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Abstract: Early verification is essential in model-driven development because late error detection involves a costly cor-
rection and approval process. Modelling real life systems covers three aspects of a system (structure, dynamics
and functions) and one verification technique is not sufficient to check the properties related to these aspects.
Considering Service-based Component Models, we propose a unifying schema called multi-level contracts
that enables a combination of verification techniques (model checking, theorem proving and model testing) to
cover the V&V requirements. This proposal is illustrated using the Kmelia language and its COSTO tool.

1 Introduction

The model-driven development (MDD) strength
resides in delaying the implementation concerns to
focus more on the abstract models which decrease
the system specification complexity. Since (abstract)
Platform Independent Models (PIM) are the starting
points for MDD, we need to trust them. Late error
detection involving a costly correction (and approval)
process, an early verification activity is essential.

Despite the details of Platform Specific Models
(PSM) are omitted, the complexity of verification and
validation (V&V) remains important when the PIM
elements cover the three usual aspects of a system
(structural, dynamic and functional). Accordingly
one verification technique does not suffice to check
the properties related to these different aspects.

We address the issue of verifying multi-aspect
models from the practitioner’s point of view. We
consider Service-based Component (SbC) Mod-
els (Crnkovic and Larsson, 2002; Beek et al., 2006)
that promote the (re)use of components and services
coming from third party developers to build new sys-
tems. The success of the large-scale development of
SbC depends on the correctness of the parts before
assembling them. SbC software systems are designed
at different specification levels: service interactions
(messages exchange), functional contracts (pre/post
conditions), service behaviour (labelled transition
systems (LTS) with computation statements). Estab-
lishing their correctness is complex and requires the
use of various verification techniques.

We propose a method based on multi-level con-
tracts where the properties are classified before be-
ing verified with the combination of appropriate tech-
niques. Contracts act as a glue between the struc-
ture levels, properties and V&V techniques. Classi-
fying the properties enables us to select the adequate
technique to cover the V&V requirements; model
checking, theorem proving, model testing. The inter-
action properties are verified using model checking;
the consistency properties are checked using theorem
proving and the behaviour conformance against the
functional contract is checked using a specific model
testing technique. We assume a modelling language
which is formal enough to specify SbC elements and
contracts. We experiment this method on an embed-
ded system using the Kmelia modelling language and
its associated COSTO toolbox (André et al., 2010).

Applying the proposed method increases confi-
dence in the SbC models early in the development
process: they are correct and embed passed test where
contracts are reinforced. Thus the method helps to ob-
tain correct software as soon as possible and allows
one to apply thereafter advanced development tech-
niques such as agile ones (thanks to the qualified test
cases and data we constructed) or Design-by-Contract
techniques (thanks to the used contracts).

In the remaining of the article, we sketch the
Service-based Component model in Section 2; multi-
level contracts are introduced in Section 3. Section 4
describes the combination of V&V techniques. We il-
lustrate the proposed method and framework with the
Kmelia/COSTO toolbox in Section 5. Section 6 dis-
cusses related works and we conclude in Section 7.



2 Service-based Component Models

In Service-based Component (SbC) models, a
functionality is implemented by the services provided
by some components. Provided services are not nec-
essarily atomic calls and may possess a complex be-
haviour, in which other services might be needed
(called). These needs are either satisfied internally
by other services of the same component, or speci-
fied as required services in the component’s interface.
The required services can then be bound to provided
services from other components, which might also re-
quire others, and so on. A provided service needs all
its direct and indirect dependencies satisfied in order
to be available for use. Modelling languages, such as
UML2, AADL, rCOS or Sofa (Rausch et al., 2008),
can be used to specify SbC systems. As a case study,
we model a simplified version of a platoon of vehicles
using the SCA notation (OSOA, 2007).

Figure 1 shows a small architecture composed of a
driver and two vehicle components. Each component
has a configuration service conf (used when instantiat-
ing the component), a main service run to activate the
vehicle behaviour and services to give their position
and speed. The computeSpeed service reads the ve-
hicle’s state and the run and conf services assign val-
ues to the vehicle’s state. Auxiliary services like stop
which interrupts a vehicle, have been omitted for sim-
plicity. We extend the SCA notation to make explicit
the component’s state (its variables) and the service
calling, reading, and writing.

The service run of Vehicle calls computeSpeed
which requires pilotspeed and pilotpos services. We
consider only the speed and the position (X axis only)
of the vehicles. The vehicles are designed to follow
their predecessor (which they consider to be their pi-
lot) except the first one which follows a component
taking the role of the driver. The driver is assumed
to be a special kind of vehicle that controls its own
values according to a target position. Each running
vehicle can compute its own speed by considering its
current speed and position, its predecessor’s position
and speed and a safety distance with its predecessor.

3 Multi-level Contracts

According to (Meyer, 2003), a Trusted Compo-
nent is a reusable software element possessing speci-

fied and guaranteed property qualities. The notion of
contract is helpful to model various kind of correct-
ness properties. But it should be made precise and
extended to cope with the expressiveness of the SbC
models. The properties, e.g. interoperability, are clas-
sified at different requirement level (RL) :
1. Static: the compatibility of interface signatures

(names and types); does a component give enough
information about its interface(s) in order to be
(re)usable by others?

2. Architectural: the availability of the required
components and services, the correctness of the
linked component interfaces;

3. Functional: do the components do what they must
do? These correctness properties may be checked
both on each component and on the component
assemblies and compositions.

4. Behavioural: the correct interaction between two
or more components which are combined. The
properties depends on the interaction model fea-
tures: sequential vs. concurrent, call vs. syn-
chronisations, synchronous vs asynchronous, pair
vs. multipart communication, shared data, atom-
ic/structured actions...

5. Quality of service: the non-functional require-
ments (time, size...) are fulfilled. Note that this
level will not be detailed in this paper.
A multi-level contract (Messabihi et al., 2010)

is a contract defined at different SbC structure lev-
els (SL) (service, component, assembly, composition)
according to different expected requirement levels.
This vision of contracts provides a convenient frame-
work to master both the incremental construction of
SbC and the verification of multi-aspect properties by
combined techniques. Table 1 summarises the cross-
ing of the structure levels properties with the require-
ment levels (RL).

RL Structure level
service component assembly composite

1 type type service signature ssic
checking checking compatibility (ssic)

2 well- service service structure sstc
formedness accessibility consistency (sstc)

3 functional component service sco
correctness consistency compliance (sco)

4 behavioural protocol behavioural bhc
consistency correctness compatibility (bhc)

Table 1: Multi-level Contracts and Properties

Multi-level contracts are useful to define interoper-
ability levels between different SbC languages. e.g. a
Corba component with IDL interfaces can be compat-
ible with components defined with other SbC models
at the first level only. We detail now the main proper-
ties of each structure level.
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Figure 1: Component model of the Platoon system

Service contract It expresses that the service termi-
nates in a consistent state. This contract deals mainly
with two properties.
• The behavioural consistency property states that

the execution of the service actions does not lead
to inconsistent states (such as deadlock).

• The functional correctness property expresses that
a service achieves what it is supposed to do. The
functional correctness of a service of a compo-
nent is defined using the Hoare-style specification
(Pre-condition, Statement, Post-condition) where
Statement is the service behaviour. This prop-
erty should be checked with respect to the require-
ments of the owner component.

Component contract The component is confidently
reusable. It is ensured with three main properties.
• The service accessibility property states that the

services defined in the interface of a component
are available. This is related to intra-component
traceability of service dependency.

• The component consistency property states that
the invariant properties of the component are pre-
served by all the services embodied in the com-
ponent. Considering that a component equipped
with services is consistent if its properties are
always satisfied whatever the behaviour of the
services is, one can set a consistency preserva-
tion contract between the services and their owner
component to ensure that property.

• The protocol correctness property expresses that
the order in which the services are to be invoked
by clients is correct with respect to the rules given
by the services’ specification. A component pro-
tocol is defined here as the set of all the valid se-

quences of service invocations.

Assembly contract In an assembly, made of linked
trusted components, each component will contribute
to the well-formedness of the links by requiring or
ensuring appropriate assertions: this is the coarse-
grained contract. The link establishes a client/sup-
plier relation. The assembly contract covers correct-
ness properties with four requirement levels:
• The first level deals with service signature com-

patibility among the services of the interfaces
of the assembled components. The service call
should respect the service signature. The signa-
ture matching between the involved services of
component interfaces covers at least name reso-
lution, visibility rules, typing and subtyping rules.

• The second level deals with service structure con-
sistency of the assembled components. Assum-
ing that services can be composed from other
(sub)services, connecting services is possible only
if their structures are compatible (but not neces-
sary identical).

• The third level deals with service compliance of
assembled components. If the services use a
Hoare-like specification, post-conditions relate to
their pre-conditions (Zaremski and Wing, 1997).
The caller pre-condition is stronger than the called
one. The called post-condition is stronger than the
caller’s one. Each part involved in the assembly
should fulfil its counterpart of the contract.

• The fourth level deals with behavioural compat-
ibility between the linked services of the assem-
bled components. It ensures the correct interac-
tion between two or more components which are
combined through their services.



Composite contract It is similar, up to specific ex-
pressions, to the one of assemblies.

4 Combining V&V Techniques

Modelling and V&V are mutually dependent dur-
ing design. As depicted in Figure 2, multi-level con-
tracts are set during the specification activities and
checked during the formal analysis activities. The
structure levels are represented here by columns. The
design workflow is presented as a whole but the activ-
ities can be performed iteratively in any order.
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Figure 2: Integrated process for design verification

From a practical point of view, the specifier would
switch from one activity to another according to a
customised methodology, inspired from top-down or
bottom-up approaches, with a component or system
orientation. For example the specifier may work only
at the service and component levels (the left part of
Figure 2) to deliver off the shelf components.

Modelling: making contracts explicit Modelling
includes three activities: software system design (as-
sembly/composition), software component specifica-
tion and service specification. In a top-down ap-
proach, the system design activity starts first. It de-
fines the system as a collection of interacting subsys-
tems and components. If components or assemblies
that match the requirements already exist on the shelf,
they can be directly integrated in the system design.
Otherwise, the component specification activity will
produce the new component(s). Once the component
structure is established, the detailed service specifica-
tion activity proceeds. The main concern is that the
contracts must be explicitly written at each level in
order to be checked.

V&V : checking contract properties The models
produced during the specification are analysed by

checking the contracts properties. The verification
process iterates on five V&V activities as depicted in
Figure 2, each activity refers to the contracts proper-
ties of Section 3.
1. The Static Analysis (SA) activity checks the syn-

tactic correctness at all levels, the service acces-
sibility of the component level, and the static in-
teroperability of the assembly level, which itself
covers the service signature compatibility and the
service structure consistency.

2. The Functional Correctness (FC) activity checks
the behavioural consistency property at the ser-
vice level and a part of the protocol correctness
property at the component level.

3. The Consistency Checking (CC) activity covers
the component consistency property at the com-
ponent level.

4. The Behavioural Compatibility (BC) activity
checks the behavioural consistency property at
the service level, a part of the protocol correct-
ness property at the component level and the be-
havioural compatibility at the assembly level.

5. The Assembly/Promotion contracts (APC) veri-
fication activity checks the service compliance of
the assembled components at the assembly level
and the composite level.
Table 2 overviews how each technique contributes

to a verification activity of multi-level contracts.

Static Theorem Model Model
Analysis Proving Checking Testing

types
SA structures

See details in assertions
FC Section 4.4 oracle

assertions
CC invariant

deadlock
BC liveness

refinement
APC aggregation

Table 2: Multi-level contracts and verification techniques

Next sections provide insights on these techniques.

4.1 Structural Correctness by Static
Analysis

The static analysis checks the structural correctness
of models. It includes the syntax analysis, the
type checking and the verification of well-formedness
rules (WFR). For example, the service dependency
satisfaction WFR states: to be executable, all the ser-
vices called (directly or indirectly) by a service must
be available. The checking algorithm of verification



is specified here using the Z notation (Spivey, 1992),
which is a concise formal description. We consider
only a part of it, the abstract definition of types for
components, services, state spaces. Let Composition
be a specification of components, services and com-
positions where IP S is the power set of S, X ↔ Y is
the set of relations from X to Y and X �→ Y is the set
of partial functions from X to Y .

[COMP, SERV, STAT E] //the basic sets
Composition �=
[components : IP COMP;states : COMP �→ STAT E;
services : SERV �→COMP; inter f ace : SERV �→COMP;
provided,required : IP SERV ; intrequires : SERV ↔ SERV ;
extrequires : SERV ↔ SERV ;composite : COMP �→COMP;
alink : SERV �→ SERV ; plink : SERV �→ SERV | ...]

The service dependency is the closure (denoted
with +) of the requires relations restricted (denoted
with -�) to the provided services (provided), while
taking into account the assembly and promotion links
(alink, plink). Note that the closure should preserve
the component encapsulation.

∀Composition; dependency : SERV ↔ SERV •
dependency = (((intrequires∪ extrequires)+

-�provided)∪alink∪ plink)+

If the system is ready to run, its basic depen-
dency is valid if there are no unsatisfied services
i.e. dependency = /0. This constraint is too strong
when working with an incomplete architecture, so
we restrict the dependency to the target provided ser-
vices (the source), which are the services under test
(source � dependency = /0). If the source must be-
long to the root of the system component, we add
service(source) ∈ (components\domcomposite).

Building a test architecture is equivalent to apply-
ing a sequence of architectural transformations, also
defined by a Z operation. The operation precondition
ensures the preservation of the Composition system
invariant.

Trans f ormation �= [ΔComposition;
newComp? : SystemComponents
composite? : COMP �→COMP;nalink? : SERV �→ SERV
ralink? : SERV �→ SERV ;nplink? : SERV �→ SERV
rplink? : SERV �→ SERV ; plink? : SERV �→ SERV | ...]

A sequence of architecture transformations T1 o
9 ...

o
9

Tn is valid if there are no unsatisfied required services
(required� � dependency� = /0).

4.2 Consistency by Theorem Proving

Theorem proving techniques are helpful to prove the
Component Consistency (CC) and the Assembly/Pro-
motion Contract (APC).

The demonstration process (Figure 3) consists in
writing model transformations to the target prover
language and proving the theorems using the associ-
ated proof support. Some expertise in the prove envi-
ronment is usually required.
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Figure 3: Theorem proving process overview

Component consistency (CC) At the component
level, we have to check the Invariant consistency vs.
pre/post conditions for its observable features (a kind
of read-only visibility) and its non-observable fea-
tures. Powerful tools like Atelier-B1 and Rodin2 are
appropriate to prove that kind of property with high
level data types. The difficulty is to transform in an
adequate source for the target language and prover.

Assembly/Promotion Contract (APC) At the as-
sembly level, we have to check the Assembly Link
Contract correctness; this ensures that the contract
for a required service is compliant with the one of the
provider linked to it, up to data and message map-
pings. Based on a service assembly link, the main is-
sue is to decide whether the provided service matches
with the required service it is linked to. The match-
ing condition is: the pre-condition of required service
Req is stronger than the one of provided service Prov
and the post-condition of Req is weaker than the one
of Prov. In term of B proof obligations this property
is viewed as: the provided service refines the required
service. The transformation is applied for each link.
At the composite level, we have to check the Promo-
tion Link Contract correctness; this ensures that the
contract for a promoted service is compliant with the
one of the original provider linked to it, up to data and
message mappings. In term of B proof obligations
this property is viewed as: the provided service re-
fines the promoted required service and the promoted
required service refines the base required service. Ac-
tually these are strong conditions but lighter alterna-
tives are detailed in (André et al., 2010).

1http://www.atelierb.eu/
2http://rodin-b-sharp.sourceforge.net



4.3 Behavioural Compatibility by
Model Checking

Model checking techniques are helpful to prove the
Behavioural compatibility (BC). At this stage we as-
sume that services are neither atomic nor executed
as transactions. Checking the behavioural compat-
ibility means that services can synchronize and ex-
change data with other services without any troubles
and terminate (Yellin and Strom, 1997; Attie and
Lorenz, 2003; Bracciali et al., 2005). It often relies on
checking the behaviour of a (component-based) sys-
tem through the construction of a finite state automa-
ton. To avoid state explosion problems (Attie and
Lorenz, 2003) we work with peer services instead of
the whole assembly. Ensuring dynamic behavioural
compatibility of communicating processes is a prop-
erty usually checked by model checkers.

The checking process (Figure 4) consists in writ-
ing model transformations to target languages (one
per verification tool) and proving the properties using
the dedicated model checker (Spin, Uppaal, CADP...).
Depending on the model checker, the properties can
be defined separately from the model (e.g. tempo-
ral logics) or not and a transformation may be needed
for a single property. The verification process is im-
proved when the result of a property verification is
re-injected at the model level. Note that if the SbC
formalism is very different from the target language,
the transformation is difficult and an expertise in the
target language is required to prove the properties.
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Figure 4: Model checking process overview

4.4 Functional Correctness by Model
Testing

The basic idea of Functional correctness (FC) is to
evaluate all paths of a service behaviour and to deter-
mine whether it is compliant with the post-condition
or not. This is a non-trivial problem similar to the

one of model-checking a program. As soon as the
modelling language includes high level data types and
computation statements (e.g. loops) the provers reach
their limits to prove. Model testing is used here to
supply the missing verifications of automatic and in-
teractive provers. In (André et al., 2013) we argued
for early testing at the model level to detect platform
independent errors without melting them with imple-
mentation errors. Indeed plunging the model in a mid-
dleware decreases the testability and is often a burden
to the V&V process. The model testing (not model-
based testing) process consists in building a test appli-
cation from a test intention (a test goal with data def-
initions and an oracle expression) and run it on test
cases (Figure 5). It reduces the test complexity and
improves both the application and test evolutivity.
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Figure 5: Testing process overview

A tool must assist the tester in managing the way
the test data can be provided: some of them by the
configuration, other ones by mocks, and the oracle by
a test driver. To achieve this, the tool can:
• select a subset of the System Under Test (SUT)

model according to a test intention;
• check if the Test Specific Model (TSM) is satis-

fying properties to be a SbC application: no bad
connections right, no missing data or services;

• bind required services to mocks provided by li-
braries;

• check the TSM consistency and completeness in
regards to its test intention (it may be improved/-
completed during the test harness building);

• generate a test component including the test case
services ;

• launch the test harness with several test data val-
ues sets and to collect the verdicts.



5 Experimentations

We experimented the above ideas through the
Kmelia language and the related COSTO toolbox.

Modelling with the Kmelia language

Kmelia is an abstract formal component model dedi-
cated to the specification and development of correct
components (André et al., 2010; André et al., 2010).
A Kmelia component system is an assembly of com-
ponents, which can themselves be composite. A com-
ponent is a container of services; it is described with
a state space constrained by an invariant. A service
describes a functionality; it is more than a simple op-
eration; it has a pre-condition, a post-condition and
a behaviour described with a labelled transition sys-
tem (LTS). Moreover a Kmelia service may give ac-
cess to other (sub)services. The behaviour supports
communication interactions, dynamic evolution rules
and service composition. Kmelia is supported with an
Eclipse-based analysis platform called COSTO (see
Figure 6). The tool and the case study material are
available at http://costo.univ-nantes.fr/.

Figure 6: COSTO Tool Architecture

Using Kmelia, the platoon system elements (vehi-
cles and driver) are components assembled through
their services. Figure 1 illustrates the design of the
platoonSyst assembly in the spirit of Kmelia: a com-
posite component including the component assem-
bly, which is statically defined over the three com-
ponents initialized by a internal service of a compos-
ite. Each component provides an initialisation service

(used when assembling), a main run to activate the
vehicle behaviour and a stop service to interrupt or to
end the vehicle. The driver and the vehicles are de-
signed similarly with a run main (asynchronous) ser-
vice. The goal to reach belongs to the driver state
space. The vehicles require their predecessor posi-
tion pilotpos and speed pilotspeed to update their own
state. The start and stop services model the system
environment actions.

Combined verifications with COSTO

We illustrate the above combination of verification
techniques on services at different specification levels
(service contract, interactions, behaviour) in Figure 6.

Structural correctness by static analysis The struc-
tural properties (such as syntax, correctness, consis-
tency, accessibility, observability rules...) are checked
during the compilation of the Kmelia specification by
COSTO (cf. Figure 7).

Consistency by theorem proving We developed a
series of plugins named Kml2B in the Figure 6 to ex-
tract B specifications. For each Kmelia component K
we build an (Event-)B model called C, its state space
is extracted from the component’s one. The provided
services srvi in K are translated into srv_i operations
within the C model. The extracted specification is im-
ported and checked in Atelier-B or Rodin. The B tools
enables the verification of invariant consistency at the
Kmelia level.
CC At the component level, we check the Invariant

consistency vs. pre/post conditions for both the
observable features (a kind of read-only visibility)
of it and the non-observable features.

APC At the assembly and the composite levels, each
service link, up to data and message mappings,
leads to a refinement relation and a related proof
obligation.

In the case of the computeSpeed service, the Atelier-
B generated seven proof obligations. At first at-
tempt four of them were automatically proved. The
three others could not be proved because the orig-
inal Kmelia specifications was insufficiently precise
and complete: parameter ranges, over ranged speed
values, missing speed assignment. Once corrected
in Kmelia model and updated in the B specifications,
the seven PO were proved correct with a level-1 auto-
matic proof.

Behavioural compatibility by model checking We
developed a couple of plugins named Kml2Mec (resp.
Kml2Lotos) in the Figure 6 to extract finite state ma-
chines (resp. processes) specifications. For each as-
sembly link, a corresponding MEC (or LOTOS) spec-



Figure 7: Specification of service computeSpeed

ification is generated that includes the synchronisa-
tions of the communications. The promotion links are
gateways for the communications and need no spe-
cific proof. The translation details are given in (At-
tiogbé et al., 2006). The verification is achieved using
model-checking techniques provided by existing tools
(Lotos/CADP3 and MEC4). The advantage of MEC is
that it preserves the finite state machine (FSM) struc-
ture of Kmelia services, so we could develop a plugin
to interpret the result of the model checking.

To prove the Functional correctness (FC) we first
tried model checkers but they could not support high
level data and functions. We then investigated B tools,
including ProB a model checker for B. We had to
turn back to more appropriate tools because B tools
needed additional material to prove loop invariants
and ProB was not powerful enough. We also investi-
gated the Key tool (Beckert et al., 2007). Key accepts
JML specifications as input; in order to prove prop-
erties of Java programs. The idea was to transform
finite state machine (FSM) statements into Java-like
statements however the distance between FSM-based
models and procedural-based models is still to impor-
tant to write transformation without side effects also
the communications are interpreted as method call in
plain Java, a communication framework is required.
A more pragmatic way was to turn to testing tech-

3http://www.inrialpes.fr/vasy/cadp/
4http://altarica.labri.fr/wiki/tools:mec_4

niques.

Functional correctness by model testing We devel-
oped a Model Testing Tool (named COSTOTest) as
specified in section 4.4. The test process is illustrated
on the computeSpeed service in the mid platoon ve-
hicle. Its specification is given in the Figure 7. The
result of the computeSpeed service depends on sev-
eral data: the recommended safe distance from the
pilot (previous vehicle), the position and speed of the
current Vehicle and the position and speed of the pi-
lot. This is represented by the test intention of List-
ing 1. For each test intention, a test harness (TSM)
is elaborated during an iterative building process. As
an example, Figure 8 represents a component appli-
cation for testing the service computeSpeed in the
mid Vehicle. The test and the corresponding oracle
are encapsulated into a testComponent tc, and a Mock
component has replaced the Driver to offer better con-
trol. The last Vehicle has not been selected here be-
cause it is not needed to test the computeSpeed ser-
vice of the mid Vehicle, but a more complex architec-
ture could have been retained. The service testcase1
of testComponent contains a simple computeSpeed
call and oracle evaluation. Every data is obtained by
using abstract functions in the model that are mapped
to concrete data providers.

In the following we will detail the process that al-
lows us to create test applications like the one we pre-
sented in Figure 8. The testing process is a sequence



Figure 8: Test architecture for service computeSpeed

of model transformations which successively merge
models, integrating features into them, as illustrated
in Figure 5. The input System Under Test is a PIM
of the SbC and a test intention is also a model de-
scribed in cf. Listing 1. The process is made of two
successive model transformations which return an ex-
ecutable code of the test harness.

Listing 1: Test intention for computeSpeed service
TEST_INTENTION P la toonTes t I n ten t i on

DESCRIPTION " t e s t o f the serv i ce computSpeed ,

cover ing c o n t r o l f l ow graph "

USES {PLATOONTESTLIB}

INPUT VARIABLES

las tpos : I n t ege r ;
vspeed : I n t ege r ;
safeDistance : I n t ege r ;
p i l o t p o s : I n t ege r ;
p i l o t speed : I n t ege r ;

OUTPUT VARIABLES

speed : I n t ege r ;
orac ledata : I n t ege r ;

ORACLE

speed=orac ledata

The first model transformation is a model-to-
model transformation. It builds the test harness as
an assembly of selected parts of the SUT with test
components (mocks, test driver), and returns a Test
Specific Model (TSM). It is semi-automatic transfor-
mation: the test intention is provided by the tester and
COSTOTest asks her/him to make choices that are se-
lected on the basis of static analysis of the PIM. Dur-
ing this first step, the aim for the tester is to build a
harness such as the one illustrated in the bottom of
Figure 8.

The second transformation is a model-to-code
transformation; COSTOTest generates the code to
simulate the behaviour of the harness, then it merges
the harness with a Platform Description Model

(PDM) to get code (Java code in this case). It can be
executed, because the model of the components de-
scribes the behaviour of the services, in the form of
communicating finite state machines. The test data
and test oracle providers are designed in the PDM,
thanks to the input “Data”. A “data source” is gener-
ated, it is an XML file, with a structure corresponding
to the test intention, that should be fulfilled with con-
crete values by the tester.

Finally, the test execution consists in setting the
test data and then “run” the test harness component.
COSTOTest proposes interactive screens to enter all
the data values into the XML file generated by the
second model transformation. The tester can also
provide the test data values in a CSV file which is
transformed into the XML file. We consider the test
of computeSpeed service, covering its control flow
graph to generate test data. We create 45 test cases
and run them getting the verdicts. The data source
XML file will also store the verdicts (cf. Figure 9).

6 Related Work

The combination of formal verification and test-
ing is not new but the way they are combined varies
with the verification goals (Bousse, 2013), e.g. hybrid
approaches for functional verification (Bhadra et al.,
2007).

Many works that combine tests and proofs use fi-
nite state machines dialect as modelling DSL (Con-
stant et al., 2007; Falzon and Pace, 2012; Artho et al.,
2005). In the spirit of Model Based Testing (MBT),
the authors focus on conformance checking and the
goal is to generate test cases from a formal specifi-
cation to check whether an implementation conforms



Figure 9: Test harness assignments: verdict stored in the XML file

to the model (Constant et al., 2007) or to monitor
runtime verification (Falzon and Pace, 2012). Her-
ber et al. generate conformance tests to complete the
model-checking of SystemC designs (Herber et al.,
2009). Conversely Dybjer et al. use testing to avoid
the effort of costing proofs (Dybjer et al., 2004), their
method interweaves proving steps and testing steps
while usually the proofs are done first on the model.
Similarly Sharyginal and Peled use testing (with PET)
prior to the actual verification (with SPIN) and during
the evaluation of counter examples (Sharygina and
Peled, 2001), testing is thus a kind of heuristics to
reduce the state space explosion. However their ob-
jective is not to get a correct-by-construction code but
check whether the C++ code is correct by translating
to model (reverse-engineering). Also no tool support
is provided for the translations.

We can get inspired by the above techniques but
none is a direct answer to our goal which is (i) cen-
tred on the verification of correctness, (ii) at the model
level, (iii) for heterogeneous models and properties
(structure, dynamics, functions) that supposes some
completeness. As mentioned by E. Bousse at the be-
ginning of his PhD in (Bousse, 2013), the question is
"How to perform effective V&V on such complex and

potentially heterogeneous models?". He mentioned
several pitfalls: the V&V tools have limited applica-
tion fields, low expressive power, low scalability, low
integrability, semantic gap between domains... Con-
sequently one pivot language cannot catch all the as-
pects. Several years later, he proposed a transforma-
tion based approach to align SysML with B (Bousse
et al., 2012) that managed to prove safety proper-
ties. The alignable subset of SysML is covered but
the problem stays open for the unaligned aspects.

We are convinced that the solution solution is a
collaborative approach for model testing instead of an
unifying approach. The forthcoming question is what
makes the glue between the heterogeneous aspects. A
possible answer is the concept of contract because it
has the same underlying semantics that crosses the ap-
proaches, especially those related to services. A con-
tract is the agreement between clients and providers
and the interesting point is that it includes clauses that
can focus on the heterogeneous aspects (rights and
duties, quality of service...) (Beugnard et al., 1999).
The notion of multi-level contract that we promote
here can be an unifying paradigm for the functional
contracts of Meyer (Meyer, 2003) or the behavioural
contracts (Acciai et al., 2013; Fenech et al., 2009).



Contracts are a basis for property verification as well
as for testing oracles (Le Traon et al., 2006). We agree
with Dwyer and Elbaum that noted the risk of fo-
cusing on individual techniques (Dwyer and Elbaum,
2010) and Table 2 defines a way to characterise their
property-behaviour coverage.

Contracts and services have been studied in the
context of service composition. From a service com-
position point of view e.g. BPEL, the behavioural as-
pect is preeminent (ter Beek et al., 2007). Consid-
ering only the formal models, composition is mainly
based on automata, Petri nets and process algebra, as
illustrated by the orchestration calculus of Mazzara
and Lanese (Mazzara and Lanese, 2006); therefore
the contracts focus mainly on dynamic compatibility.
Conversely the contracts (in the sense of design-by-
contract) are taken into account in (Milanovic, 2005)
(using abstract machines) but not the dynamic be-
haviour. Kmelia handles both aspects. In (Brogi,
2010), the contract is supported at four levels (sig-
nature, quality of service, ontology, behaviour) but
none of them handle the functional contract. The ser-
vice concept is a key one. The component architec-
ture (SCA) approaches (Ding et al., 2008) empha-
size the service concept, like Kmelia does; but un-
fortunately contract features are not introduced yet in
SCA. Testing LTS behaviours is performed in (Schätz
and Pfaller, 2010). The authors customize compo-
nent testing at the level of component in a system use.
Our framework also allows to customize the testing
through the definition of the testing perimeter and the
selection of mock services, then it applies the same
kind of tests with a mutation analysis. In (Lei et al.,
2010), the authors target robustness testing of com-
ponents using rCOS. Their CUT approach involves
functional contracts and a dynamic contract (proto-
col). Our approach does not target robustness, but the
mutation analysis exploits the kind of errors of (Lei
et al., 2010) (bad call sequence / invalid parameter) in
a more systematic manner.

7 Conclusion

Reusability and composability belong to the foun-
dations of service and components systems and their
confidence must be ensured at early stages of the de-
sign of systems, by verification and validation tech-
niques. In practice, to face this challenge, one must
combine several techniques and the notion of multi-
level contracts including the right/duty clauses on the
orthogonal aspects of a system (structure, dynamic
and functional behaviour) seems a promising unify-

ing paradigm. We experimented these idea with the
Kmelia language that enables one to specify service-
based component systems where the service inter-
faces are equipped with contracts and service be-
haviours are defined with communicating finite state
machines. Each level of the contract is checked by
adequate tool support including model checking, the-
orem proving and model testing.

The current state of the proposal requires addi-
tional work and tool improvement. The additional
work concerns the specification and verification of
quality of service, related to the non-functional prop-
erties. New language primitives have to be imple-
mented to specify additional constraints on time and
resources. Related V&V techniques have to be exper-
imented. The main issues on tool improvement con-
cern platform facilities and abstraction because the
verification stages require expertise in domain spe-
cific provers. At best, the modeller would need to
know the proof techniques but not the proof tools.
This is mainly the case with model checking and test-
ing where the GUI can hide the implementation level
but additional work has to be done for provers.
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