
supported by the COSTO tool which is presented during the tool demo session of the
conference; In the appendix A we give an extract of the Kmelia syntax concerning
the new data part. An overview of COSTO is given in Appendix B.

2 The Kmelia Model and its new Features

The main concepts of Kmelia are: component, service, assembly and composition.
A component is a container of services. A service is a complex entity: it has a
state and a dynamic behaviour; a service may also declare required and provided
subservices. The service behaviour defines the order in which the service performs its
actions. Communication actions are primitives for synchronous interactions between
services. In a component assembly, components are pairwise linked through services:
a required service is achieved by the provided service it is linked to. A composite
component encapsulates a component assembly.

In this section we revisit the Kmelia model of [9] which is augmented and restruc-
tured. In particular the following features are introduced:

(i) a notion of observability similar to a read-only visibility in programming, which
allows to make the state information of a provider component available to clients
or composite components;

(ii) a refined definition of required services allowing constraints on a virtual state
space, i.e. assumptions on provider components which are not known when
designing the services;

(iii) a more flexible message naming rule; now two communicating services can
use different service names, which is consistent with the independent design of
providers and clients;

(iv) state and message mappings in the assembly links to handle the correspondence
between the provider components and the required service contexts.

These new features are related to service actions, assertions and contracts. We
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designed a small but expressive data language to enable the description of datatypes,
expressions and predicates (quick overview in appendix A).
In the following we use a mathematical toolkit inspired by the Z notation. X ↔ Y

denotes the relations from X to Y (x �→ y denotes a pair (x, y) member of a relation);
X1�X2 denotes the disjoint union of sets; X �→ Y denotes the partial functions from
X to Y ; X ��→ Y denotes the partial one-to-one functions from X to Y ; id denotes
the identity relation; when r is a relation (r : X ↔ Y ), dom(r) and ran(r) denote
respectively the domain and the range of r; E � r and r � F denote respectively
the domain and the range restrictions of a relation r where E ⊆ X and F ⊆ Y .

Definition 2.1 A state space W defines a set of variables constrained by an invari-
ant and an initialisation: W = 〈T, V, type, Inv, Init〉 where T is a set of types, V

a set of variables, type : V → T the function that map variables to types, Inv an
invariant defined on V and Init the initialisation of the variables of V .

The state space concept is used for both components and services. In the following
N is a finite set of names and Let M is the set of message names with M ⊆ N .

2.1 Components

The component definition in [9] has been restructured: the set of actions A is deferred
to Kmelia expressions and the constraint CS is now achieved by service properties
like the protocols of [7].

A component (type) C is a tuple 〈W, I,D, ν〉 with:

• W the component the state space
(see definition 2.1).

• I ⊆ N the component interface, par-
titioned in two disjoint finite sets I =
IP �IR where P stands for provided
and R stands for required.

• D is the set of service descriptions,
as detailed in Section 2.2. Like I, D
is partitioned along the provided/re-
quired criteria: D = DP � DR.

• ν is a partial function which maps
service names to service descriptions
(ν : N ��→ D).

Listing 1: Component structure
COMPONENT C1

INTERFACE
p r o v i d e s : <ServName l i s t>
r e q u i r e s : <ServName l i s t>

// component s t a t e space
TYPES

<Type Defs>
VARIABLES

<Var l i s t>
INVARIANT

<P r e d i c a t e>
INITIALIZATION

. . .
// va r . a s s i gnmen t s

// component s e r v i c e s
SERVICES

. . .
// as d e s c r i b e d below

END_SERVICES

The component interface must be consistent with the service description: (1)
provided and required services have distinct names: dom(ν � DP ) ∩ dom(ν �
DR) = ∅ and (2) the services in the interface of the component are a subset of the
services described in the component: IP ⊆ dom(ν � DP ) ∧ IR ⊆ dom(ν � DR).

Observability of the component state. To preserve the abstraction and en-
capsulation of components, the state of a component is accessed only through its
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provided services. Nevertheless to understand the specification of a service (i.e.
its contract) we might need to observe its context (a part of its component state
space). Similarly a composite component needs to observe informations from its
components.Thus, we distinguish the observable part V O of the state variables
(V O ⊂ V ), the observable part (InvO) of the invariant (InvO is defined on V O)
and the pre/post-conditions are written accordingly (with the rules of Section 2.2).

2.2 Services

The behaviour of a component relies on the behaviours of its services. A service
describes a functionality and a behaviour using actions combined with a labelled
transition system. A service is started when it is called (by a client service), it is
then said to be activated and should evolve until it reaches its final state.

A service shares the state space of its component with other services of the same
component. During its evolution a service s may call other services or communicate
with them using messages. All the interacting services of s are defined in the in-
terface of s. Due to dependencies and interactions between services, the actions of
several activated services interleave or synchronise, but only one action of an acti-
vated service may be observed at a time.

Formally a service s of a com-
ponent C is defined by a tuple
〈σ, IS,Cont,WL,B〉 with:

• σ = 〈s, param, ptype, Tres〉 the ser-
vice signature where s is the ser-
vice name, param a set of parame-
ters, ptype : param → T the func-
tion mapping parameters to types
and Tres ∈ T the service result type;

• IS the service interface as detailed
below;

• Cont = 〈Pre, Post〉 the service con-
tract where Pre is the pre-condition
and Post the post-condition;

• WL the local state space (defini-
tion 2.1) which is used only in the
service behaviour B;

• B the service behaviour; it is an
extended labelled transition system
(eLTS) as defined below.

Listing 2: Service structure
p r o v i d ed aServ i ce_1

(<param>) : <Resu l tType>

I n t e r f a c e
s u bp r o v i d e s : <Serv l i s t>
c a l r e q u i r e s : <Serv l i s t>
e x t r e q u i r e s : <Serv l i s t>
i n t r e q u i r e s : <Serv l i s t>
. . .

Pre <P r e d i c a t e>

Va r i a b l e s # l o c a l s t a t e space
<Var l i s t>

I n i t i a l i z a t i o n
. . . // va r . a s s i gnmen t s

Behav io r
I n i t < i n i t i a l s t a t e>
F i n a l < f i n a l s t a t e s>
//eLTS
{<t r a n s i t i o n l i s t>}

Post <P r e d i c a t e>

End

r e q u i r e d aServ i ce_2 ( )
. . . // i n the same way

The service interface IS is defined by a tuple 〈DI, μ,WV 〉 where
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• DI is the service dependency ; it is composed of the services which the current
service depends on. DI is made of four disjoint sets 〈sub, cal, req, int〉 where
sub ⊆ dom(ν � DP ) (resp. cal ⊆ dom(ν � DR)), req ⊆ dom(ν � DP ), int ⊆
dom(ν � DP )) contains the provided service names (resp. the ones required from
the caller, from any component or from the component itself) in the scope of s.

• μ = 〈mname, mparam, mptype〉 is a set of message signatures where mname ∈
M, mparam and mptype are as in service signature;

• WV is a virtual state space according to definition 2.1;

The behaviour B of a service s is a labelled transition system (LTS) extended by
the use of nested states (via a state annotation function) and nested transitions (by
specific labels). Therefore B is an eLTS defined by a tuple B = 〈S, L, δ,Φ, S0, SF 〉
with S the set of the states of s; L is the set of transition labels (possibly guarded
combinations of actions [guard] action*) and δ is the transition function (δ ∈
S × L → S); S0 is the initial state (S0 ∈ S); SF is the finite set of final states
(SF ⊆ S); Φ is a state annotation function (Φ ∈ S → subs). An action is now
a Kmelia expression. An elementary action (an assignment for example) does not
involve other services and does not use a communication channel. A communication
action is either a service call/response or a message communication. The full details
on defining and verifying services behaviour are provided in references [9,7].

The new following new features are consequences on services of the component
observability. In particular a provided service can use an observable variable in its
pre condition (e.g. a service addElement should not be called when the observable
component variable isFull is evaluated as true). Consequently, a required service may
define a virtual context to set assumptions on what should be a provider component.

Virtual state spaces. A required service of a component is an abstraction of a
service provided by another component. Since that component is unknown when
specifying the required service, it is necessary to "imagine" its state, which we call
a virtual state space (namely WV ). For a provided service this virtual context is
always empty.

Observability vs. service assertions. Let s be a service of a component C. The
distinction between observable and non-observable variables of the component state
space is revisited 2 according to the following tables. The first table indicates the
accessible state spaces for a service.

Service Variables Invariant
state space Observable part Non-observable part Observable part Non-observable part
Provided s V O V InvO Inv

Required s V V V InvV Inv

The second table indicates how service assertions are splitted in observable/non-
observable parts and makes it precise which variables are accessible in each part.

2 it is not a partition here because of the supplementary variables in param and result.
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Service pre-condition post-condition
Assertions Observable Non-observable Observable Non-observable
scope PreO PreNO PostO PostNO

Provided s V O ∪ param none V O ∪ param ∪ { result } V ∪ param ∪ { result }
Required s V V ∪ param V ∪ param V V ∪ param ∪ { result } none

Fig. 1. State variables scope and assertion scope

Fig. 1 summarises the relations between state spaces, observability and service
contracts. The box denotes a component a:A. The grey (resp. white) "funnel"
denotes provided (resp. required) services. The observable pre/post-conditions of
service provA (resp. reqA) refer to the observable state VO of a (resp. the virtual
state VV of reqA). A non-observable pre-condition of a required service reqA gives
call conditions on the (caller) component state variables V of a. The non-observable
post-condition of a service provA locally refers to the whole state V of a and should
establish the non-observable part of the invariant of a.

2.3 Assembly and composite

Components are composed through their references by assembly links in compo-
nent assemblies or by promotion links in composite components. A link is an
abstract communication channel which connects two distinct services. A sublink is
a link defined in the context of another link according to the service dependency
structure (cal and sub).

A component reference is one element of a component (type). A component
reference is denoted by c :C where C is a component. The access to a state variable
v of c is denoted c .v. By murdering the language we will use the term ’component’
for both the type and the reference.

Let C be a set of component ck : Ck with k ∈ 1..n and Ck = 〈Wk, Ik,Dk, νk〉.

BaseLink ⊆ (C × N × C ×N ) is a set of quadruples such that :
(1) ∀(ci, n1, cj , n2) : BaseLink • n1 ∈ dom νi ∧ n2 ∈ dom νj

(2) ∀ci : C, n1 : dom νi • (ci, n1, ci, n1) /∈ BaseLink

SubLink : BaseLink ↔ BaseLink

(3) ∀(l1, l2) ∈ SubLink • (l2, l1) /∈ SubLink∗

where dom νi is the set of service names of component Ci and SubLink∗ is the
transitive closure of the relation SubLink. (1) expresses that any basic link relates a
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service name of a component to a service name of another component; (2) expresses
that a service name cannot be linked to itself and (3) there is no circular dependency
in the links.

2.3.1 Component assembly
An assembly is a set of components that are linked (horizontal composition) through
their services. An assembly link associates a required service to a provided one. A
communication channel is established between the interacting services when assem-
bling components. A channel defines a context for the communication actions of
the service behaviour. Since a behaviour is written without knowing the component
with which it will communicate, one has to know at least the channel dedicated
to the communication. A channel is usually named after the required service that
represents the context. The placeholder keyword CALLER is a special channel that
stands for the channel open for a service call. From the point of view of a provided
service p, CALLER is the channel that is open when p is called. From the point of view
of the service that calls p, this channel is named after one of its required service,
which is probably named p. The placeholder keyword SELF is a special channel that
stands for the channel open for an internal service call. In this case, the required
service is also the provided service.

The new features are the mappings we have introduced in the links.

Context and message mappings in assembly links. The ultimate goal is
to connect a required service defined in its virtual context to a provided service
defined in its observable context (the observable state space of its component). The
signatures matching and the dependency mapping (via sublinks) were introduced
in [9]. Here we add a context mapping and a message mapping. The former is
the consequence of the introduction of the virtual context concept. The virtual
state space variables sr of a component cr : CR must be “instantiated” using the
observable variables sp of a component cp: CP. The latter enables different message
names since the required service communication actions are designed independently
from the provided service communication actions. Currently, each message name of
sr is mapped to a message name of sp. If more flexibility is needed e.g. parameters
re-ordering, one can use adaptation mechanisms [6].

Fig. 2 extends Fig. 1 to assemblies and composite components. The boxes denote
components (a, b) and composite (c). The conditions given with Fig. 1 are the basis
to check the contracts supported by the assembly links and the promotion links.
In particular the virtual state VV of reqB should map with a subset V of a. Non-
observable pre-conditions (resp. post-conditions) are meaningless for a provided
service (resp. required service) because they prevent safe assembly and promotion
contracts.
Formally an assembly-type A is a tuple 〈C, alinks, subs, vmap, mmap〉 where

• C is a set of component references ck such that ck : Ck with k ∈ 1..n,
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Fig. 2. State variables scope and assertion scope in assemblies

• alinks is a set of assembly links between services of C such that

alinks ⊆ BaseLink ∧
(1) (∀(ci, n1, cj , n2) : alinks • ci ∈ C ∧ cj ∈ C ∧
(2) ((n1 ∈ IP

i ∧ n2 ∈ IR
j ) ∨ (n1 ∈ IR

i ∧ n2 ∈ IP
j )))

that is to say: the link components are those of the assembly (1); the linked
services have a symmetric nature required-provided (2).

• subs denotes links included in other links:

subs ⊆ SubLink ∧
(3) (dom subs − ran subs) ⊆ alinks ∧
(4) (∀((ci, n1, cj , n2) �→ (ck, n3, cl, n4)) ∈ subs • ci = ck ∧ cj = cl) ∧
(5) (∀(ci, n1, cj , n2) : ran subs • ((νi(n1) ∈ DP

i) xor (νj(n2) ∈ DP
j)))

that is to say: Sublink depends on other links (3) of the same components (4);
the required services are linked to the provided one (2),(5).

• vmap = 〈vmapV ar, vmapExp〉 is the context mapping function associated to
links such that

vmapV ar : BaseLink ↔ V

vmapExp : (BaseLink × V ) �→ exp(V )
(6) dom vmap ⊆ (alinks ∪ subs) ∧ dom vmapExp = vmap ∧
(7) (∀(ci, n1, cj , n2) : dom vmap • vmap(|(ci, n1, cj , n2)|) = V V

ν(n2) ∧
(8) var(vmapExp(ci, n1, cj , n2)) ⊆ V O

Ci
)

where exp(V ) denotes an expression over the variables of V and var(exp(V )) = V .
These formula express that the links of the context mapping are those of the
assembly (7). The mapped variables are those of the virtual state space variables
of the required service n2. The mapping expression is built using the observable
variables of n1 (8).
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• mmap is the message mapping function associated to links such that

mmap : BaseLink ↔ M×M
(9) dom mmap ⊆ (alinks ∪ subs) ∧ (∀(ci, n1, cj , n2) ∈ dom mmap •
(10) (∀(m1, m2) ∈ mmap(|(ci, n1, cj , n2)|) • m1 ∈ μs1 ∧ m2 ∈ μs2))

The links of the message mapping are those of the assembly (9). The mapped
messages are those of the linked services s1 and s2 (10).

Listing 3: Assembly links
Assembly

Components
cp : CP ;
c r : CR

L ink s // −−−−−−−−assemb ly l i n k s−−−−−−−−−−
@la : p−r cp . p rovSe r v c r . r e qSe r v

con t e x t mapping
c r . va r1 = exp r ( cp . varA , cp . varB . . . ) ,
c r . va r2 = exp r ( cp . varA , cp . varB . . . ) ,

message mapping
p rovSe r v . msg1 = r e qSe r v . msgA
provSe r v . msg2 = r e qSe r v . msgB

s u b l i n k s : { l a s ub }
// −−−−−−−−s u b l i n k s−−−−−−−−−−−−−
@lasub : r−p cp . subReq c r . prov
. . .

End // assemb ly

As an illustration, let consider the assembly example of Listing 3. Two com-
ponents cp:CP and cr :CR are assembled by an assembly link named @la; this link
expresses that the required service reqServ of cr is implemented by the provided
service provServ of cp. The p−r prefix denotes the link direction (from provided
to required). The context mapping associates an expression built on the observable
variables varA, varB. . . of the component cp to the var1,var2. . . variables of the virtual
context of reqServ. The message mapping associates msg1 of provServ to msgA of
reqServ. The sublinks must be consistent with the service dependencies. For exam-
ple, if the provided service provServ requires the service subReq in its calrequires
dependency, then a sublink must be associated to a service prov provided by the
component cr or in the subprovides dependency of the service reqServ.

2.3.2 Composite
A composite is a component that encapsulates assemblies or other components.
Some features (variables and services) of the nested sub-components can be pro-
moted at the composite level. In a previous version [9], we defined promotion links
to promote services with possible service renaming. Promotion is extended here to
state variables promotion and it permits pre-condition weakening and post-condition
strengthening with respect to the state variable promotion. We current apply the
same observability schema for assembly clients or composite clients except that ob-
servable variables can be promoted at the composite level.

State variables promotion. An observable variable vo from a sub-component
c : C can be promoted as a variable vp of a composite component (the syntax
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for that is: vp FROM c.vo). The promoted variables retain their types and are
accessed in their effective contexts using a service of the sub-component that owns
the variables. This guarantees the encapsulation principle.

Formally a composite-type is a tuple CC = 〈C,A, plinks, pvars〉 where

• C = 〈W, I,D, ν〉 is a component type as defined in Section 2.1. The default
predefined composite component is SELF: C.

• A = 〈C, alinks, subs, vmap, mmap〉 is an assembly definition as in Section 2.3.1.
• plinks is a set of promotion links between services of A which are unused in alinks:

plinks ⊆ BaseLink ∧ (∀(ci, n1, cj , n2) : plinks •
(1) ci ∈ C ∧ cj = SELF ∧
(2) ((n1 ∈ IR

j ∧ n2 ∈ dom νR) ∨ (n1 ∈ IP
j ∧ n2 ∈ dom νP )) ∧

(3) (∀ck ∈ C, n3 ∈ Ik • (ci, n1, ck, n3) /∈ alinks ∧ (ck, n3, ci, n1) /∈ alinks) ∧
(4) ν(n2) = rename(ν(n1), n2))

where dom ν is the set of service names of the composite, rename(s, n) is a func-
tion that returns the service s renamed by n.

• pvars is the promotion mapping function such that

pvars : (C × V ) ↔ V

(5) (∀(ci, vp) : dom pvars • vp ∈ V O
Ci

∧ type(vp) = type(pvars(ci, vp)))

A promotion link associates the SELF component to one of the assembly compo-
nents (1). The promoted services keep their nature (provided or required) (2). The
promoted services are not linked in the assemblies (3). The promoted service defi-
nition is the one of the sub-component up to a service renaming (4). The promoted
variables are observable variables in their owner sub-component and have the same
type in the composite (5).

The newly introduced features (data language, observability, virtual context) are
expressive means to describe contracts. Section 3 illustrates them.

3 A Working Example

In this section we illustrate the Kmelia language by specifying a simplified Stock
Management system ; the new features of Kmelia are also discussed. This system
manages product references (catalog) and product storage (stock). The main service
models a vending process. The system administrators have specific rights, they can
add or remove references under some business rules such as: "a new reference was
not in the catalog" or "a removable reference must have an empty stock level".

The system is designed as a reusable component StockSystem providing a (pro-
moted) vending service and requiring an authorisation service. It encapsulates an
assembly of two components: sm:StockManager and ve:Vendor as depicted in Fig. 3.
The former is the core business component to manage product references and stor-
age. The latter models a vendor user interface. With the vending service, a user may
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Fig. 3. Simplified Assembly of the Stock Case Study

add a new item in the stock management using the required service addItem. The
required service addItem is fulfilled with the provided service newReference which
gets a new reference and performs the update of the system if there is an available
new reference (see Listing 5).

Links and sublinks are explicitly defined in the composite component, as detailed
in Listing 7. The nested services in Fig. 3 represent the service dependency DI.
As example, the required service addItem provides a subservice named code. This
will be detailed in the Listing 4. The different arrows represent various kinds of
call: function call (with no side effects) or service call (according to the service
dependency DI). The service newReference calls a display function (declared in
the predefined Kmelia library), a service getNewReference internally required (from
the same component), the service ask_code required from its caller and a service
authorisation which is externally required.

Data types in Kmelia. The data types are explicitly defined in a TYPES clause,
in the shared libraries (predefined or user-defined). The following library (named
Stocklib) declares some specific types, functions and constants. The data types in
this part are rather concrete; more abstract data types are in the process to be
included in the predefined library.

TYPES
Product I tem : : s t r u c t { i d : I n t e g e r ; desc : S t r i n g ; qu an t i t y : I n t e g e r } ;

CONSTANTS
maxRef : I n t e g e r := 100 ;
emptySt r i ng : S t r i n g := "" ;
noRe f e r ence : I n t e g e r := −1 ;
noQuant i ty : I n t e g e r := −1

A Kmelia component and observable state. The Listing 4 shows an ex-
tract of the Kmelia specification of the StockManager component. The state of
StockManager declares an observable variable catalog which will be available for a
context mapping. Two arrays ( plabels and pstock) are used to store the current
references labels and available quantities. The invariant is a set of named predicates
[obs] [@name]: <pred_expr>, where labels in front of the assertion are (optional)
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predicate names. The prefix obs means that the predicate belongs to InvO. As
example @borned states that the catalog has an upper bound; @referenced estab-
lishes that all references in the catalog have a label and a quantity; @notreferences
expresses that the unknown references have no label and no quantity.

Listing 4: Kmelia specification of StockManager State
COMPONENT StockManager
INTERFACE

p r o v i d e s : { newRefe rence , r emoveRe fe rence , s t o r e I t em , o rd e r I t em }
r e q u i r e s : { a u t h o r i s a t i o n }

USES {STOCKLIB}
TYPES

Re f e r en c e : : range 1 . . maxRef
VARIABLES

vendorCodes : s e tOf I n t e g e r ; // a u t h o r i s e d a dm i n i s t r a t o r s
obs c a t a l o g : s e tOf Re f e r en c e ; // produc t i d = i n d e x o f the a r r a y s
p l a b e l s : a r r a y [ Re f e r en c e ] o f S t r i n g ; // produc t d e s c r i p t i o n
ps tock : a r r a y [ Re f e r en c e ] o f I n t e g e r // produc t q u an t i t y

INVARIANT
obs @borned : s i z e ( c a t a l o g ) <= maxRef ,
@re f e r e n c ed : f o r a l l r e f : Re f e r en c e | i n c l u d e s ( c a t a l o g , r e f ) i m p l i e s
( p l a b e l s [ r e f ] <> emptySt r i ng and ps tock [ r e f ] <> noQuant i ty ) ,
@no t r e f e r e n c ed : f o r a l l r e f : Re f e r en c e | e x c l u d e s ( c a t a l o g , r e f ) i m p l i e s
( p l a b e l s [ r e f ] = emptySt r i ng and ps tock [ r e f ] = noQuant i ty )

INITIALIZATION
ca t a l o g := emptySet ;
vendorCodes := emptySet ; // f i l l e d by a r e q u i r e d s e r v i c e
p l a b e l s:= a r r a y I n i t ( p l a b e l s , emptySt r i ng ) ; // c o n s i s t e n t w i th . .
ps tock := a r r a y I n i t ( p s tock , noQuant i ty ) ; // . . empty c a t a l o g

A Kmelia service with its assertions. Listing 5 shows the specification of
newReference, one of the service provided by StockManager. Its pre-condition ex-
presses that the catalog does not reach its maximal size. The prefix obs means
that the predicate @resultRange belongs to PostO. The observable post-conditions
state that we may have a result ranging in 1. .maxRef or noReference ; in the latter
case the catalog remains unchanged. The non-observable post-condition (without
the prefix obs) indicates how the non-observable state variables plabels and pstock
would evolve.

Listing 5: Kmelia specification of the newReference Service
p r o v i d ed newRefe rence ( ) : I n t e g e r // Re su l t = Produc t Id or noRe f e r ence
I n t e r f a c e
c a l r e q u i r e s : {ask_code} #r e q u i r e d from the c a l l e r
i n t r e q u i r e s : { getNewReference }
Pre
obs s i z e ( c a t a l o g ) < maxRef #the c a t a l o g i s not f u l l

Va r i a b l e s # l o c a l to the s e r v i c e
c : I n t e g e r ; # c : i n pu t code g i v en by the u s e r
r e s : Re f e r en c e ;
d : S t r i n g ; # product d e s c r i p t i o n

I n i t i a l i z a t i o n
r e s := noQuant i ty ;

Behav io r
I n i t i # the i n i t i a l s t a t e
F i n a l f # a f i n a l s t a t e
//{eLTS see f i g u r e below}
Post
obs @re su l tRange : ( ( Re s u l t >= 1 and Re su l t <= maxRef ) o r ( Re s u l t=noRe f e r ence ) ) ,
obs @ r e s u l tVa l u e : ( Re s u l t <> noRe f e r ence ) i m p l i e s ( no t I n ( o l d ( c a t a l o g ) , Re su l t )
and c a t a l o g = add ( o l d ( c a t a l o g ) , Re su l t ) ) ,
obs @no r e s u l tVa l u e : ( Re s u l t = noRe f e r ence ) i m p l i e s Unchanged{ c a t a l o g } ,
@refAndQuant i ty : ( Re s u l t <> noRe f e r ence ) i m p l i e s
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( p s tock [ R e s u l t ] = 0 and p l a b e l s [ R e s u l t ] <> emptySt r i ng and
( f o r a l l i : Re f e r en c e | ( i <> Re su l t ) i m p l i e s
( p s tock [ i ] = o l d ( p s tock ) [ i ] and p l a b e l s [ i ] = o l d ( p l a b e l s ) [ i ] ) ) ) ,
@NorefAndQuant ity : ( Re s u l t = noRe f e r ence ) i m p l i e s Unchanged{ ps tock , p l a b e l s }

End

Fig. 4. Behaviour of the newReference service exported by the COSTO tool

The behaviour of the service newReference is not presented in its textual form but
its graphical representation is given Fig. 4. It is is obtained by a dot translator of
the COSTO tool (dedicated to the Kmelia model, Sec.4). Remind that a transition
label is a guarded combination of actions. The communication actions are noted
channel(comOp) message(param*) where the communication operators comOp are
send (!) or receive (?) a message, call (!!) or result(??) a service. The channel
_CALLER is used for the caller service, _SELF is used for a service of the same
component (internal call), _rs stands for a required service. In Fig. 4, the behaviour
of newReference consists to ask a vendor code if the returned code is referenced into
the vendorCodes, then get a product description d and add it to the catalog. In any
case the service returns the operation status to the caller.

Virtual state space of a required service. The Listing 6 shows the specification
of the required service addItem of the component Vendor. A required service set
assumptions on its provider by setting a virtual state space (page 6). In the Listing 6,
the virtual variables of addItem represent the Vendor view of a catalog: it is only
concerned by asking whether it is empty or full. The pre/post-condition are written
accordingly.

Listing 6: Kmelia specification of addItem
r e q u i r e d addItem ( ) : I n t e g e r
I n t e r f a c e

s u bp r o v i d e s : { code }
V i r t u a l V a r i a b l e s

c a t a l o g F u l l : Boolean ;
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cata logEmpty : Boolean // p o s s i b l y c a t a l o g S i z e
V i r t u a l I n v a r i a n t not ( cata logEmpty and c a t a l o g F u l l )
Pre not c a t a l o g F u l l
//No LTS
Post ( Re s u l t <> noRe f e r ence ) i m p l i e s ( not cata logEmpty )

End

In Listing 7 we describe the composite StockSystem, it is an extract of the textual
representation of Fig. 3. The composite StockSystem is defined with an assembly
which includes the sub-components sm:StockManager and ve:Vendor. The assembly
links and sublinks connect the sub-component services. The promotion links set the
services vending and authorisation at the composite level.

Listing 7: Kmelia specification of StockSystem
COMPONENT StockSystem
INTERFACE

p r o v i d e s : { vend ing }
r e q u i r e s : { a u t h o r i s a t i o n }

COMPOSITION
Assembly

Components
sm : StockManager ;
ve : Vendor

L i nk s // ////////// assemb ly l i n k s //////////
l r e f : p−r sm . newRefe rence , ve . addItem

con t e x t mapping
ve . cata logEmpty == empty (sm . c a t a l o g ) ,
ve . c a t a l o g F u l l == s i z e (sm . c a t a l o g ) = MaxInt

s u b l i n k s : { l c od e }
l c od e : r−p sm . ask_code , ve . code

. . .
End // assemb ly
Promotion

L i nk s // ////////// promot ion l i n k s //////////
l v e nd : p−p ve . vend ing , SELF . vend ing
l a u t : r−r sm . a u t h o r i s a t i o n , SELF . a u t h o r i s a t i o n

END_COMPOSITION

Context and message mappings. The context and message mappings (see Sec-
tion 2.3.1) are specified into the assembly links. In Listing 7, the variables of the
virtual state space of the required service addItem are associated with an expression
of the variables of the context of the provided service newReference i.e. the ob-
servable state variables of the component sm. In this example, there is no message
mapping because both services use the same msg message (declared in the default
Kmelia library).

This example is used for the experimentation on the formal analyses described
in the next section.

4 Formal Analysis and Experimentations

The formal analysis of a Kmelia specification consists in checking various kind of
properties at the Kmelia model. The verification goal is to detect the specification
errors: the violation policy is postponed to implementation issues. Some analysis
are performed directly in the COSTO tool which supports Kmelia, the others are
delegated to appropriate external tools. In this section, we address those aspects
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related to the new features introduced in Sect. 2. We show how the Rodin framework
that supports the Event-B notation is interesting to check the component consistency
and the contract correctness.

4.1 Formal analysis

Kmelia concepts are analysed according to various facets such as safe type checking,
consistency and correctness, communication integrity, deadlock freeness, assembly
compatibility, promotion consistency, etc. The formal analysis individually validate
the components before checking the assembly:

(i) each individual component specification must be validated once for all by check-
ing the verification requirements given Table 1. When all the rules are checked,
then the component specification is considered as correct, possibly put in li-
braries, and could be reused within assemblies or composites.

(ii) assembly or promotion links must only consider references to components pre-
viously shown as correct. Then the rules given in Table 2 are verified to validate
the Kmelia assembly and composite.

Analysis Status of the work

Static rules: Scope + name resolution + type-checking implemented
Observability rules (see 2.2) implemented
Component interface consistency implemented
Services dependency consistency:
DI well-formed vs. I and D (component) implemented
DI vs. B (eLTS)
Simple constraint checking (parameters, query, protocol, . . . ) implementation in progress
Local eLTS checking (liveness, false guards, reachability . . . ) implemented with subprovides

deadlock − free(B) without expressions
Invariant consistency vs. pre/post conditions:
provided services : InvO

old ∧ PreO
old ∧ PostO(r) ⇒ InvO (a) checked via B tools

Invold ∧ Preold ∧ PostO(r) ∧ PostNO(r) ⇒ Inv (b) (see 4.4)
required services : InvV

old ∧ PreO
old ∧ PostO(r) ⇒ InvV (c)

Consistency between service assertions and eLTS:
eLTS vs. Post the post-condition should be established
required service R calls vs. PreR the context must ensure the pre-
condition (local+virtual)

study in progress

eLTS vs. subprovided service SP annotations PreSP the context must
ensure the pre-condition (local)

where the old prefix denotes the variable value before the service execution.

Table 1
Formal analysis of Kmelia components

The status implemented means that the analysis is implemented in the COSTO
tool. The status checked via L means that we implemented a translator plugin to
generate specications in the L language or tool.

Currently no result is directly inferred from the checking of the individual com-
ponents to facilitate the check of the assembly. The considered rules are comple-
mentary.
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The verification process used for the rule numbered (a), (b), . . . will be detailed
in Section 4.4 after a short analysis example in Section 4.2 and an introduction to
the case tool principles in Section 4.3.

Analysis Status of the work

Static rules: Scope + name resolution + type-checking implemented
Observability rules: promoted variables implemented
Link/sublink consistency: assembly and composite
signature matching implemented
service dependency matching (subprovides, callrequires)
context mapping (vmap) and observability rules implemented
message mapping (mmap)
Assembly Link Contract correctness:

vmap(PreO
R) ⇒ PreO

P (d)
PostOP ⇒ vmap(PostOR) (e)

Provided Promotion Link Contract correctness: PP is in the composite
vmap(PreO

PP ) ⇒ PreO
P (f) checked via B tools

PostOP ⇒ vmap(PostOPP ) (g) (see 4.4)
Required Promotion Link Contract correctness: RR is in the composite

vmap(PreO
R) ⇒ PreO

RR (h)
PostORR ⇒ vmap(PostOR) (i)

eLTS (behaviour) compatibility checked via CADP and MEC
eLTS (behaviour) compatibility with mmap implementation in progress

Table 2
Formal analysis of Kmelia assemblies and composites

The verification process used for the rule numbered (a), (b), . . . is detailed in
Section 4.4 after a short analysis example in Section 4.2 and an introduction to the
case tool principles in Section 4.3.

4.2 Simple static analysis example

Let dependsk be a relation between component services names defined as a part of
the service dependency in a component Ck where sm = νk(m):

dependsk : N ↔ N
∀(n, m) : dependsk • (n ∈ calsm) ∨ (n ∈ reqsm) ∨ (n ∈ subsm)

The Link/sublink consistency analysis on an assembly is intended to check whether
the following property holds: the services in the sublinks are in the dependencies of
the involved services (w.r.t sublinks).

∀(l, sl) ∈ subs | l = (Ci, n1, Cj , n2) ∧ sl = (Ck, n3, Cl, n4) •
((n3, n1) ∈ dependsi

∗ ∨ (n4, n2) ∈ dependsj
∗)

where dependsk
∗ is the transitive closure of the service dependency dependsk.
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4.3 Automated checking

As mechanisation is a means to assess design and development techniques based on
formal methods, we developed an Eclipse-based framework named COSTO (COm-
ponent Study TOolbox [5]) to support all the steps of component analysis and
specification (see also Appendix B). COSTO is dedicated to the management of the
Kmelia specifications and to the checking of the primary properties (syntax, types,
static). It delegates the verification of complex properties such as deadlock freeness,
component or assembly consistency to other more efficient tools, as illustrated Fig. 5.
According to the kind of property to check we target one tool, in such a way that
the property can be expressed and verified; we select the parts of the Kmelia specifi-
cations involved in the target property; they are translated into the input formalism
of the targeted tool and then checked by the tool.

The behaviour compatibility of services and components was treated in [9] using
model-checking techniques provided by existing tools (Lotos/CADP 3 and MEC 4 ).

Specification

Kmelia 

CADP

Specification

Lotos

Verification

context

Specification

B or EventB

kml2B

kml2lotos

Verification

context

BPreprocessing

ANTLR Parser

AtelierB

Rodin

LPreprocessing

model

MPreprocessing

Verification

context

MEC

Package Diagnoosis

kml2mec / Checker

Kmelia internal

Fig. 5. A View of the COSTO Framework

In this article we focus on the bottom part of Fig. 5, related to the analysis of
data and assertion properties.

4.4 Formal analysis of assertions

Our approach consists in reusing existing proof tools such as the B tools and es-
pecially the Atelier B 5 and Rodin 6 frameworks. The main issue is to present the
verification of the necessary Kmelia elements in an appropriate manner to use effi-
ciently the B provers. We design a systematic verification method that enables us
to reuse the proof obligations generated by the B tools for our specific purpose.

3 http://www.inrialpes.fr/vasy/cadp/
4 http://altarica.labri.fr/wiki/tools:mec_4
5 http://www.atelierb.eu/
6 http://rodin-b-sharp.sourceforge.net
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We are currently developing a plugin (named Kml2B) in the context of the COSTO
tool. A first presentation of Kml2B is available in [22]. It extracts B specifications to
enable the verification of invariant consistency rules (a, b, c) and to mechanise the
proof for assembly link contract rules (d, e, f, g, h, i). In the following we present the
systematic verification method and the manual experimentations done with Rodin.

Event-B and Rodin frameworks. Rodin is a framework made of several tools
dedicated to the specification and proof of Event-B models. Event-B [1] extends
the classical B method [2] with specific constructions and usage; it is used for the
modelling of general purpose systems and for reasoning on them. Proof obligations
(POs) are generated to ensure the consistency of the considered model, i.e. the
preservation of the INVARIANT by the EVENTS. Other POs ensure that a refined
model is consistent, i.e. the abstract INVARIANT is preserved and the refined events
do not contradict their abstract counterparts. POs can be discharged automatically
or interactively, using the Rodin provers.

Verifying Kmelia specifications using Event-B. The main idea is, first to con-
sider a part of the Kmelia specification involved in the property to be verified (a
service, a component, a link of an assembly, an assembly, etc), then to build from
this part of the specification, a set of (Event-)B models in such a way that the POs
generated for them correspond to the specific obligations we needed to check for the
Kmelia specification assertions. This approach was investigated before in [17,20] on
the context of classical B and UML components.

We systematically build Event-B models, with an appropriate structure as ex-
plained below, to check a few of the proof obligations presented in Tables 1 and 2.
Details and patterns which guide the Event-B models generation are given in [8].

(i) For each component and its provided services, we build an Event-B model. The
proof of the consistency of this model ensures the proof of the rules (a) and (b)
for the invariant consistency at the Kmelia level.

(ii) For each required service (and its “virtual context”) we write an Event-B model.
Its B consistency establishes the rule (c).

(iii) For each assembly link between a required service req and a provided one prov,
we build an Event-B model of the observable part of prov, which refines the
Event-B model of the required service req previously checked.
• the consistency proof of the Event-B model ensures the rule (a) for the in-

variant consistency at the Kmelia level;
• the refinement proof establishes the rules (d) and (e) for assembly correctness.

(iv) For each promotion link between a provided service prov and its promoted one
pprov, we build an Event-B model of the observable part of prov, which refines
the Event-B model of the provided service prov previously checked.
• the consistency proof of the Event-B model ensures the rule (a) for the in-

variant consistency at the Kmelia level;
• the refinement proof establishes both the rules (f) and (g) for the Kmelia

promotion correctness.
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(v) For each promotion link between a required service req and a promoted one
rreq, we build an Event-B model of the observable part of rreq, which refines
the Event-B model of the required service req previously checked.
• the consistency proof of the Event-B model ensures the rule (a) for the in-

variant consistency at the Kmelia level;
• the refinement proof establishes both the rules (h) and (i) for the Kmelia

promotion correctness.

We are not going to deal in this article with the details of the translation pro-
cedure and result 7 . For short, Kmelia invariant and pre-condition translations are
quite systematic, whereas the post-condition concept does not exist in classical B.
Therefore we abstract the post-condition by using an ANY substitution that satisfies
the post-condition (once translated) as proposed in the context of UML/OCL to B
translations [21]. In Event-B, translations of the post-conditions are quite system-
atic. Listing 8 depicts the Event-B translation of the service newReference of the
Kmelia component StockManager.

Listing 8: Event-B specification for newReference
newReference =
ANY

new_Result, new_catalog, new_pstock, new_plabels
WHERE

card(catalog) < MaxRef
∧ new_Result ∈ INT
∧ new_catalog ∈ P(References)
∧ finite (new_catalog)
∧ new_plabels ∈ References → String
∧ new_pstock ∈ References → INT
∧ ( (new_Result > 0 ∧ new_Result ≤ MaxRef) ∨ new_Result = NoReference )
∧ ( new_Result 
= NoReference ⇒ new_Result /∈ catalog ∧ new_catalog = catalog ∪ {new_Result} )
∧ ( new_Result = NoReference ⇒ new_catalog = catalog )
∧ ( new_Result 
= NoReference ⇒ new_pstock(new_Result) = 0

∧ new_plabels(new_Result) 
= EmptyString
∧ ( ∀ ii . ( ii ∈ References ∧ ii 
= new_Result ⇒ new_pstock(ii) = pstock(ii)

∧ new_plabels(ii) = plabels( ii ) ) ) )
∧ ( new_Result = NoReference ⇒ new_pstock = pstock ∧ new_plabels = plabels )

THEN
Result_newReference := new_Result
catalog := new_catalog
pstock := new_pstock
plabels := new_plabels

END

4.5 Experimental results

Applying our method on the case study presented in Section 3, we obtain the Event-
B models structured as depicted in Fig 6. These models are studied within Rodin.
We can verify the Kmelia components StockManager and Vendor before checking the
assembly StockSystem.

The Event-B model StockManager is used to establish the preservation of the
component invariant by the provided services. The model Vendor_addItem allows
us to check the preservation of the virtual state space by the required service addItem.

7 The Kmelia and Event-B specifications are available online at http://www.lina.sciences.univ-nantes.
fr/coloss/download/facs09_app.pdf
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Then the refined model v_addItem_sm_newReference is used to check the assembly
link between the required service addItem and the provided one newReference.

Fig. 6. Event-B Models

Auto. Manual Total

StockManager 16 3 19

Vendor_addItem 2 1 3

v_addItem_sm
_newReference

22 1 23

Table 3
Rodin Proof obligations

We did not experiment the promotion correctness on this example, but it follows
the same schema as the assembly correctness where the context mapping vmap is
replaced by the promotion mapping pvars.

Table 3 gives an idea about the number of POs that are to be discharged to
ensure the correctness of the Kmelia specification. Studying the example within
Rodin revealed some errors in our initial Kmelia specification. As example, the
first version of post-condition of the service newReference was wrong; one of the
associated POs could not be discharged. We discovered that some conditions were
missing in the case we have variables which are not updated. As a feedback in our
Kmelia specifications, the error was corrected, and the PO discharged thereafter.

In general, the assertions associated to Kmelia services help us to ensure the
correctness of the assembly links by considering the required-provided relationship
as a refinement from the required service to the provided one. Consequently when the
assertions are incorrect, the proofs fail, which means the assembly link is incorrect.

5 Discussion and Conclusion

In this article we have presented enrichments to the Kmelia abstract component
model: a data language for Kmelia expressions and predicates; visibility features for
component state in the context of composite components; contracts in the compo-
sition of services. The formal specification and analysis of the model are revisited
accordingly. The syntactic analysis of Kmelia is effective in the COSTO tool that
supports the Kmelia model. We have proposed a method to perform the necessary
assertion verification using B tools: the contracts are checked through preliminary
experimentations using the Rodin framework. We have illustrated the work with an
example which is specified in Kmelia, translated manually but systematically, and
verified using Rodin.

Discussion. Our work is more related to abstract and formal component models
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like SOFA or Wright, rather than to the concrete models like CORBA, EJB or .NET.
The Java/A [11] or ArchJava [3] models do not allow the use of contracts. We have
already emphasised (see Section 1) the fact that most of the abstract models deal
mainly with the dynamic part of components. Some of them [18,27] take datatypes
and contracts into account but not the dynamic aspects. Some other ones [13,15]
delay the data part to the implementation level.

In [16] may/must constraints are associated to the interactions defined in the
component interfaces to define behavioural contracts between clients and suppliers.
In Kmelia, the distinction between a supplier constraint and the client is done from
a methodological point of view rather than a syntactic rule. The use of B to check
component contracts has been studied in [17,20] in the context of UML components.

Fractal [19] proposes different approaches based on the separation of concerns:
the structural features are defined in Fractal ADL [25] ; dynamic behaviours are im-
plemented by Vercors [10] or Fractal/SOFA [14] and the use of assertions is studied
in ConFract [18]. In ConFract contracts are independent entities associated to sev-
eral participants, not to services and links as in our case; their contracts support a
rely/guarantee mechanism with respect to the (vertical) composition of components.

In [12] a component is a model in the sense of the algebraic specifications. Dy-
namic behaviours are associated to components but not to services, which are simple
operations. The component provided and required interfaces are type specifications
and composing component is based on interface (or type) refinement. In Kmelia
components are assembled on their services; therefore the main issue is not to refine
types as in [12] but rather to check contracts as in [29]. More specifically our case
is more related to the plugin matching of [29].

Perspectives. Several aspects remain to be dealt with regarding assertions and
the related properties, composition and correctness of component assemblies. First,
we need to implement the full chain of assertion verification especially the translation
which is necessary to automatically derive the needed Event-B models to check the
assertions and the assemblies (a part of this work is already done with the Kml2B
plugin). Second, we will integrate high level concepts and relations for data types. In
particular, we plan to integrate ideas from objects and inheritance in the type system
and also in component typing. But, assertions in this context are more difficult to
specify and to verify. Another challenging point is the support for interoperability
with other component models. In some real component software, a component
assembly is built on components written in various specification languages. When
connecting services (or operations) we can at least check the matching of signatures.
If the specification language of the corresponding services or components enable the
use of contracts (resp. service composition, service behaviour) we can provide the
corresponding verification means.
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A A generic syntax of expressions and assertions

This appendix summarises the syntax of types, expressions and assertions.
Basic types such as Integer , Boolean, Char, String with their usual operators

and semantics are permitted. Abstract data types like record, enumeration, range,
array and set are allowed in Kmelia. User-defined record types are built over the
above basic types. Specific types and functions may be defined and imported from
libraries.

TypeDef ::= TypeName

| "struct" "{" TypeDecl (”, ” TypeDecl)∗ "}"
| "array" "[" LiteralV alue1 ".." LiteralV alue2 "]" "of" TypeName

| "enum" "{" KmlExpr (”, ” KmlExpr)∗ "}"
| "range" LiteralV alue1 ".." LiteralV alue2

| "setOf" TypeName

A Kmelia expression is built with constants, variables and elementary expres-
sions built with standard arithmetic and logical operators like (+, ∗, mod,<, >=
, ! =, or, and, implies, not, ...). An assignment is made of a variable at the left hand
side and an expression at the right hand side. In the following, each identifier class
is denoted by a non-terminal symbol (C : constants, V : variables, O : operators,
T : types). Identifiers are symbols built on letters, digits and the " " character
according to the usual rules. The third rules includes the function calls.

KmlExpr ::= LiteralV alue

| V | C

| "(" KmlExpr ")"
| O KmlExpr

| O "(" KmlExpr0,... KmlExprn ")"
| KmlExpr1 O KmlExpr2

Assertions (pre/post-conditions

and invariants) are first order logic predicates. In a post-condition of a service, the
keyword old is used to distinguish the before and after variable states. This is close
to OCL’s pre or Eiffel’s old keywords. Guards in the service behaviour are also
predicates. All the assertions must conform to the observability rules described in
Section 2.2.

Pred ::= "@" name ":" Cond /* condition */
Cond | KmlExpr /* boolean expression */

| (" exists " | " forall " ) V arDecl "|" Cond
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B Tool Demo

The COmponent STudy TOolkit (COSTO) toolbox is a prototype designed to sup-
port the Kmelia abstract component model and the associated verifications tech-
niques, either directly or through the exportation of the relevant parts of a Kmelia
model according to a verification context into provers or model-checkers.

The COSTO toolbox consists of:

• a core module with an ANTLR-based parser and an API to access the Kmelia
(internal) model,

• several verification and exportation modules,
• a set of eclipse plugins.

Figure B.1 shows the Kmelia editor in eclipse, and a sample of the kind of errors
(typing, observability, incompleteness of the mapping) that are detected. Besides
standard completion, the editor supports smart completion in the case of assembly
links. In Figure B.2, only required services defined in the Vendor component type
are proposed and the user is warned that some of them do not match the exact
signature of the provided service new_reference which is defined in the StockManager
component type.

Fig. B.1. Kmelia editor in eclipse
Fig. B.2. Smart completion

Using the exportation buttons on the top of the editor while selecting an assembly
link generate models in MEC, LOTOS or B to be verified in external tools.

Fig. B.3. Exportations to MEC/LOTOS/Event-B
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