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Abstract

Several software-centric development methodologies have been proposed during the last
decade. They either focus on code first (Extreme programming, Agile development pro-
cess), or on models: Model Driven Engineering is an initiative from the OMG to promote
the use of graphical modeling languages at different abstraction levels. MDE targets the
enhancement of main software engineering criteria, including maintenability, extensibility,
reliability and development time. OMG assumes the definition of domain-specific lan-
guages based on profiling or meta-modeling techniques, and suggests to use the Unified
Modeling Language for that purpose. Model transformations techniques ensure transitions
between modeling abstraction levels, simulation, formal verification, and code generation.
One of our former contribution, TURTLE, was a pioneer of formally defined UML-based
domain-specific graphical languages. TURTLE was defined at the end of the 90’s for the
design of time-constrained systems. Its main strength relies in its semantically enhanced
relations between UML classes, in its timing operators at state machine levels and in its
formal semantics defined in RT-LOTOS. Based on this initial contribution, this manuscript
addresses the whole development cycle of complex embedded systems. In particular, the
complexity of those systems encourages to take the appropriate design decisions as soon as
possible in the development cycle, so as to avoid costly late system re-engineering. This re-
mark advocates for an early use of formal description techniques in the development cycle,
e.g., at software / hardware partitioning, and then, all along next stages (analysis, design,
deployment) until executable code is generated. The poor acceptability of formal methods
in industry also led us to propose techniques to ease formal proofs at each methodological
stages. Finally, our contributions can be summarized in four main topics.
First, the definition of software-centric methodology covering all stages of safety-critical
software development: dimensioning, analysis, design, deployment and code generation.
TURTLE was extended to cover all these phases, with formal verification in mind.
Second, another UML profile was defined to specifically address the hardware-software
partitioning stage. DIPLODOCUS is based on a set of abstractions, and follows the Y-
chart approach. DIPLODOCUS comes with a very efficient simulation engine that takes
into account hardware components on which functional entities have been mapped. A
coverage-enhanced simulator tries to offer a good trade-off between model coverage and
combinatory explosion.
Even if system designs are now commonly done with graphical models, properties to be
proved are still captured with textual languages. Thus, our third main contribution pro-
poses to model properties within UML-based views, and to automatically derive property
models into either observers or properties formulae.
Raising security threats on safety-critical embedded systems advocates for taking both
safety and security requirements into account as early as possible in system development.
Thus, our fourth contribution proposes a new SysML environment - named AVATAR -
specifically defined to take into account both safety and security properties in graphical
models, and to automatically prove both kinds of properties from the same system models.
All environments mentioned above have been fully integrated and implemented in an open-
source toolkit named TTool. Finally, this research work has received grants from industrial
partners, and has also been publicly funded within national and European projects.
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Chapter 1

Introduction

Most software today is very much like an Egyptian
pyramid with millions of bricks piled on top of each other,
with no structural integrity, but just done by brute force
and thousands of slaves.

Alan Kay

1.1 Context

This document overviews research activities I’ve conducted over the last ten years, first
during my Post Doctoral term at Concordia University, Montreal, Canada, and then as
an Assistant Professor at Telecom ParisTech, Sophia-Antipolis, France. My research work
mostly focused on techniques to efficiently model and verify complex embedded systems,
with a particular emphasis on software hardware / partitioning of Systems-on-Chip, and
on security issues in embedded systems. Indeed, during the last decade, techniques for
designing embedded systems have been stimulated by the increasing complexity of em-
bedded applications that are expected to answer to external stimuli within given timing
constraints. Additionaly, the complexity of those systems also pushes to take the appropri-
ate design decisions as soon as possible in the design cycle, so as to avoid costly late system
re-engineering. This remark advocates for an early use of formal description techniques in
the development cycle. Nonetheless, once first decisions - e.g., software / hardware parti-
tioning - are proved as correct, a formal methodology should enforce those first decisions
all along remaining methodological stages, until the implementation stage.
Unfortunately, industrial practitioners are rather reluctant to use formal description tech-
niques. On the contrary, non formal modeling languages are widely accepted to document
and exchange information during system development: UML [151], SysML [152], AADL
[165] are a few examples of languages that are commonly used and supported with mature
toolkits. This situation has obviously stimulated research work on coupling those languages
with formal description techniques in order to enable the formal verification of diagrams
described in precited languages (see, for example [2, 164, 183, 184, 58, 146]).



2 1. Introduction

1.2 Problematic

A common way to add formality to UML is to define a "profile," i.e., a customization of the
OMG-based notation, in order to meet specific needs in a particular application domain.
We have first experimented with the definition of UML profile named TURTLE (Timed
UML and RT-LOTOS Environment) [25, 19]. The profile has a formal semantics given
in terms of RT-LOTOS. The major advantage of backing TURTLE on RT-LOTOS lies
in the possibility to reuse RTL [57], a formal validation tool developed by LAAS-CNRS
for handling real-time operators of RT-LOTOS. TURTLE has been defined to be able to
model real-time critical systems, and perform formal verification over those models. In
particular, it has been used in the scope of the dynamic reconfiguration of space-based
embedded software [35]. The first version of TURTLE unfortunately faced the following
limitations, which were progressively identified, and then addressed:

1. Full methodology support. TURTLE was limited to "design" diagrams. By de-
sign diagrams, we mean the definition of the software architecture of a system - in
terms of classes-, and the behaviour of these classes (state machines). As we men-
tioned before, there is a clear need for adding formality to all methodological steps,
including requirement capture, system analysis, and system deployment and proto-
typing. In particular, since requirement capture was omitted in the first definition of
TURTLE, it was not possible to trace requirements when performing formal proofs
from TURTLE diagrams, nor was it possible to enter given properties to be proven in
a high-level language, thus forcing designers to rely on low-level property languages
(e.g. CTL, PSL). This mix of high level languages (e.g., UML) and low level ones
(CTL) obviously reduces the interest in semi formal approaches.

2. Abstraction of computation durations. TURTLE designs abstract functional
and non functional delays with non-deterministic temporal operators. That is, com-
putations’ duration can easily be abstracted. Unfortunately, those durations may not
be known a priori, leading to the need to profile those algorithms (and, so, implement
them), or to make proofs for oversized non-deterministic time intervals.

3. Hardware platforms and implementation issues. TURTLE mostly addresses
software architecture, casting away hardware matters and system partitioning issues.
More generally, all underlying layers of software, including middleware, operating
systems, processors, buses, memories are not taken into account when performing
formal proofs from TURTLE models. System implementation and evaluation are
also not handled. That is, TURTLE designs have to be translated by "hand" to the
target language (e..g, C, Java), and then evaluated. Again, this approach reduces
the interest to use formal verification techniques.

4. Security concerns. Security has become a major issue in many embedded systems:
mobile terminals, automotive systems, aeronautic systems, etc. Unfortunately, TUR-
TLE does not offer any way to model security mechanisms nor supports the proof
of security properties. In other word, a designer wanting to conduct both safety and
security proofs from the same model needs to make two different models, and then
needs to use two different proof techniques.

5. Toolkit support. Profiles need to be supported with a toolkit that can handle
diagram edition, and can offer formal verification at the push of a button. The toolkit
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issue is of critical importance when coming to the industrial acceptance problematic.
A toolkit is also meant to demonstrate the practical efficiency of an approach.

1.3 Contributions and Outline

This document summarizes all contributions that we have worked on during the last years,
in order to overcome issues mentioned in the previous section. Basically, contributions
target the definition of an integrated and graphical environment to cover several embedded
system development phases. Figure 1.1 represents all contributions represented on the usual
V software development cycle. The initial contribution (TURTLE) is depicted within a
red rectangle (Design, safety). New contributions are now more detailed with regards to
this Figure 1.1, and with regards to the V development cycle.

Figure 1.1: Contributions overview

Basically, those issues have been addressed as follows:

1. TURTLE was enhanced with other methodological phases (see Figure 1.2) so as to
cover an extended part of embedded system development: system dimensioning, sys-
tem analysis and system deployment stages. System dimensioning is based on UML
deployment diagrams limited to the modeling of traffic sources, traffic destinations
and network routers. System analysis extends the UML analysis diagrams with non
deterministic temporal operators and preemption relations between scenarios. Sys-
tem deployment leverages UML with explicit and concrete scenarios and protocols
between execution nodes (e.g., TCP/IP protocol, UDP protocol, or middleware-based
communication). The three stages have been given a formal operational semantics.
Moreover, we have also introduced automatic design synthesis from analysis mod-
els, and automated executable code generation from deployment diagrams. At last,
we have proposed patterns covering different methodological stages so as to assist
engineers in their modeling tasks. All those contributions are described in chapter 2.
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Figure 1.2: Enhancement of TURTLE

2. We decided to put a particular focus on the system partitioning phase. Indeed, the
TURTLE dimensioning phase cannot be applied to complex embedded systems or
chips in which the dimensioning of computations resources (e.g., CPUs and hardware
accelerators) is at stake, of whenever the software / hardware architecture is not ob-
vious or known in advance. Indeed, the Design Space Exploration we introduce is
a process dedicated to the analysis of various functionally equivalent software/hard-
ware implementation of systems specification. The result of this process shall be an
optimal hardware / software architecture. The DIPLODOCUS profile was introduced
to offer engineers with the necessary tools and diagrams to determine this optimal
partitioning (see Figure 1.3). Basically, DIPLODOCUS is based on high level and
abstract UML models, that can be simulated or validated at the push of a button.
Models clearly separate functional issues from hardware architectural ones, making it
easy to experiment with different partitioning schemes. Fast simulations and formal
verification are the two techniques that can be used to investigate a given mapping
of functions over hardware architectures. The overall DIPLODOCUS approach is
explained in chapter 3.

Figure 1.3: System partitioning: the DIPLODOCUS environment

3. Whether a specific methodological stage is used (e.g., the partitioning one), or a
sequence of methodological stages (e.g., TURTLE analysis, design, deployment), the
verification of methodological models is performed according to a set of properties.
An important contribution is the possibility to directly express system requirements
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and properties in the model, rather than with low level languages (see Figure ??).
To do so, we have experimented with different approaches. At first, time-related
properties are expressed within UML Timing Diagrams, and automatically derived
as observers in TURTLE design diagrams. Those temporal properties can be re-
lated to non formal requirements expressed in SysML Requirement Diagrams. This
first contribution was followed with a more generic one aiming at expressing both
logical and temporal properties. To do so, the SysML parametric diagram is used,
and can relate design elements (e.g., attributes, signals) to build up complex logical
and temporal properties. Then, properties can be automatically derived either to
observers or into specifications in given well known verification languages (e.g., CTL
like languages). Requirements and properties models and semantics are detailed in
chapter 4.

Figure 1.4: Requirements and property modeling

4. TURTLE is mostly focused on safety-related properties, and DIPLODOCUS tar-
gets both safety properties and performance related metrics. But, as previously
mentioned, security is now an important aspect of many embedded systems, and
shall be explicitly taken into account in all system development stages. This issue
is addressed by a new SysML environment named AVATAR (see Figure 1.5). The
latter borrows most TURTLE concepts in a SysML way, thus avoiding the mix of
SysML (e.g., with requirements diagrams) and UML (e.g., class diagrams) in the same
methodology. AVATAR supports analysis, design, and prototyping stages. Moreover,
in AVATAR, security requirements and attacks can explicitly be captured. Design
diagrams are enriched with explicit security mechanisms and features (e.g., crypto-
graphic keys). Authenticity and confidentiality properties can also be expressed, and
furthered proved with an automatic translation to the ProVerif format. AVATAR
still supports the proof of safety properties. At last, the TURTLE deployment stage
has been enhanced in AVATAR with a prototyping stage. Chapter 5 summarizes
these contributions.
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Figure 1.5: AVATAR
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Chapter 2

TURTLE: An Environment for
Embedded Systems Development

2.1 Context and outline

The increasing development of embedded applications which need to answer external stim-
uli under timing constraints has stimulated research work on real-time system design tech-
niques. Also, life-critical systems and tremendous prototyping costs of complex real-time
systems - e.g., aircrafts, satellites, and nuclear plants - has created potential conditions for
deploying formal methods and a priori validation techniques that enable early detection
of design errors in the life cycle of a system.

Despite the expected benefits of a priori validation based on formal modeling, industrial
practitioners have been reluctant to use formal methods, even if a broad variety of modeling
languages has been proposed to support the design trajectory of these systems. The lack
of integration of formal techniques in development methodologies and the lack of skills on
those techniques are probably the two main factors to explain that reluctance.

For the systems we target, we favor formal languages that explicitly take time into
account and support verification of design solutions against temporal requirements, e.g.,
languages such as Time Petri Nets [8]. By contrast, an informal modeling language has
received increasing acceptance in industry: the Unified Modeling Language [29], which is
now an international standard at OMG (Object Management Group). The lack of formal
semantics in UML has stimulated research work on coupling UML and formal modeling
languages with the purpose of giving the OMG-based notation a formal semantics and
to enable a priori validation of UML diagrams [15, 52, 51, 55, 56, 59, 69, 90, 76, 77, 78,
87, 92, 128, 170, 178]. To contribute to these solutions with a particular focus on timing
constraints, we have introduced in [25] a UML profile called TURTLE (Timed UML and
RT-LOTOS Environment), which has been successfully applied to the design of critical
systems [35] [138].

However, the applicability of this first version of the TURTLE profile to the devel-
opment of real-time and distributed systems is limited. Indeed, This first version was
specifically targeting the design of software components in terms of classes: architecture,
logical and temporal behavior. But, TURTLE could not explicitly be used to analyze a
system, nor it could be used to design the low level architecture of a distributed systems -
including its hardware parts -, and the communications constraints between various system
components, e.g., Quality of Service parameters. To address these drawbacks, TURTLE
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has been enhanced with several methodological stages: dimensioning, analysis, and de-
ployment. The usage of TURTLE has also been grandly simplified with the definition of
formally defined UML patterns.

Contributions to the TURTLE profile are presented as follows. The overall methodology
is presented in section 2.2. TTool is the toolkit we have developed for supporting TURTLE:
it is presented in section 2.3. Dimensioning, analysis, design and deployment stages are
then presented in sections 2.4, 2.5, 2.6 and 2.7, respectively. Modeling patterns are then
presented in section 2.8. Section 2.9 concludes this chapter.

2.2 Overall methodology

TURTLE now defines the following four-stage method:

1. System dimensioning. The main purpose of that stage is to parameterize the
analysis and design diagrams with realistic upper bounds in temporal intervals. A
"Dimensioning Diagram" describes the network in terms of traffic and equipments
behavior, and a "Dimensioning-oriented Use Case Diagram" categorizes the flows
conveyed by the network. The semantics of those diagrams is given throughout the
Network Calculus Theory.

2. System analysis. Use-case driven analysis enables to identify the boundary of the
system, the functions and services it offers, and the set of external actors it interacts
with. Use-cases are documented by sequence diagrams. An Interaction Overview
Diagram (IOD) relies on an activity diagram-like formalism to structure sequence
diagrams. TURTLE sequence diagrams accept absolute dates and time intervals à
la UML, and introduce timers à la UML/SDL. Two scenario instances communicate
either asynchronously or synchronously.

3. System design. This stage was introduced during the first definition of TURTLE.
Design diagrams include an object-oriented architecture depicted by a class/object
diagram and a set of activity diagrams that describe the behaviors of objects. Asso-
ciations between classes enable explicit modeling of task pairs that run in parallel or
in sequence, rendezvous on gates or preempt each other. Support of time intervals
allows TURTLE activity diagrams to include temporal indeterminism in the behavior
of objects, so as to model e.g. non deterministic computation times or timers.

4. System deployment. Software classes defined at previous steps are grouped into
components. Components may then be deployed over execution nodes using UML
deployment diagrams. Executable Java code can be derived from that stage.

2.3 TTool

TTool fully supports the four-stage method described just before. Other UML toolkits
could perhaps be tuned to support the TURTLE syntax. However, our experience has
demonstrated that this tuning requires a strong involvement, and its is necessary to redo
that tuning each time a new versions of the toolkit is released. In fact, TTool was first
developed when no other alternatives were available (e.g., eclipse), and can easily be ex-
tended with profile modifications, or with new profiles. Also, as it is mainly developed in
Java, it can be executed under most platforms.
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Main differences between TTool and other UML front-ends interfaced with external
verification tools are listed below.

• TTool offers user-friendly interfaces to formal verification tools and nicely manages
the problem of linking verification results to the identifiers used in the TURTLE
model. People with limited knowledge of formal methods may use TTool without
reading a line of LOTOS [101], RT-LOTOS [57], or UPPAAL [42] code.

• TTool includes several code generators that enable application of complementary
verification techniques, such as model-checking, transition system minimization and
observers.

• All diagrams, but the use-case diagram, have a formal semantics. Therefore, formal
verification applies not only to design diagrams but also to dimensioning, analysis
and deployment ones.

• TTool enables to apply formal verification to analysis diagrams where other UML
tools apply it to design diagrams exclusively. Errors may be detected without waiting
for the design step to begin. Also, somebody unfamiliar with object-oriented design
may restrict himself or herself to functional analysis. This was the case in several
models, including the ones made in the scope of a project with UDCast.

• TTool bridges the gap between the analysis and design steps. It indeed includes
a design diagram synthesizer which takes sequence diagrams as input and outputs
objects and activity diagrams. Automatically generated diagrams may be extended
manually and formally verified. This functionality is further discussed in section
2.6.3.

• At deployment step, TTool takes into account the distribution of components. Links
between components are characterized by an asynchronous FIFO-based communica-
tion semantics, non-deterministic delays and a loss rate.

The rest of the section describes a verification approach that indifferently applies to
analysis, design or deployment diagrams of the TURTLE profile. Those techniques also
apply to other profiles, e.g. to the DIPLODOCUS UML profile.

2.3.1 Reachability analysis

TTool has been interfaced to verification tools that implement reachability analysis, a tech-
nique which computes the set of stable states the system may reach from its initial state.
This subsection assumes a reachability graph may be computed in reasonable time.

CADP [85, 93], a tool developed for a version of LOTOS that does not include temporal
operators. CADP enables quick generation of reachability graphs; nevertheless, temporal
information of the original model is lost. Conversely, RTL [57] and UPPAAL [43] take the
temporal operators - including non-deterministic temporal operators - of TURTLE models
into account.

TTool not only invokes a verification tool it has catered with appropriate formal code,
it also offers user-friendly interfaces to exploit the reachability graphs computed by CADP
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or RTL. Thus, TTool computes statistics on states and transitions. It also identifies dead-
locks as well as shortest and longest paths in the graph. Also, TTool uses dotty to display
graphs. The latter contain identifiers that may not match with the identifiers used in the
TURTLE model. Therefore, TURTLE provides a conversion table which allows to trace
identifiers from TURTLE models to formal code and reachability graphs.

In practice, displaying a reachability graph is not sufficient to decide whether some
property is met or not. The reachability graph of real-size systems may indeed have mil-
lions of states and transitions. Logic-based model checking and minimization are two
complementary techniques offered by TTool and its companion tools.

2.3.2 Model checking

TTool offers a user-friendly interface to check for logic formulae (e.g. with UPPAAL).
For example, to decide whether some UML action is reachable or not, or to study the
liveness of that action, it suffices to right click on the corresponding action’s symbol:
The UPPAAL’s verifier is invoked with corresponding CTL formulae, and the result of
reachability / liveness properties is displayed. Temporal logic formulae in CTL may also
be entered directly in TTool.

2.3.3 Minimization of labeled reachability graphs

A reachability graph may be transformed into a Labeled Transition System, a structure for
which CADP implements minimization techniques based on trace or observational equiv-
alences just to mention a few [57]. Graph’s transitions associated with synchronization
actions are labeled by action’s name. Other transitions are labeled by "nil". The mini-
mization process discards as much "nil" transitions as allowed by the equivalence relation
and outputs a quotient automaton which gives an abstract view of the system’s behavior.
Minimization particularly applies to communication architecture validation. Given a pro-
tocol layer modeled in TURTLE, a labeled reachability graph is generated (RTL, CADP)
and minimized by considering service primitives exchanges as observable events. The min-
imization thus outputs a quotient automaton of the service rendered by the protocol layer.

2.4 System dimensioning

2.4.1 Motivation

The modeling of distributed systems commonly relies on a three-layer architectural pattern
where two or several protocol entities rely on a pre-existing communication service to
provide their end user with a value-added service. Unfortunately, the pre-existing service
is hard to characterize in terms of transmission delay and error rate. A survey of the
literature indicates that authors commonly use empirical values. This generally leads to a
space explosion problem inherent to reachability analysis techniques implemented by the
formal verification tools linked to TTool.

The dimensioning stage proposes to bypass the problem using analytical realistic upper
bounds, obtained with the Network Calculus formalism [130], for the pre-existing service.
The objective is to address the dimensioning problem as early as possible in the develop-
ment cycle and to reduce design and prototyping costs.
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This work was lead in collaboration with ISAE and published in [31, 26, 32].

2.4.2 Related work

The increasing complexity of distributed systems and the need for architecture validation
have stimulated research work on protocol modeling using Petri nets [70], formal description
techniques (Estelle, SDL and LOTOS) and UML profiles (such as TURTLE) that bridge
the gap between the UML and formal methods world. Many contributions in this area
address language definitions, formal verification tools and code generators. A survey of the
literature indicates that too little attention has been paid on methodological issues with
some exceptions, such as [27].

Methodologies which apply to distributed systems commonly identify communication
architecture validation as a fundamental issue, and reuses the three-layer pattern described
in figure 2.1. Two or several protocol entities rely on some pre-existing communication
service to offer to their upper users a value-added service. The pattern has extensively
been used since the mid-1980’s, including for protocol engineering based on UML [160].

Figure 2.1: Three-layer architectural pattern

The increasing use of the UML gives protocol engineers a notation to share. The ac-
ceptance of UML among practitioners also depends on the capacity of UML tools to offer
model analysis techniques. For instance, the proSPEX method [68] implements perfor-
mance evaluation into TAU G2, a tool which supports a UML/SDL profile. De Wetre and
Kritzinger promote a non analytical technique based upon simulations and application of
queuing theory. Consequently the network parameters are approximated by lower bounds.

Unlike this approach, the one we have selected in the scope of TURTLE is based on
the use of analytical realistic upper bounds to characterize the communication service (e.g.
transmission delays, throughput of memory) thanks to the Network Calculus formalism.
This theory is well adapted to controlled traffic sources and provides easily analytical
upper bounds of the system’s features. Our work joins the use of UML profile and the
Network Calculus theory for dimensioning purposes. To our best knowledge, this kind
of approach has not been addressed yet for distributed systems. However, it is worth to
note that in terms of joint use of Network Calculus and a high-level modeling language,
there are some existing tools like CYNC [167] which associates the Network Calculus
with Matlab/Simulink. Moreover, the idea to compute bounds to come up with worst-
case scenarios is not exclusive to the Network Calculus. For example, the synchronous
language SCADE is proposed for that purpose in [129], but this contribution does not
target distributed systems.
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2.4.3 Network Calculus Fundamentals

The Network Calculus formalism [130] relies on min-plus algebra for designing and ana-
lyzing deterministic queuing systems where the compliance to some regularity constraints
suffices to model the traffic. These constraints limit traffic burstiness in the network and
are described by the so called arrival curve α(t), while the availability of the crossed node
is described by a service curve β(t). The knowledge of the arrival and service curves en-
ables the computation of the delay bound that represents the worst case response time of
a message, and the backlog bound that is the maximum queue length of the flow. The
backlog bound helps configuring the memory of the system.

As shown in Figure 2.2, the delay bound D is the maximal horizontal distance between
α(t) and β(t). The backlog bound B is the maximal vertical distance between them. Two
conditions make the bounds easier to calculate: (i) a linear arrival curve α(t) = b+ rt with
b the maximal burst and r the rate (we say that the flow is (b, r)-constrained); (ii) a rate
latency service curve β(t) = max(0, R(t − T )) with latency T and rate R. The obtained
bounds are b

R + T for the delay and b+ rT for the backlog.

b

r

T

R

D

Time

Data

α(t)

β(t)

Figure 2.2: How to compute the maximum bound on delays and queues

This formalism gives an upper bound for the output flow α∗(t), initially constrained
by α(t) and crossing a system with a service curve β(t),using min plus deconvolution �
where:

α∗(t) = sups≥0(α(t+ s)− β(s)) = (α� β)(t)

The output arrival curve of the flow α(t) in the case of a linear input arrival curve α(t)
and a rate-latency service curve β(t) is simply α∗(t) = b+ r(t+ T ).

2.4.4 General approach

A Dimensioning Diagram (DD) is created to describe the network in terms of traffic and
equipments behavior. A dimensioning oriented use-case diagram, or DUCD for short, is
introduced to document the DD and categorizes the flows conveyed by the network. The
information contained in the DD and the DUCS is provided as input to the Network
Calculus Software (NCS) that has been interfaced with TTool. NCS analytically computes
upper bounds for network parameters such as communication delays and queues lengths
(i.e. memory usage). The NCS output values are used at the design level to have an
accurate model of the pre-existing service.

In UML, a deployment diagram is made up of execution nodes that may be stereo-
typed (e.g. by << PC >> or << Switch >>) and pair-wise connected by links. A
deployment diagram may also contain artifacts that identify software elements issued from
a development process.
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In TURTLE, DDs customize the concept of nodes, link and artifacts to model the
equipments, traffics, routers (including routing tables of those routers), router-to-router
interconnections, and equipment-to router-interconnections:

• Equipments are modeled with UML nodes stereotyped as << Equipment >>.

• Traffics are modeled as << Traffic >> artifacts to be added to the nodes stereo-
typed by << Equipment >>. Each traffic is characterized by a type (periodic,
aperiodic), a deadline, a minimal and maximal packet size, and the priority level
inside the router (four priority levels are supported). Figure 2.3 shows an example
of using TTool for entering traffic information.

• Routers and switches are modeled with UML nodes stereotyped << Switch >>,
see e.g. switch0 on Figure 2.4. Each switch is characterized by a scheduling policy
(Static Priority, First Come First Served), a capacity expressed in Mbs or Gbs, and
a set of entry / exit interfaces. That capacity is taken into account if and only if the
capacity of the links connected to the router is not set.

• Routing information is modeled inside a router, using << Routing >> artifacts to
be mapped onto << Switch >> nodes. See, e.g., the artifact R0 of node switch1,
Figure 2.4. A route is defined by a 3-uple (entry interface, traffic, exit interface).
A routing artifact may contain one or several routes.

• Links between nodes model exit and entry interfaces of equipments and switches. At
equipment level, multiplicity parameters may be associated to the interfaces, so as
to model large numbers of similar equipments in a system (e.g. thousands of mobile
phones).

Figure 2.3: Entering traffic characteristics

2.4.4.1 Properties

The network calculus theory applies from DDs if the latter satisfy the following properties:

• The traffic routing must not contain any cycle.
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Figure 2.4: Characteristics of a Route artefact

• A multiplicity may be attached to a link between an equipment and a switch; it
exclusively applies to that equipment. It is not permitted to attach a multiplicity to
another type of link.

• For all traffics emitted to the network, there must be at least one well-formed path
making it possible for the traffic to be sent to a destination equipment. Here, well-
formed means that for all traffic entering a switch, (i) there must exist at least one
output interface which differs from the input interface, and (ii) the routing infor-
mation associated with the switches must allow each traffic to reach at least one
equipment.

2.4.5 Results

The dimensioning phase of the TURTLE profile has been applied to several systems
[31, 26, 32] for which upper bounds were succesfully calculated. Several contributions
have addressed the UML graphical capture of system characteristics. Nonetheless, the
translation to network calculus specification and the analysis of these specifications are
still on-going works. New results are thus expected in the incoming year.

2.5 System analysis

2.5.1 Basics

Basically, a TURTLE analysis is as follows. Use-case driven analysis enables to identify
the boundary of the system, the functions and services it offers, and the set of external
actors it interacts with. Use-cases are documented by sequence diagrams. An Interaction
Overview Diagram (IOD) relies on a activity diagram-like formalism to structure sequence
diagrams. TURTLE sequence diagrams accept absolute dates and time intervals à la
UML, and introduce timers à la UML/SDL. Two scenario instances communicate either
asynchronously or synchronously.
Research work around the TURTLE analysis stage have been published in [23, 24, 27, 36,
20, 21, 22], and used in the scope of several projects, including the modeling and verification
of multimedia broadcasting (UDCast).

2.5.2 Semantics

A TURTLE analysis does not change much with a "regular" UML analysis. The main
strength of a TURTLE analysis relies in the formal semantics that is given to TURTLE



15

analysis diagrams. On the one hand, use case diagrams are provided for documentation
purpose only, on the other hand Interaction Overview Diagrams and scenarios are given
a formal semantics in RT-LOTOS. A set of interaction Overview Diagrams and scenarios
they referenced can indeed be translated into a TURTLE design - see section 2.6, and then,
the semantics of TURTLE design can be reused. Design synthesis is further explained in
section 2.6.3.

2.5.3 Excerpt of a specific contribution

Let us present the interest of one specific TURTLE analysis operator: the preemption
operator. This operator can be used at Interaction Overview Diagram level to model
that a given scenario may preempt another one as soon as one action in the preempt
scenario can be performed (see Figure 2.5). Whenever an preemption occurs, the preempted
branch of scenario is totally interrupted forever, and the branch with the preempt scenario
is executed. This operator is particularly useful to model situations where a protocol
disconnection can occur at whatever moment after a connection has been setup.

Figure 2.5: Use of the preempt operator in an Interaction Overview Diagram

2.6 System design

2.6.1 Basics

TURTLE designs have been first introduced in, and further explained in two Ph.D. thesis
[35] [138], and in several papers, either to present the core of the design diagrams [25,
65, 28, 66, 19], or to present extended versions [137, 64, 63], or toolkit issues [21], or the
application of TURTLE to the modeling of complex systems [29, 21].

Basically, A TURTLE class diagram is made up of "normal" classes and stereotyped
classes that we call Tclasses (TURTLE Class). Communications through public attributes
or method calls are limited to communications between a Tclass and a normal class, or
between two normal classes. Communication between two Tclasses uses so-called "gates."
A gate is a particular Tclass attribute of type Gate. A gate can be used for synchronized
communication with another Tclass, or for an action internal to a Tclass.

The internal behavior of each Tclass must be described using an activity diagram.
The TURTLE profile extends UML activity diagrams with synchronization operators and
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temporal operators. The former are used to express synchronizations which are internal to
Tclasses, or synchronizations between Tclasses. The latter are used to describe temporal
constraints that apply exclusively to the internal activities of Tclasses. In its activity
diagram, a Tclass T may perform a call on a gate g. Three cases may apply:

• g is not synchronized with any other gate. In that case, a call on this gate models
an internal action

• g is internally synchronized. The synchronization occurs when two subactivities of a
Tclass are ready to execute action "g."

• g is externally synchronized (g must be declared as public). In that case, T must be
linked with a Synchro composition operator to another Tclass, and g must be specified
as synchronization gate in an OCL formula attached to the Synchro operator. Any
relation attributed by a Synchro operator must be decorated by an OCL formula
stating which gates are connected together.

Four temporal operators are introduced at activity diagram level: a deterministic delay, a
non deterministic delay, a time-limited offer on a gate, and a time capture operator.

2.6.2 A few extensions

All details on TURTLE design operators and semantics can be found in [35]: we do not
wish to put too much emphasis on this definition in this document since most of it was
realised during my Ph.D. work. However, there were a few extensions defined and published
afterwards to enhance TURTLE designs [137]. Those extensions represent in fact modeling
schemes which were frequently used to capture real-time system behaviours: requesting a
task to execute, specifying a task period, modeling task suspension and reactivation.

• Invocation. A task can request another task to execute once. This semantics will
be later reused in the definition of the DIPLODOCUS profile (see chapter 3).

• Periodic tasks. A task can be specified as being periodic. The deadline of the task
can be specified as well, and further verified at validation step.

• Task suspension and reactivation. Semantically speaking, this operator is the
most complex one. Indeed, when a task is suspended, its temporal operators con-
tinues to elapse, that is, the system must continue to execute. The underlying RT-
LOTOS semantics is based on the "at" operator.

Two other modeling facilities have been introduced later:

• TData. A TData represents a data structure built upon default TURTLE types.
This facilitates complex data exchanges (e.g., a message on a communication medium).

• TObject. A TObject represents an instance of a TClass, with a customization of
attributes value.

TURTLE designs were implemented in TTool beginning of 2004, and were used in
several academic and industrial case studies, in particular with Thales Alenia Space in
the scope of the modeling of space-based embedded systems dynamic reconfigurations
[35]. TURTLE designs are also at the origin of all other TURTLE stages and all other
semi formal modeling approaches we defined afterwards, including DIPLODOCUS [33] and
AVATAR [112].
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2.6.3 Design synthesis

2.6.3.1 Problematics

Diagram coherency is a topic of utmost importance to detect modeling issues. Our synthesis
approach proposes to generate design diagrams from analysis ones, i.e., from interaction
overview diagrams and sequence diagrams. This work is settled on contributions made to
generate SDL diagrams from HMSCs [4]. Well known techniques for design synthesis are
discussed in [13]. Some approaches do not check for the validity of scenarios before giving
them as input to the design synthesis engine. The idea is thus to rapidly obtain a first
design model that a designer can further rework, and validate. Other proposals validate
these scenarios before the synthesis stage, so as to ensure system behavior conformance
between the design and scenarios. Indeed, a set of scenarios may be inconsistent, may
contain blocking points (e.g., deadlocks), or more generally, the scenarios may be not
implemented with the synthesis approach. This problem is called realisability [11], or
implementability [111].

2.6.3.2 TURTLE design synthesis

Basically, our synthesis technique is as follows [24]: it takes as input one main Interaction
Overview diagrams (IOD) that may reference scenarios described with Sequence Diagrams
(SDs). The synthesis process outputs one TURTLE design, i.e., a TURTLE class dia-
gram (CD) and one activity diagram for each Tclass of CD, i.e., a set of ADs. Synthesis
algorithms are quite complex because UML analysis and design diagrams have strongly
different operators. Their implementation represent around 6000 thousand lines of Java
code in TTool. The general philosophy of these algorithms is as follows:

1. For each instance Ii modeled in at least one SD, a Tclass Ti is generated in CD.

2. Synchronous messages can easily be translated using TURTLE "Synchro" composi-
tion operators.

3. For each asynchronous message mk sent by instance Ii to instance Ij , a commu-
nication channel is created between Ti and Tj . This channel is modeled with two
intermediate tclasses Tin_ij_mk and Tout_ij_mk. These classes are synchronized
with Ti and Tj , respectively. Tin_ij_mk and Tout_ij_mk synchronizes together.
Channels are modeled as totally ordered with a buffer at destination side. No delay
are applied on messages.

4. Each timer of sequence diagrams are modeled with a specific class offering three
synchronization gates: set, reset and exp (expiration), as defined in the MARTE UML
profile [154]. Each class using a timer is synchronized with the class corresponding
to the given timer. A similar approach is used to model time constraints.

5. The behavior of Ti is built as follows. For each event evtij of instance Ii a sub activity
diagram is built. These sub activity diagrams are connected together as follows. If
two events evtij and evtik are in sequence in the sequence diagram, then, there are
connected together. Otherwise, the two subactivities are not ordered, (co-regions,
different scenarios, etc.) are connected taking into account operators of Interaction
Overview Diagrams: choice, preempt, etc.
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(a) Interaction Overview Di-
agram

(b) Scenario sd1 (c) Scenario sd2

Figure 2.6: Non implementability example

2.6.3.3 Implementability of TURTLE analysis

Given a TURTLE analysis, i.e., a set of TURTLE scenarios interconnected with Interaction
Overview Diagrams, an important issue to solve is whether the generated design has exactly
the same behaviour as the one expressed by the corresponding analysis diagrams. Indeed,
a set of scenarios describes a global and centralized view of the considered system, i.e., all
instances are expected to execute the same scenario at the same time. On the contrary, a
design is composed of a set of independent units communicating with channels. In some
modeling schemes, our synthesis approach may unfortunately generate a TURTLE design
that contains more execution traces than the analysis taken as input by the synthesizer.
Let’s consider an example. Two scenarios can be exclusively executed: either scenario sd1
or sd2 (see Figure 2.6a). In scenario sd1 (Figure 2.6b), I1 sends message a to I2, and
then, I2 responds with message c. In sd2 (Figure 2.6c), I3 sends message b to I4, and
then I4 responds with message d. The system assumes that if I1 sends message a, then I3
mustn’t send message b. On the contrary, if I3 sends message b, I1 must not send message
a. But our translation algorithm cannot detect such scheme, and translates I1 and I3
without this dependency, i.e., the distributed choice modeled in the IOD is not translated.
Other non implementable schemes are provided in [24]. Automatically identifying some
non implementable situations is still an open issue, even if it is has been demonstrated as
non decidable in the general case [142] [12]. Contributions published in [192] and [62] are
a starting point.

2.7 System deployment

2.7.1 Context

The deployment phase consists in mapping "software components" on execution nodes. In
TURTLE, those software components are usually built upon classes extracted from the
design.

High-level designs such as TURTLE models have to be refined into more concrete
designs before reaching the implementation phase. One of the major steps in this process
is the identification of the components and their deployment. We are interested in defining
components, deploying them, and studying the properties of such deployments as early as
possible in the development life cycle. Since UML deployment diagrams have no formal
semantics, a formal investigation of properties of potential deployments is impossible. This



19

section explains how we have formally defined TURTLE components and how we support
their deployment over execution nodes.

UML deployment diagrams depict the "actual physical" configuration of a distributed
system. Thus, a UML deployment diagram can be seen as a low-level design of a system,
i.e. a design closer to the real system implementation. Software methodologies scarcely
use deployment diagrams, and when they do, their role is limited to documentation.

UML deployment diagrams suffer other drawbacks. First, communication links, if
stereotyped, remain imprecise because no clue can be given whether, when several links
are modeled between two nodes n1 and n2, which link is used for sending a message from
a component on n1 to a component on n2. Second, tough UML deployment diagrams
have been introduced with distributed systems in mind, they do not offer any features
for modeling large distributed systems, i.e. systems with a high number of nodes. At
last, UML deployment diagrams are used for documentation purpose. We do think this is
an important drawback since the deployment of components among nodes may introduce
new errors inherent to distribution characteristics. If UML 2.0 has introduced a composite
structure diagram to address some of the drawbacks listed above, this diagram does not
support communication links with various characteristics (FIFO, delay, jitter, and so on).
Also, composite structure diagrams do not include any operator or concepts to explicitly
model physical nodes.

UML deployment diagram operators are:

• Nodes. These nodes represent the various physical locations of the system under
consideration.

• Software components. According to the UML 1.5 standard, software components
are deployable components that encapsulate functions and that offer interfaces to
their environment. An instance of a software component can execute at a time on
only one node.

• Communication links. A communication link connects a node to another node,
and is often stereotyped to indicate its type (e.g. «Ethernet»);

• Dependency links. A dependency link connects two software components.

2.7.2 Basics of TURTLE deployment

Deployment diagrams are obviously suitable for the description of concrete distributed
architectures: we have given them a formal semantics with the purpose to perform for-
mal validation of low-level UML designs. More precisely, we have proposed the following
enhancements for UML deployment diagrams [36]:

• Software components are built upon UML classes, TURTLE classes and TURTLE
composition operators. They can be formally validated;

• A multiplicity can be used at node level. This makes it possible to use a single
graphical node to describe several - and even many - physical nodes on which different
instances of the same software components run;

• Communication links connect component interfaces and not nodes. Also they can
be characterized with Quality of Service parameters, such as transmission delay and
jitter.
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UML has no formal semantics, and therefore any diagram element might be consid-
ered as given for documentation purpose. This remark particularly applies to links in
deployment diagrams. Since our objective is to take communication constraints between
components into account during formal validation, a formal semantics has also been given
to links between components. Links are supposed to be unidirectional and asynchronous.
A link is graphically represented by an association - with navigability - between the two in-
terconnected interfaces. We attribute these associations with four additional and optional
parameters given in an OCL formula:

1. A minimal transmission delay (min_delay)

2. A maximal transmission delay (max_delay)

3. A bandwidth indicated by the maximal number of messages carried at the same time
on the link (max_msg)

4. An average loss rate given as a percentage (average_loss_rate)

2.7.3 Proving properties

It is the designer’s task to build the software components of the deployment diagram, and
validate properties of the model using observers. Moreover, a low-level design contains
not only software components, but also links that also have to be observed. While the
observation of a software component can be done in the same way as a Tclass, i.e. with
non-intrusive observers included in software components, observing a link is not that easy
as discussed hereafter.

In TURTLE designs, observers are modeled at class diagram level [80]. In deploy-
ment diagrams, we introduce probes to observe properties related to links: a probe can
be attached to the observed link on the deployment diagram. A probe is defined as a
stereotyped Tclass (called Probe). Each particular probe of the system must be defined as
a Tclass, which inherits from the Probe Tclass (a probe may be identified with the «probe
stereotype»). All Tclasses inheriting from Probe must be declared and modeled at class
diagram level. If declared, they can be used at deployment diagram as follows. Let us
assume that P is a «Probe» Tclass. P can be used as a probe for as many links as desired
at deployment diagram level: the class must simply be used as an associative class for the
considered link (an example is provided later on in the section). Note that only one probe
can be attached to a link.

Several gates are declared protected in the Probe Tclass: send, receive, and lost. They
can be used as desired by probes to observe a link. Gates used for observation must be
listed in an OCL formula along with the observed link.

2.7.4 Code generation

Code generation is particularly interesting over a deployed model since this model is ex-
pected to be more concrete than a non deployed one. Code generation is mostly intended
for prototyping purpose. It can also be used for generating a whole system implementation
since behaviours not meant to be put in the model can be added as raw code in TURTLE
models. Raw code is obvisouly not considered for formal verification purpose. The pro-
cess we have defined - and more thoroughly explained in [27] - takes as input a TURTLE
deployment and generates a set of Java classes.
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A deployment is made upon a set of execution nodes on which are mapped software
components. The code generation process we have defined can generate code for software
components (recall: a software component is a gathering of TURTLE classes), and can
also generate code for the interconnection between these components.

2.7.5 Code generation for components

Generating Java code from a TURTLE component requires to translate the structure of
TURTLE classes into a set of Java tasks (i.e., Java threads), and to translate the behaviour
of those classes into a behaviour of Java tasks. On the one hand, most TURTLE operators
have a quite easy to implement counterpart in Java. For example, a sequence between two
TURTLE classes can be translated as a synchronization between the end of a Java task
and the beginning of another one. Similarly, loops, regular choices, variable modifications
have a quite direct translation in Java. On the other hand, some operators don’t have
a direct translation. For example, non deterministic intervals, synchronization on gates,
and non deterministic choices. Indeed, those operators are commonly used to abstract a
behavior that the person in charge of the model do not wish to describe more concretely.
For example, a non deterministic interval may represent the temporal bounds of a given
algorithm computation. It could be translated as a random waiting in a Java task. A
more interesting translation is obviously to make a call to an external code containing an
implementation of that algorithm. For synchronization purpose, we have implemented our
own Java library, relying on Java synchronized objects and method calls.

2.7.6 Code generation for links between components

We have given the possibility to enrich links between nodes with the specification of a given
communication protocol, e.g., TCP/IP, UDP, or even more complex protocols implemented
in middleware (e.g., CORBA, RMI). Whenever a TURTLE component makes a call on a
gate connected to a component located on another execution code, the following procedure
is used:

• The protocol is initialized, if not already. For example, a TCP socket is opened, or
a CORBA stack is instantiated.

• The data exchange is performed, using a message sending to the destination site,
or calling a remote method (RMI). It can be executed only in one-way approach,
contrary to synchronizations between TURTLE classes.

We have settled libraries for performing those two steps with an easy-to-use API, thus
facilitating the integration of other protocols.

2.7.7 Results

Formal verification and code generation has been succesfully experimented in several sys-
tems, including on models issued from European projects in which many execution nodes
(e.g., satellite telecommunication system, see [27]). The deployment of software compo-
nents over execution nodes is also at the root of DIPLODOCUS [33].
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2.8 Patterns

2.8.1 Context

Since the TURTLE profile has been defined a few years ago, it may now be considered as
stable in its syntax and semantics definition. But the way TURTLE can be efficiently used
is still an open issue. More generally, patterns have been proposed to enhance the usability
of modeling languages. Since the first reference book on design patterns [84], the two
contributions [74] and [162] have shown their use for real-time systems and communication
applications, respectively. However, the sharing of common artifacts among practionners
is a first step that was further enhanced with the formalization of patterns. Thus, [124]
combine patterns and temporal logics. [131] demonstrate how to efficiently use B patterns
in a correct-by-design modeling approach.

A second issue is the efficient use of those patterns in a toolkit. Indeed, these patterns
are meant to play the role of a modeling assistant. For example, SDL Pattern Approach
[86] has been implements in the SPT toolkit, itself integrated as a module of TAU G2
[99]. SDL [102] is a language targeting the modeling of protocol architecture, protocol
control and protocol data. SDL/MSCs and TURTLE share similar capabilities for analysis
and design phases. SPT is specifically dedicated to the design of protocols. The user can
easily modify basic protocol features - and modify identifiers used in those features - so
as to build complex protocols. On its side, TURTLE patterns are not dedicated to one
given software engineering domain: they obviously targets protocols, but also real-time
systems, multimedia applications, and so on. Also, SPT forces to rely on non blocking
asynchronous communications, whereas TURTLE synchronous scheme can easily be used
to create complex asynchronous communication schemes.

2.8.2 Contribution

Our approach focuses on formally defined patterns for the analysis phase [20, 22]. Each
pattern is built upon two diagrams that serve as a frame to use the patterns. Thus, a
pattern contains one Use Case Diagram and one Interaction Overview Diagram.

We have then defined rules on how the two provided diagrams can be used and extended
to make a custom system. For example, in a UCD, it is possible to add sub functions to use
cases, and then inherited or optional functions can be added to those sub functions. There
are also subparts of those diagrams that must be filled up. For example, IODs contains
references to other empty IODs that must be completed, as explained in each pattern.
Basically, a pattern is expected to be used as follows:

1. A user selects a pattern P according to the system he wishes to implement. For
protocols, we have defined three patterns: connected mode, unconnected mode, group
communication [22]. Some patterns are integrated to TTool, additional patterns can
easily be built in TTool.

2. Patterns can be modified according to a set of rules defined in [22]

3. Once modified, patterns are first filtered so as to remove parts that have not been
used (filtering), and parametrized parts of patterns are instanciated.

4. A syntax analysis phase checks whether the so-obtained analysis follows the TURTLE
analysis metamodel.
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5. Our patterns offer properties satisfied by design. Other properties might be evaluated
using the RTL, CADP or UPPAAL code generator of TTool only if the diagrams are
realizable [24].

6. The last step is the automatic design synthesis i.e. the generation of a design equiv-
alent to the analysis, that is, a first design is directly built from the used patterns.

2.8.3 Results and discussion

Patterns have been used to efficiently model group communication as defined in theMaestro
project (several communication medium, routing between beams, group managements,
etc.). Most parts of the system analysis stage were performed in less than a day using
patterns. Formal verification was limited to a reduced number of group members. However,
several problems were encountered using patterns.

• We cannot guarantee the implementability of systems built from patterns [24]. Thus,
when modeling systems from those patterns, we have to avoid using distributed
choices [24]. This strong constraint forces us to rely on synchronous messages rather
then on asynchronous ones.

• Provided patterns assume that whenever a network connection is cancelled, another
one can occur, i.e., there is a loop between the end of a session, and a new ses-
sion. This stresses the formal verification stage that may have to handle too many
execution states. In the case of the Maestro project, the use of patterns with ses-
sion loop induces more than 3 million states in the reachability graph, and only 30k
states in the version without loop. A solution to this problem would be to offer more
correct-by-design properties thus avoiding the formal verification stage (e.g., liveness
properties).

• Pattern parametrization is limited to given modeling schemes. More modeling schemes
could be supported if the TURTLE profile was relying on a more component-oriented
modeling scheme. Work has been conducted in that way in [8] and implemented in
TTool.

2.9 Conclusion and perspectives

TURTLE supports most system modeling stages, from system dimensioning to system
deployment and code generation. Formal verification can be applied from all TURTLE
diagrams, including analysis and deployment ones. TTool offers a friendly Graphical User
Interface to edit TURTLE diagrams, and perform formal verification at the push of a but-
ton. TURTLE has been successfully used for the modeling and proof of systems, including
space-based embedded systems [35], automotive systems [83] [82], aeronautics systems [21],
telecommunication systems [176] [67], and UML training in several worldwide academic
institutions.

As explained in the introduction, TURTLE has been enhanced to explicitly support
hardware constraints, to offer a nice way to integrate safety requirement and properties,
and to also more explicitly support security properties. Next chapters focus on those three
aspects.
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Chapter 3

Design Space Exploration: the
DIPLODOCUS Approach

3.1 Context

Recent Systems-on-Chips are expected to deal with complex applications at low cost (sil-
icon area, power consumption). Design Space Exploration is a process to analyze various
functionally equivalent implementation of systems specification. The result of this process
shall be an optimal hardware / software architecture with regards to criteria at stake for
that particular system (e.g., cost, area, power, performance, flexibility, reliability, etc.).
The traditional top down methodology starts with an informal description of a system
from which a reference model is first developed. Typical languages for these first models
are Matlab, C or C++. That first model is verified against functional correctness, and
might as well be used to drive first performance evaluations. This step is then usually
followed with the proposal of several system software and hardware architectures. The
most suitable one is selected according to criteria we’ve already mentioned before.
This design space exploration step is of utmost importance. Indeed, if critical high-level
design choices are invalidated afterwards because of late discovery of issues (performance,
power, etc.), then it may induce prohibitive re-engineering costs and late market availabil-
ity. Also, the cost and the time to perform this exploration process shall be must lower
than developing the real system, while being accurate enough to take the right decisions.
And so, the cost to make the necessary system models, and the cost to evaluate those
models shall be low.
To address these issues, we have introduced a few years ago the DIPLODOCUS UML pro-
file [188] [33]. In DIPLODOCUS, the designer is supposed to model in totally separated
views the application and the architecture of the targeted system. Thereafter, a mapping
stage associates application and architectural components. To assess the satisfiability of
both functional and non functional requirements (e.g., delay, throughput, latency), efficient
simulation and static formal analysis techniques have been defined in DIPLODOCUS and
implemented in TTool.
The chapter is organized as follows. The related work section reviews several approaches
for efficient design space exploration (section 3.2). DIPLODOCUS is then presented: the
overall methodology is described, and main modeling capabilities are sketched(section 3.3).
The semantics in LOTOS of the profile is then presented (section 3.4). Two other contri-
butions are then addressed: the fast simulation of DIPLODOCUS models (sections 3.5 and
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3.6) and the evaluation of the impact of shared resources (section 3.7). Main functionalities
of TTool are then given (section 3.8). Conclusion of this chapter focuses on main results
and future work (section 3.9).

3.2 Related Work

Design Space Exploration (DSE) of Systems-on-Chip is the process of analyzing various
functionally equivalent implementation alternatives to select an optimal solution [188].
The most suitable design is commonly chosen based on metrics such as functionality, per-
formance, cost, power, reliability, and flexibility. At system-level, DSE is challenging
because the system design space is extremely large and so usual simulation-based anal-
ysis techniques fail to efficiently observe the above mentioned metrics. Contributions on
DSE environments [40, 133, 53, 38, 166, 126, 186] generally rely on a high-level language
to describe application functions and architectures. For example, [126, 166, 186] rely on
UML or MARTE diagrams. Functions are sometimes described with only their cost [163].
Unfortunately, in many of these environments, architecture and application concerns are
not independent [133], making the study of alternative solutions more complex. Second,
they propose a way to map functions onto hardware execution nodes. Lastly, they intro-
duce simulation techniques to simulate the system built from the mapping of functions
over hardware nodes. But the level of abstraction being commonly rather low, simulation
may also be slow. For example, [40] relies on an Instruction Set Simulator which executes
the real code of the application. In [38], hardware components are considered at micro-
architecture level, hence leading to long simulation times. Otherwise, other environments
offer formal exploration, but generally limited to sub-elements of the platform [39].
SymTA/S [94] [97] and Real Time Calculus (RTC) rely on formal methods such as the real-
time scheduling theory and deterministic queuing systems to determine characteristics of
distributed systems. In SymTA/S the behavior of the environment is modeled by means
of standard event arrival patterns including periodic and sporadic events with jitters or
bursts. RTC imposes less restrictions by allowing deterministic event streams to be mod-
eled with the aid of arrival curves denoting lower and upper bounds for event occurrences.
Event streams are propagated among resources of distributed systems in a way that each
resource may be analyzed separately with classical algorithms. However, the applicability
of scheduling theories requires the task model to be simplistic and thus it merely reflects
best case and worst case execution times. Control flow within tasks cannot be considered
at all. For that reason it may be tedious if not impossible to model tasks exhibiting a data
dependent or irregular behavior.
[96] relies on timed automata to analyze timeliness properties of embedded systems. The
UPPAAL model checker is used to evaluate the automata which must be created manually.
There is no automated translation routine from a high level language (UML,...) and thus
the creation of the automata turns out to be error prone.
[187] provides means for formal and simulation based evaluation of UML/SysML models for
performance analysis of Systems On Chip. UML Sequence diagrams are the starting point
for the functional description. They are subsequently transformed into so-called commu-
nication dependency graphs (CDGs) which thus capture the control flow, synchronization
dependencies and timing information. CDGs can be used as input to static analysis in
order to determine key performance parameters like best case response times, worst case
response times and I/O data rates. A drawback of this approach is that data flow inde-
pendence has to be kept, thus preventing case distinctions and loops with variable bounds
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to be part of the application model.
[141] presents a framework for computation and communication refinement for multipro-
cessor SoC Design. Stochastic automata networks represent the application behavior and
the authors claim that this formalism allows for fast analytical performance evaluations.
When it comes to mapping an application on an architecture, transitions and states have
to be added to the application model. Hence, application and architecture matters and
not strictly handled in an separated way. Due to a lack of data abstraction, the modeling
of memory elements can quickly lead to state space explosion problem.
The PUMA [191] framework is a unified approach to software modeling. It provides an
interface between high level input models (such as UML diagrams) and performance ori-
ented models. For that purpose, input models are first translated into an intermediate
format called CSM so as to filter out irrelevant information for performance evaluations.
In a second step, CSM can be converted to Petri Nets, Markov models, etc and the result-
ing performance figures and design advice is fed back to the initial model. However, this
framework concentrates on the modeling of software and thus does not yield a mapping
where functionality is associated to software or hardware elements.
DIPLODOCUS offers a very clear separation between applications and architectures, and
includes a high level of abstraction. Indeed, DIPLODOCUS is focused on control rather
than on data, i.e., only abstract samples of data can be manipulated in the profile. Samples
are untyped and carry no value: only their size is a relevant attribute. This high level of
abstraction greatly reduces simulation times and makes formal proof techniques usable.

3.3 Basics of DIPLODOCUS

A UML profile customizes the UML language [151] for a given domain of systems. It may
extend the UML meta-model, according to semantic variation points, and may provide a
methodology. The DIPLODOCUS UML profile targets the modeling and Design Space
Exploration of system-on-chip at a high level of abstraction [33]. The DIPLODOCUS
methodology, depicted in Figure 3.1, comprises three main steps described below.

3.3.1 Application modeling

At first, the application is modeled using UML class and activity diagrams. Tasks are
modeled as classes interconnected with channels, events, or requests to communicate. Data
abstraction is a key point: channels do not convey values, but only a number of samples
(data abstraction). Events are used for synchronization purpose, and requests are used to
spawn tasks.
All tasks have a behavior modeled with UML-DIPLODOCUS activity diagrams. These
diagrams come with usual control operators, complexity operators, operators to use com-
munication medium (e.g., channels), and time operators. An extension has been proposed
so as to model tasks definition and communications with a component approach, therefore
facilitating the reuse of subparts of models, and the task parametrization [106].

3.3.2 Architecture modeling

Second, a candidate architecture is modeled in terms of interconnected hardware compo-
nents (or nodes) using UML components placed in UML deployment diagrams. Three
kinds of nodes are available in DIPLODOCUS: Execution nodes (CPUs), Communication
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nodes (buses, bridges) and Storage nodes (e.g., memories). Each node has its own set
of parameters such as pipeline depth, miss-branching prediction rate, cache-miss rate, etc.
Also, all nodes - except buses - may be connected to one or several buses using UML
links. For the time being, DMAs and hardware accelerators are represented by adequately
parametrized CPU nodes.

3.3.3 Mapping

The mapping is meant to study whether a given architecture can execute a given application
according to constraints. Application tasks and channels are meant to be distributed over
hardware nodes. A UML deployment diagram is used for that purpose. A given task may
be mapped only on one execution node. Channels may be mapped on paths built upon
links, communications nodes, and storage nodes.
One of the strengths of DIPLODOCUS relies on its ability to perform simulation and formal
verification both at application and mapping stages. Formal verification at mapping stage
is further discussed in the next section. Although common functional properties are usually
studied at application level, performance properties are investigated after mapping, e.g.,
resource sharing, that is, the scheduling on CPUs (can the architecture execute tasks on
time), bus load (can a bus transmit the required amount of data), and properties related
to power consumption and silicon area.

Figure 3.1: Methodology for Design Space Exploration

3.4 Formal support: LOTOS

DIPLODOCUS has been defined with formal verification in mind: formal verification for
either the application model, or the mapping model. Indeed, the abstractions defined
in DIPLODOCUS make formal verification accessible for complex systems, or at least
subparts of these systems. Abstractions that do reduce the complexity are mostly the ab-
straction of data and complexity operators that can model a given computation as a time
interval. Hardware components are also used at a very high level of abstraction. Those
abstractions are further explained with the LOTOS semantics. While LOTOS has already
been successfully experimented for property proofs on hardware [190], we propose its use
to more generic platforms (SoCs).
The DIPLODOCUS semantics has first been briefly explained in [188, 33] and then fur-
ther detailed in [121, 122]: the idea of this section is not to reproduce the full content
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of those contributions, but rather to draw the general idea on how concepts defined in
DIPLODOCUS can be expressed in formal languages. Emphasis is also put on differences
between application-level and mapping-level semantics.
LOTOS [101] is an ISO-based Formal Description Technique for distributed system spec-
ification and design. A LOTOS specification, being itself a process, is structured into
processes. A LOTOS process is a black box that communicates with its environment
through gates using a multiway rendezvous offer. Values can be exchanged at synchroniza-
tion time. That exchange can be mono- or bi-directional. LOTOS specifications may be
formally verified with the CADP toolkit [85] using model-checking or reachability graph
analysis techniques.
The semantics of DIPLODOCUS is also defined in UPPAAL, but only the LOTOS seman-
tics is (briefly) presented in this document. UPPAAL [43] is based on a set of commu-
nicating automata. It explicitly supports synchronization actions between automata. Its
strength also relies in clocks that offer convenient ways to model temporal behaviors - e.g.,
timers -. The UPPAAL toolkit offers simulation and model-checking capabilities.

3.4.1 Semantics at application level

3.4.1.1 Tasks operators

As previously described, a DIPLODOCUS application is composed of a set of communi-
cating tasks. Operators used to describe task behavior are of four types:

• Communication operators: read from a channel, write a sample to a channel,
notify an event, wait for an event, know whether an event has been sent (notified),
request a task.

• Control operators: usual control operators, such as variable modifications,
loops and tests.

• Complexity operators: operators to model a number of operations on integers
(EXECI), floats (EXECF) or custom (EXECC).

• Temporal operators: operators to model deterministic and non-deterministic phys-
ical delay.

This set of operators makes it possible to describe applications’ communications and algo-
rithms whilst forcing the modeler to abstract data, thanks to channels that merely account
for the amount of transmitted data.
The LOTOS semantics of all task operators is further described in Table 3.1, column
"LOTOS Semantics before mapping”.

3.4.1.2 Communications between tasks

Tasks communicate using channels, events and requests. While channels are used to model
data stream between tasks - i.e., channels carry unvalued samples -, events and requests
are meant to model synchronization schemes.
Three channel types have been defined: BR-NBW (Blocking Read - Non-Blocking Write,
i.e., infinite FIFO), BR-BW (Blocking Read - Blocking Write, i.e., finite FIFO), NBR-
NBW (Non-blocking Read - Non-Blocking Write, i.e., a set of elements, that is a memory).
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Type Task oper-
ators

LOTOS Semantics before
mapping

LOTOS Semantics after
mapping

Channel Write n
samples to
a channel

n Write operations in FIFO,
i.e., n times action on gate
wr__ch, see Figure 3.2

n cycles, and a request on a
bus.

Read n
samples
from a
channel

n read operations from FIFO,
i.e., n times action on gate
rd__ch, see Figure 3.2

n cycles and a request on a
bus.

Event
Notify an
event

Adds an event to the cor-
responding FIFO, i.e., per-
forms an action on gate
notify__evt, see Figure 3.3

Same as before mapping.

Wait for an
event

Tries to get an event from a
FIFO, i.e., performs an action
on gate wait__evt, see Fig-
ure 3.3

Same as before mapping.

Notified Returns the number of event
in a FIFO using action
notified__evt, see Figure
3.3

Same as before mapping.

Request Send a
request
(operator
is called
“request”)

FIFO management is similar
to the one used for events

Same as before mapping.

Control loop, vari-
able mod-
ifications,
tests

Direct translation in LOTOS
with corresponding LOTOS
operators

Direct translation. Operators
are executed in 0-cycle.

Complexity EXECx
n,m i.e.,
between
n and m
integer
instructions

No semantics before mapping,
i.e., this operator is ignored

The task executes between n∗
perf and m∗perf cycles with
perf being a constant value de-
pending on the hardware per-
formance on which the task is
mapped.

Temporal Delay
dmindmax

unit

No semantics before mapping,
i.e., this operator is ignored

The task is blocked for Be-
tween n and m cycles with
n = dmin ∗ frequency and
m = dmax ∗ frequency.

Table 3.1: Task operators
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The LOTOS semantics of these channels is as follows: since channels convey no value, but
only a number of samples, the two first channels can easily be translated into a simple
process (see Figure 3.2) sharing a natural value (which represents the number of elements
in the FIFO) between two processes using two gates: one gate to add a sample (wr__ch),
another one to remove a sample (rd__ch). The last channel type (NBR-NBW) is also
translated into a similar LOTOS process apart from the fact that no counter is necessary
- since its is always possible to read and write -, and so no guards ([] operator) are used
before the actions on gates wr__ch and rd__ch.

proce s s ChannelBRBW__ch [ rd__ch , wr__ch ] ( samples : nat ) : e x i t := (
[ samples < 8 ] −> (wr__ch ; ChannelBRBW__ch [ rd__ch , wr__ch ] ( samples + 1) )
[ ]
[ samples > 0 ] −> (rd__ch ; ChannelBRBW__ch [ rd__ch , wr__ch ] ( samples − 1) ) )

Figure 3.2: Application-level LOTOS semantics for a BR-BW channel

Events are meant to model synchronization between tasks. They can carry
up to three parameters. Event communication semantics are the following: infinite FIFO,
finite blocking FIFO, and non-blocking FIFO. The two first semantics have been selected
because they reflect common synchronization schemes of embedded systems. The last one
(Non-blocking finite FIFO) is particularly useful to model signal exchanges between tasks:
indeed, software and hardware signals usually erase the previous one (e.g., Programmable
Interrupt Controller, or UNIX signals). A separate LOTOS process accounts for each of the
three semantics using the Queue_nat algebraic type. Figure 3.3 illustrates a non-blocking
finite FIFO (the most complex case) for an event carrying only one natural parameter.
Five cases have been taken into account:

1. The FIFO is not empty, and so, a wait action can be performed on the FIFO.

2. The FIFO is not full, and so, an event can be added to the FIFO (notify).

3. The FIFO is full, and so, an event can be added to the FIFO (notify) after the oldest
one has been removed.

4. The FIFO is not empty, the notified action returns the value 1.

5. The FIFO is empty, the notified action returns the value 0.

Unlike channels and events which are one-to-one communications, requests are many-to-
one communications. They rely on n-to-one infinite FIFO. The translation of requests
is similar to the one of FIFO for events, apart from the fact that notification gates are
instantiated n times, e.g., notify_i with i ∈ 1 . . . n.

3.4.2 Semantics at mapping level

A mapping involves an application (i.e., a set of tasks and communications between those
tasks), an architecture (i.e., a set of hardware nodes), a distribution of tasks onto hardware
nodes (e.g., map the task task1 onto the CPU cpu1 ), and a mapping of communication
channels onto buses / memories. We have therefore defined a transformation function tf()
that takes as argument all above mentioned elements and generates a LOTOS specification
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proce s s Event__evt [ notify__evt , wait__evt , not i f ied__evt ]
( f i f o_1 : Queue_nat , f i fo_val_1 : nat , nb : nat , maxs : nat ) : e x i t :=

[ not (Empty ( f i f o_1 ) ) ] −> wait__evt ! F i r s t ( f i f o_1 ) ;
p_0_Event__evt [ notify__evt , wait__evt , not i f i ed__evt ] ( Dequeue ( f i f o_1 ) ,
f i fo_val_1 , nb−1, maxs )

[ ] [ nb<maxs ] −> notify__evt ? f i fo_val_1 : nat ; p_0_Event__evt [ notify__evt , wait__evt ,
not i f ied__evt ] (
Enqueue ( f i fo_val_1 , f i f o_1 ) , f i fo_val_1 , nb+1, maxs )

[ ] [ nb == maxs ] −> notify__evt ? f i fo_val_1 : nat ; p_0_Event__evt [ notify__evt , wait__evt ,
not i f ied__evt ] (
Enqueue ( f i fo_val_1 , Dequeue ( f i f o_1 ) ) , f i fo_val_1 , nb , maxs )

[ ] [ not (Empty ( f i f o_1 ) ) ] −> noti f ied__evt ! 1 ; p_0_Event__evt [ notify__evt , wait__evt ,
not i f ied__evt ] (
f i fo_1 , f i fo_val_1 , nb , maxs )

[ ] [ Empty ( f i f o_1 ) ] −> noti f ied__evt ! 0 ; p_0_Event__evt [ notify__evt , wait__evt ,
not i f ied__evt ] (
f i fo_1 , f i fo_val_1 , nb , maxs )
endproc

Figure 3.3: Application-level LOTOS semantics for a Non-blocking Finite FIFO

(see Figure 3.4).

3.4.2.1 Mapping issues

The mapping phase is meant to answer whether a system - i.e. an application mapped
on a given architecture - satisfies a set of constraints, or not. More precisely, a mapping
shall resolve contentions on shared resources (typically, a CPU, a bus, etc.) and therefore
answer whether the computational and communication power offered by the architecture
can execute the desired application, i.e., respect deadlines, etc. The LOTOS semantics is
first defined with those issues in mind. As a consequence, the LOTOS specification of a
mapping should take into account:

• The access control to shared resources, e.g., for tasks: access to CPUs, and for
communication: access to buses. To take into account those accesses, we explicitly
handle operating systems’ scheduling policies as well as arbitration policies of buses.

• The time taken by tasks to execute operators, and the time taken by communications,
e.g., bus and memory latencies.

Figure 3.4: General approach
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3.4.2.2 The Mapping-to-LOTOS transformation

All task operators and hardware nodes parameters are taken into account by the Mapping-
to-LOTOS transformation (tf()). This function does not yet support hierarchical schedul-
ing and virtual nodes [104] but there is no technical limitation to their integration.
Basically, the LOTOS specification is built upon four functional blocks:

• The Scheduling manager schedules tasks on each CPU. tf() transforms each task
into a state machine modeled in LOTOS: preemption can occur when a task is blocked
in a state, but never when a task performs a transition from one state to another.

• The Communication manager handles channel-based communication between
tasks running on the same CPU, or on different CPUs. Events and requests are
assumed not to take communication resources. Indeed, the amount of data rep-
resented by those two synchronization features are assumed to be negligible with
regards to channel-based communications. Similar assumptions were made for the
simulation semantics [114] (which is less abstract and more tailored to simulation
runtime issues).

• The Task execution manager handles operators to execute in each task that is
transitions between task states.

• The Clock manager handles clock cycles on hardware nodes, i.e., it activates nec-
essary hardware nodes when a new cycle begins.

The main process of the LOTOS specification works as follows:

1. At first, an initialization phase is used to settle various data structures, for each
CPU (e.g., all tasks of a CPU are put in "ready" state), and for the communication
manager: data structures related to channels, queues related to events, and so on.

2. A main loop on clock cycles is started: The system waits for the next tick (tick is a
LOTOS action). Then, each CPU plus its operating system are considered one after
another. Basically, a CPU is meant to interpret DIPLODOCUS application-level
operators of the selected task:

(a) Depending on its clock rate, the CPU is activated or not by the Clock manager.

(b) If it is activated, then a first test is performed to see whether one task is in
running state, or not.

(c) If one task is in running state, then, the running state is activated from its
former state. The task executes until either (i) it blocks (for example, it tries
to receive one given event, and that event is not available): in that case, the
scheduler is called, or (ii) it can perform an instruction consuming cycles (e.g.,
writing a sample to a non-full channel).

(d) When the scheduler is called, it first checks whether at least one task is runnable.
If no task is runnable, the CPU goes idle. Otherwise, a scheduling algorithm
- implemented in LOTOS - is called to select another task. Then, the state
machine of that task may be called, and so on.

3. Once all CPUs have been selected, a communication manager resolves all inter-CPUs
communication, i.e., all communications set-up by tasks in previous cycle (i.e., all



34 3. Design Space Exploration: the DIPLODOCUS Approach

read, write, notify events, etc.) are really performed only when all CPUs have ter-
minated that cycle. This ensures (i) that a sample written on a CPU during a cycle
may not be read by another CPU in the same cycle, and (ii) that the order of CPU
evaluation has no impact on results.

The tf() function may also generate debug information in the form of LOTOS actions
performed at well-chosen points: actions to show scheduler data structures (e.g., list of
runnable or blocked tasks), actions to monitor tasks states, actions to monitor the com-
munication manager, etc.
Finally, tf() has been defined with combinatory explosion in mind. Hence, tf() tries to
precompute possible synchronization between LOTOS processes: if possible, these syn-
chronization are removed, and resulting processes put in sequence. Combinatory explosion
may also be due to (i) non-deterministic elements: for example random, choice and tem-
poral operators of tasks; (ii) Non-determinism in scheduling models: for example, in the
round-robin scheduling policy, the possible indexes of tasks, in the tasks list. Abstrac-
tion is a key factor to reduce combinatory explosion. The main idea behind abstractions
is to remove all software and hardware-related concerns that have no or little impact on
evaluated properties (e.g., load on CPUs and buses). The next subsection is dedicated to
abstractions.

3.4.3 Abstractions

3.4.3.1 Task abstraction (see Table 3.1, column “LOTOS Semantics after map-
ping”)

• Communication operators. These operations are given a cost (in clock cycles),
and are executed by the execution manager along with the communication manager,
to make request on related buses. The cost in cycle depends of the hardware platform.
For example, writing an 8-byte sample on a 32-bit processor takes two cycles. Also,
the communication manager is involved for storing output samples, and for providing
data to input operations. Note that these operations may be blocking, and so, the
scheduling manager may also be involved.

• Cost operators are abstracted with a number of cycles depending on the hardware
platform.

• Other operators: choice, loop, variable manipulation, etc. These operations are
executed by the task execution manager. They take no cycle since there are used for
control modeling purpose only, i.e., the execution cost in DIPLODOCUS is modeled
only with EXECx operations.

• Temporal operators: They are abstracted with a number of cycles.

3.4.3.2 CPU abstractions

• Parameters of CPU: Data size (used for communication in channels), size of de-
fault integer and floating point data (used for EXEC operations), cost for each EX-
ECx instructions, pipeline size (used for calculating the penalty induced by miss
branch prediction), miss branching rate, data cache-miss ratio and penalty, time to
enter/leave the idle mode, clock ratio.
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• The Operating System is taken into account with scheduling algorithms (e.g., Pre-
emptive priority-based, round-robin), switching time, synchronization management
(events, requests) and communication delay (buffering for handling channels).

3.4.3.3 Communication abstractions (buses, memories)

Buses are meant to carry data samples with an arbitration policy between requests. The
time a given transfer takes depends on the width of the bus. Bus arbitration is done on
each cycle. Memory delays are modeled throughout bus latencies and cache-miss rates at
CPU level, as proposed for the simulation semantics [114].

3.4.4 Semantics: discussion

The definition of the semantics focuses on the clear definition of DIPLODOCUS abstrac-
tions. We particularly described the semantic differences between pre and post mapping
models. At application level, abstractions is mostly due to data abstraction, and opera-
tors to abstract computations. After mapping, abstractions rely mostly on how hardware
components are defined with a basic behaviour and a set of carefully selected parameters.

3.5 Efficient and interactive simulations

Simulation is an interesting alternative whenever formal verifications cannot be successfully
conducted, either because of combinatory explosions, or because of formal verification
toolkit limitations.

3.5.1 Need for an efficient simulation

Simulation is intended to be used to evaluate - after mapping - the concurrency of opera-
tions performed on hardware nodes and more particularly on CPUs and buses. The first
version of our simulation environment relied on the standard SystemC kernel and took ad-
vantage of the integrated discrete event simulator [188, 33]. In that simulator, a SystemC
process is assigned to each active hardware node, and a global SystemC clock is used as a
means of synchronization. Abstract communication and computation transactions defined
in the application model are broken down to the corresponding number of wait cycles.
Thus, all active components are run in lockstep.
Unfortunately, the inherent latency of the SystemC scheduler due to frequent task switches
made the simulation suffer from low performance. However, simulation speed is an issue
of concern as it represents one argument to justify accuracy penalties as a result of ab-
stractions applied to the model. In order to achieve a better performance, a new simula-
tion strategy leverages these abstractions by processing high-level instructions as a whole
whenever possible. Furthermore, its simulation kernel incorporates a slim discrete event
scheduler so that SystemC libraries are not necessary any more.

3.5.2 A new simulation engine

The simulation engine we have defined is based on transaction prediction. A transaction
refers to a computation internal to a task, or a communication between tasks. Those trans-
actions may obviously last from one to hundreds of clock cycles. Transaction durations
are initially predicted according to the application model, that is to say their maximum
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duration is given by the length of corresponding operators within tasks description. Un-
fortunately, a transaction may have to be broken down into several chunks of smaller size,
just because for example, a bus is not accessible and so the task is put on I/O wait on its
CPU. That transaction cutting due to prediction failure is more likely to happen when the
amount of inter task communication is high and hence the need for synchronization arises.
Unlike a conventional simulation strategy where all tasks are running in lockstep, a local
simulation clock is assigned to each active hardware component. Thus, simulation gran-
ularity automatically adapts to application requirements as abstract measures for com-
putational, and communicational costs of operations are specified within the application
model. The coarse granularity of the high level description is exploited in order to increase
simulation speed.
A problem at stake when considering transaction-based simulation is the scheduling of
transactions themselves. This procedure embraces mainly four elements: tasks, CPUs,
buses and the main scheduler. The sequence of the entities of the aforementioned list
also reflects their hierarchy during the scheduling process: tasks are settled at the top
layer and the main scheduler constitutes the lowermost layer. Based on the knowledge of
their internal behavior, tasks are able to determine the next operation which has to be
executed within their scope. This operation is encapsulated subsequently in a transaction
data structure and forwarded consecutively to hardware components being in charge of its
execution.
The basic idea is that a transaction carries timing information taken into account by hard-
ware components to update their internal clock. Moreover, a hardware component may
delay transactions and modify their duration according to the execution time needed by
that specific component. By doing so, the simulation algorithm accounts for the speed
of CPUs, the data rate of buses, bus contention and other parameters characterizing the
hardware configuration.

The simulation algorithm is structured such that each command has to be prepared
before it is able to execute. Simulation is carried out as follows:

1. At first, the preparation phase of the the first command of all tasks is entered.

2. Schedulers of all CPUs are invoked to determine the next transaction. Each CPU
may have its own scheduling algorithm.

3. CPU schedulers register their current transaction at the appropriate bus in case the
transaction needs bus access.

4. The main scheduler is in charge of identifying the runnable transaction t1 having the
least end time. Therefore, the main scheduler queries all CPUs which may check in
turn if bus access was granted for their communication transaction. Bus scheduling
is triggered in a lazy manner when the scheduling decision is required by CPUs.

5. The execution phase for transaction t1 is entered.

6. If transaction t1 makes another task T runnable which is in turn able to execute
a new transaction t3, transaction t2 currently running on the CPU on which T is
mapped is truncated at the end time of transaction t1. The execution phase t2 is
entered. During the next scheduling round, the scheduler of the aforementioned CPU
is able to decide whether to switch to t3 or to resume t2.
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7. Commands which have been executing are prepared.

8. CPUs which have carried out a transaction are rescheduled.

9. Return to step 3

Two phases are more particularly at stake in that simulation procedure:

• Preparation phase. The current command must be checked for its total comple-
tion. If completed, the progress of the command is equal to its virtual length and the
following command is prepared: A new transaction object is instantiated, its virtual
length evaluated, and task variables might be evaluated or modified. Otherwise, the
remaining virtual execution units is calculated. At the end of the prepare phase,
transactions which might be processed by CPUs are known, only bus scheduling de-
cisions are pending. That way, the prepare phase is crucial for the causality of the
simulation.

• Execution phase. The objective of the execution phase is to update state variables
of the simulation after a transaction has been carried out. In particular, channel
states are updated, and transaction requests are added to CPUs and buses.

3.5.3 Experimental results

Several case studies have been considered to evaluate the performance of our simulation
engine [114, 120]. Basically, the same systems have been simulated with the SystemC
simulator, and with our simulation engine. The measurements have been performed under
the following conditions:

1. Output capabilities of both simulators are disabled in order to measure the pure
simulation time. No trace files are created.

2. The time consumed by the initialization procedure of both simulation environments
is not taken into account for the same reason.

3. All measurements are subject to noise caused by the multi tasking operation system
and interfering tasks running on the same CPU. Therefore, the average of several
measured values has been taken into account for all different tests. Thus the noise
should distort similarly the results for both simulators.

We consider three of the most prevalent types of operations to evaluate the performance
of the simulation engine: event Send/Wait operations, Read/Write operations on channels
and Execi operations. From our experience, these operations make up the lion’s share of
DIPLODOCUS applications together with Choice and Action commands. The latter are
implicitly considered as our operators are nested in a main loop which is internally rep-
resented with structures similar to Choice and Action commands. For experiments with
read/write operations, the architecture was extended with one memory and one bus. As
expected, Execi operation are the less costly because they do not involve any synchroniza-
tion. Send and Wait transactions are in between the latter and Read/Write transactions,
which are most time consuming as communication media need to be arbitrated. The simu-
lation on an architecture with two CPUs is more costly than on one with a single CPU due
to additional scheduling overhead. [120] provides evidence that simulation time increased
more or less linearly with the average transaction length. This experiment is conducted
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with a task set comprising two tasks: Task1 first sends an event of type evt1 to Task2, then
performs an Execi of length l and finally waits for an event of type evt2. Task2 carries out
the complementary operations: it waits for the reception of event evt1, then also performs
en Execi of length l and finally sends and event of type evt2. The commands in both tasks
are iterated a million times. The length l of Execi commands is varied between 1 and 10.
Even in the worst case of an average transaction length of l = 1, the new simulator out-
performs the one based on SystemC by a factor of 10 in our testbed environment
[120].

3.5.4 Interactive simulation

The above mentioned simulation environment allows for an interactive exploration of the
application which is mapped onto a particular architecture. Simulation interactivity was
first presented as a work in progress [115], then as regular papers [118] and at last demon-
strated in several conferences [116, 30], including DATE [117]. Interactive simulation can
be used as follows in TTool. After having developed the static view of the application
in terms of classes, the behavioral view, the architecture and the mapping, the developer
first checks the syntax of the models. If the models comply to the constraints of the meta-
model, the next stage is to generate the C++ counterpart of the graphical model. Once
the sources have been compiled, the interactive simulation module is launched. All of the
aforementioned stages are accomplished at the push of a button. No expertise in C++
programming, simulation or formal verification (in case the model should be verified) is
required.

TTool encompasses a graphical interface to control the simulation and thus unburdens
the user from familiarizing with a low-level simulation language. The feedback from the
simulation engine is exploited by the graphical user interface and used to animate UML
application diagrams. Most model-based code generation do have have such advanced
simulation-to-model correspondence. For instance, the current command of a task is high-
lighted for following simulation progress on each task (see Figure 3.5). Different flavors of
execution commands:

• A given amount of transactions, commands or time units can be simulated and
the simulation may be interrupted when a particular hardware element (CPU, bus,
bridge, memory) or an application entity (channel) processes a transaction.

• Save and restore the simulation state, especially useful when several branches of
control flow are to be looked into.

• Reset the simulation to the initial state.

Simulation traces may be provided in several formats: the text based format is a sim-
ple listing of all transactions encountered on a given hardware component. This format
enables the automatic evaluation of traces and the interchange of data with other applica-
tions. The VCD format is supported for the sake of compatibility with standard waveform
viewers. The VCD output basically captures bus states (read, write, idle), task states
(ready, running, blocked, terminated), CPU states (executing, idle, sleep mode). For de-
bugging purposes of small designs, a user friendly HTML output may give an insight into
the application’s behavior. Transactions are represented on a time line for each hardware
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Figure 3.5: Interactive simulation with TTool

component and colored according to the task they belong to. In addition to traces, sim-
ulation results include performance figures like the utilization of hardware elements, the
contention delay for bus masters, the execution time of tasks, the average time a task gets
blocked due to CPU contention, etc. Some of those information are directly drawn on
UML diagrams. For example, the load of each CPU is written on the upper right corner
of the corresponding UML CPU node.

Briefly, interactivity is implemented as follows. The simulator and the graphical user
interface embedded in TTool are hosted in different processes communicating via a TCP
connection. Therefore, the simulator and the graphical user interface can be run on different
machines for the sake of performance. To get a better understanding of this interaction,
let us now follow a user request which aims at defining a breakpoint. The user selects the
option by clicking on the respective command within the UML activity diagram. In turn,
the logic of the graphical user interface identifies the concerned command and signals a
modification to the TTool client. The latter may perform additional checks and wraps
information about the command and the request into a message in text format. The
message is sent over the network and received by the server thread of the simulator. The
latter distinguishes so called synchronous and asynchronous requests. Asynchronous
requests may be issued at any time and normally request information about the simulation
without altering the simulation state. Asynchronous requests are handled in the scope
of the server thread. Synchronous requests however directly impact the simulation state
and must therefore be processed in order. Our breakpoint request is considered as such.
Synchronous commands are carried out by the simulator thread which reads the FIFO
entries one after another. In case of the breakpoint request, the simulator updates internal
data structures accordingly and notifies the successful breakpoint insertion to the server.
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The server in turn encapsulates the reply into an XML message and sends it over the
network. The TTool client subsequently interprets the message and informs the graphical
user interface. The latter provides a feedback to the user indicating that the breakpoint
has been set successfully. As stated previously, conditional breakpoints are intended to
stop the simulation as soon as a condition (a function of task variables) evaluates to true.
To deal with this kind of breakpoints, the simulator has to generate a C++ routine first
which is subsequently compiled and attached to the process in the form of a dynamic
library. This procedure prevents the cumbersome and costly interpretation of conditions
at simulation runtime.

3.6 Coverage enhanced simulation

3.6.1 Rationale

To better see what we mean by coverage enhance simulation, let us consider the following
example: an algorithm has two main branches which significantly differ in terms of exe-
cution time and resource usage in general. For the performance evaluation of a specific
architecture, it is crucial to try out both alternatives. Hence, the coverage of the simulation
should be enhanced. As a first step, the designer could benefit from the various conditional
run commands so as to get a more intuitive view of the behavior of the application and the
interaction of hardware components. The next step could be to reset the simulation and
to set a breakpoint on the branch command which is crucial for the continuation of the
simulation. The simulation will stop at the previously defined choice command therefore
allowing the user to specify which branch he means to explore. In combination with the
feature of capturing simulation states, complex scenarios can be evaluated and meaningful
traces be recorded. In our example, the user would certainly save the simulation state
when reaching the choice command so that it can be restored to study other alternative
executions.
A mean to automate this process is for example to allow the designer to precise for which
choices he/she wants to make a full exploration of branches, or not. Another solution is
to offer designers a way to ask the simulator to explore a given percentages of all branches
or commands. A low percentage may result in exploring only one branch. Reciprocally,
100 percent coverage means the full coverage of the application. We have followed the
second approach, that is, making it possible for the designer to explore a given
percentage of its model (percentage of commands, percentage of branches). The simu-
lator has thus been enhanced with formal verification capabilities: states of the simulator
can be compared to previously explored states, in order to merge states and to derive a
reachability graph [120]. This also resolves another issue. Indeed, when using LOTOS
or UPPAAL, we experienced that the transformation of sophisticated mapping models re-
sults in complex syntactical structures, often pushing both UPPAAL [43] and CADP [85]
model checkers to their limits. Since our simulation engine is dedicated to DIPLODOCUS
mapping models, the code generator for that engine produces only manageable code.

3.6.2 Related work

There has been several efforts to extend the insight provided by simulation in order to
address the changing behavior and demands of today’s embedded applications. To this
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end, simulation techniques are often combined with formal methods. The common ground
of all approaches is the attempt to examine a large fraction of possible system executions,
optimally the whole state space whilst limiting verification run time and memory consump-
tion. The listed work differs from ours in the way concerns (application, architecture) are
separated [49] [98], the abstraction level of the task model is chosen [182] [187] [139], and
the model of computation emphasizes data or control flow [127].
In SESAME [182], the authors assume application behavior to be independent of timing
and scheduling decisions.
Other approaches like [49] and [127] combine simulation with the theory of scheduling and
shared resource allocation. Emphasis is rather put on task scheduling on processor-based
systems and therefore separate models for architecture and application are not supported.
In the second effort control flow within tasks is abstracted, the latter being considered as
sources and sinks of event streams. This formalization is rather data flow oriented, whereas
DIPLODOCUS places emphasis on control intensive parts of applications.
[187] suggests to use static techniques together with simulation of UML/SysML models for
performance analysis of SoCs. A drawback of this approach is that data flow independence
has to be kept, thus preventing more complex control flow primitives (distinctions, loops)
with variable bounds to be part of the application model.
[139] introduces a formal executable system model based on communicating tasks intercon-
nected with FIFO channels. As opposed to our approach, tasks are considered to be atomic
and they are abstracted to best/worst case execution times. [98] introduces a methodology
combining Model Checking and SystemC simulation. However, as compared to SystemC,
DIPLODOCUS pushes abstractions further by enforcing the separation of application and
architecture that way providing means for efficient Design Space Exploration. A more com-
plete related work on simulation combined with formal verification techniques is available
in [120].

3.6.3 Contribution

The state space of DIPLODOCUS applications comprises all possible interleavings of task
executions. It is solely constrained by inter-task synchronization (events and requests) and
data dependencies (blocking channels). The state space within a task is defined by its
local variables and the progress of the current transaction. Basically, the state of channels
can be characterized by the number of samples currently stored in them. Each events or
requests may convey parameters. Therefore, parameters of all pending (sent but not yet
received) events/requests must be recorded in a separate data structure. For events based
on an infinite FIFO and requests (by default based on an infinite FIFO), state vectors are
unbounded.

While application related information is sufficient for the detection of recurring system
states, it is unsuitable for restoring performance measures. For example, the simulator con-
stantly records the number of transactions processed on HW components, the local time
of HW components, the execution time of tasks, the overall contention delay experienced
for shared resource allocation, etc. These values do not impact future system behavior
and therefore are not part of the system state vector. However, performance values must
be restored when getting back to previous system states. This fact is acknowledged by an
extended vector, containing both intermediate performance figures and the system state.
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Techniques have also been defined to identify significant state variables at each point
in an activity diagram. Explicit state representations are greedy in terms of memory. A
thorough analysis of applications is necessary to minimize information required to uniquely
describe system states. Furthermore, system states encountered during simulation have to
be compared to all previous ones in order to merge similar execution paths. Reducing
the footprint of state vectors also comes with the positive side effect of cutting down
time needed for comparison. Two techniques have been used for that purpose: Reaching
Definition Analysis and Live Variable Analysis. Informally, Reaching Definition
Analysis brings out reaching definitions of a DIPLODOCUS operator. A reaching definition
is another operator comprising a variable assignment that reaches the former operator.
Thereby, the notion of reaching refers to a possible path in control flow, be it conditional or
not. Live Variable Analysis determines variables considered to be live in a DIPLODOCUS
operator, e.g. if they may potentially be read before being redefined. The latter two
analysis methods are commonly accomplished by compilers. These techniques belong to
the realm of machine independent optimizations, i.e. regardless of the underlying execution
platform. Optimizations of this kind have been around for a while. However, Local Input
Dependence Analysis is somewhat particular to the DIPLODOCUS model of computation.
It detects so called Check Points in a task where traces are likely to branch or join entailing
that states must be stored and compared. All technical details are provided in [120].

3.6.4 Implementation issues

Three main enhancement have been made to the DIPLODOCUS simulator in order to
support variable coverage features.

• Static analysis of DIPLODOCUS model. A bit vector is used to store dependencies.
It is taken as input by the simulation engine.

• Exhaustive and coverage driven Simulation. Each command is enhanced with a
indeterminism field. The simulation goes on until either the simulation stops, or
a non deterministic transaction is met, or an already encountered state is reached.
Efficient state hashing functions are split among tasks, channels, events and requests.

Implementing all this had an impact on the simulation speed. Experimental results are
provided in [120]. Demonstrations of these new capabilities have been demonstrated in
DATE’2011 [119].

3.7 Shared Resources Issues

3.7.1 Rationale

Handling concurrency in modern embedded systems has become a factor of utmost impor-
tance to ensure correct Quality of Service. For instance, multimedia applications in mobile
devices can execute concurrently with radio-related applications (e.g., telecommunication
protocols). These applications may have specific scheduling requirements (soft real time,
intensive data transfer or execution loop, etc); furthermore applying one access policy to
all applications is not the optimal solution [172]. Therefore, DIPLODOCUS was enhanced
with capabilities to evaluate the influence of shared resources on a system’s performance
metrics such as latency, throughput and resources utilization: this enhancement relies on
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the concept of virtual nodes [105]. Our methodology also enables the modeling of interac-
tions of the system with its environment [105]. At last, we developed a specific SystemC-
based simulation environment to monitor and analyze designed models [104]. This work is
thoroughfully presented in [106], and was conducted with Freescale. The development of a
new simulator is justified by the fact that it was necessary to co-simulate existing SystemC
components along with the DIPLODOCUS models, at the cost of a slower simulation speed
with regards to the one of the predictive C++ simulation engine (see section 3.5).

3.7.2 Related work

The back annotation techniques like MESH [49] and the one proposed in Schnerr et al.
[168] focus on the modeling of task scheduling and extract contention attributes related
to communication and memories from low level simulations. They rely on analytical and
simulation techniques to estimate shared resources contention. Final code is used to esti-
mate the performance. On the contrary, our methodology is applied early in the design
flow, and so before far before the code is released.
On the other hand, early architecture exploration methodologies like Sesame [159] offer
a clear distinction between application and architecture concerns, and facilitate flexible
system-level performance evaluation. So far Sesame only provides schedulers to allocate
computation resources to the application processes: it does not model communication ar-
chitecture arbitration nor memory mapping.
Kempf et al. [110] present a simulation framework for MP-SoC platforms. They use a
virtual processing unit (VPU) to schedule the execution of tasks mapped to a processor.
The main difference with our approach is that we generalize the notion of virtual nodes to
model access policies to any type of architecture resources, and that we are able to extract
performance result of any shared resource.
Hierarchical scheduling methodologies for processors [136] or bus [143] try to optimize
resources sharing between multiple groups with different scheduling requirements. Our
approach applies the hierarchical control to all shared resources, and more importantly at
a high level of abstraction.

3.7.3 Contributions

The contribution relies on two main elements:

• The definition of Virtual Nodes [105, 106]. A virtual node ensures - given a
parameterized policy - the scheduling of accesses to shared resources (e.g. CPUs,
buses, memories). The virtual node concept helps to build a well-structured sim-
ulation model, and also facilitates the creation of simple and reusable architecture
component models. More precisely, a VN allocates the controlled resource to a re-
quester, for example the VN of a CPU allocates the CPU to a task that is ready to
execute, or the VN of a bus allocates the bus bandwidth to a CPU that is trying
to reach the memory or other architecture nodes that are connected to the bus. A
request is generated by a requester to access to a resource. It specifies the resource
amount that the requester needs. For example, a storage request shall specify the size
of data to transfer. In addition, a request has a priority in the case when the VN’s
access policy is priority based. VNs can be combined so as to specify hierarchical
request handling (e.g., hierarchical CPU scheduling).
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• Extraction of contentions information from simulation traces [104, 106]. Hard-
ware architecture resources are instantiated from a library of pre-defined abstract
models for architecture nodes that can be customized by setting the appropriate
performance parameters (e.g. pipeline of a CPU, etc.), thus reducing the modeling
effort. The designer can also use predefined access policies (with or without preemp-
tion): round-robin, fixed priority based, time slice scheduling, first-come-first-served.
In addition, new access policies can be easily defined. Simulations produce VCD
waveforms containing temporal characteristics of the analyzed system, i.e. of the ap-
plication, the architecture and of the VNs. In order to get a global view of the system,
the simulator provides, for each resource, the utilization factor and the average con-
tention delay on each resource thanks to add-on observers. Buffer overflow situations
on storage nodes are also indicated. At last, application temporal behaviors are sum-
marized in terms of end-to- end latency of the application, tasks execution time, and
the ratio of a task being ready or waiting to be scheduled by the VN of a computation
node. Thus, the designer can make design decisions based on simulation results: for
example, he/she can evaluate the access policies of shared resources, tasks memory
mapping and the optimal capacity of resources (CPU frequency, memory size and
hierarchy, bus speed ...).

3.8 Tooling

TTool [34] has been presented in previous chapter 2 as a toolkit for supporting the TURTLE
profile. TTool also implement the DIPLODOCUS profile. In particular, the following
capabilities are supported:

• Modeling of application, architecture and mapping stages in a UML way, or in a
text-based format.

• Transformation of application, architecture and mapping models into LOTOS, UP-
PAAL or C++ format (press-button approach).

• Formal verification can be conducted from TTool, and results can be visualized di-
rectly in TTool. Reachability graphs can also be manipulated directly from TTool.

• Interactive simulations can be driven from TTool. Application and architecture mod-
els can be interactively animated at simulation time.

• Design space exploration can automatically be conducted using a scripting language
defined in TTool. That is, many different mappings can be automatically explored
(e.g., from 1 to n CPUs, etc.), and overall results are presented in a synthesis way.

The DIPLODOCUS implementation now represents a high fraction of the source code of
TTool. TTool’s website explains the ins and outs of DIPLODOCUS, provides all neces-
sary information to install and configure TTool for DIPLODOCUS, and provides example
models. An Android version will be available in the incoming years.

3.9 Results and perspectives

The DIPLODOCUS environment addresses the system-level design space exploration of
Systems-on-Chip. DIPLODOCUS relies on a high-level language (UML), offers advanced
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abstractions that make it possible to perform formal verifications or very fast simulations
over models, and is fully supported with an open-source toolkit (TTool). Its coverage-
enhanced simulator is an important contribution offering a real advantage between simu-
lation traces and exhaustive analysis.
DIPLODOCUS has been successfully tested on many models (telecommunication, signal
processing, multimedia, automotive systems), in the scope of academic and industrial part-
nerships, e.g., [106]. Two Ph.D. thesis have been successfully defended on DIPLODOCUS
abstractions and simulation techniques [106, 120], and several student projects have con-
tributed to either testing TTool, enhancing TTool, or working on specific issues.
DIPLODOCUS shall be enhanced in the next years with additional capabilities. In partic-
ular, a Ph.D. thesis is studying how to efficiently integrate the power consumption as a new
partitioning metric. This includes the abstraction of advanced power management tech-
niques. Requirement handling and property expression and verification is being addressed,
and most recent work on that topics are detailed in chapter 4.



46 3. Design Space Exploration: the DIPLODOCUS Approach



47

Chapter 4

Requirements and Properties

4.1 Context

The two previous chapters are dedicated to two UML profiles: TURTLE for the modeling
and formal verification of time constrained systems, and DIPLODOCUS for the design
space exploration of Systems-on-Chip. One of the strength of both profiles is the possibility
to automatically derive formal specifications from UML diagrams. Formal verification
refers to the study of whether a set of properties are satisfied in a system under evaluation.
Unfortunately, in both profiles, only the system itself can be modeled, and not related
properties. In other words, properties must be captured using other formalisms, e.g.,
CTL, thus limiting the TURTLE and DIPLODOCUS press-button approach for formal
verification: the designer has to manually enter properties in a format that is related to
the underlying formalism, and definitely not the one used for models (e.g., UML). We have
addressed this problematic as follows.
First, the possibility to express requirements in both profiles. Indeed, properties to be
verified are commonly derived from requirements. In UML 2, functional requirements may
be expressed by use-case diagrams. Non functional requirements remain impossible to
express. The promoters of SysML - the OMG-based UML profile for system engineering
[152] - took the problem into account and introduced the concept of Requirement Diagrams.
A first contribution is therefore to allow the capture of requirements in TURTLE using
(enhanced) SysML requirements diagrams.
Second, the possibility to express properties to be satisfied by the model. We have proposed
to formally define properties, and to link them to requirements. To do so, we have first
proposed to model "basic" time-related properties with UML timing diagrams. TURTLE
observers can directly be derived from those properties, and thus, the formal verification
can fully be performed from UML models. Based on that first contribution, we have
proposed to use another language for all kinds of properties - i.e., logical and temporal
ones - based on SysML parametric diagrams: this new language is called TEPE, and is
integrated to other profiles (e.g., DIPLODOCUS and AVATAR).
The chapter is organized as follows. First, requirement capture is presented in section
4.2. The modeling and verification of basic temporal properties is presented in sections 4.3
and 4.4, respectively. The diagram used for capturing these properties is called TRDD.
The automated derivation of TURTLE observers from TRDD is also explained. The TEPE
language is then presented in section 4.5: syntax, semantics, and main results are provided.
Future work is presented in last section.
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4.2 Requirement capture

4.2.1 Context and related work

A Requirement Diagram (RD) has a tree structure made of �requirement� nodes and
�testcase� nodes. RDs use �derive� relations to express refinement hierarchy of re-
quirements. Moreover, RDs use �verify� relations to link requirements to test-cases.
Given one requirement R defined for one system S, one test case TC linked to a require-
ment R enables testing of S’s implementation against R. In SysML the �verify� relation
is meant to be used in the context of testing. In our approach, we use it for linking ob-
servers (i.e. verification guides, not test cases) and formal requirements. SysML syntax
allows one to structure a set of requirements as a tree of �requirement� nodes.
Nevertheless, the SysML standard does not specify how to clearly state the nature of the
requirement inside a �requirement� node. Indeed, requirements description is written
in plain text and therefore remains totally informal. At first, we have enriched these re-
quirements with temporal requirements, themselves enriched with a graphical and formal
notation that we name ’Temporal Requirement Description Diagrams’, or TRDDs for short.
Further,�derive� and�verify� relations have a formal semantics whenever formal tem-
poral requirements are involved. This way, temporal requirements are formally linked to
observers (SysML test cases) in charge of driving formal verifications.
Formal verification of UML models has been investigated by several research projects, in
particular OMEGA [147] and ACCORD [88]. In both projects, requirements are captured
outside the UML model. [134] proposes to express requirements in SysML Requirement
Diagrams. [134] adds formality to temporal requirements and expresses the later using LTL
formulas. Our first contribution relies on TRDDs instead. In [134] the system’s structure
is defined by a SysML block diagram. The blocks’ behaviors are defined by Time Petri
nets, as an alternative to SysML activity diagrams. The approach is partly automated by
reuse of the TINA toolbox [44] and assumes the system’s designer is capable of writing
LTL formulas.
The importance of Requirement Diagrams has been acknowledged in the literature. Some
authors take SysML Requirement Diagrams as they are without adding them any formal-
ity. Examples include the ModelicaML profile proposed by [2] for co-design of software and
hardware and the profile defined by [183] for System-on-Chip. Conversely, our approach
based on TRDDs adds formality to SysML requirement Diagrams as far as temporal re-
quirements are concerned. We further bring solutions to achieve requirement traceability,
an issue of prime importance as underlined by [183] and [7].

4.2.2 Contribution: TURTLE Requirement Diagrams

TURTLE Requirement Diagrams reproduce the tree structure of SysML Requirement Di-
agrams and introduce three types of nodes:

• A �requirement� node, e.g., HybridPowerManagement on Figure 4.1) defines an
informal requirement expressed in plain text. The scope of the requirement is not
limited. A requirement is defined by its name, its type (functional, non-functional)
and its risk level (low, medium, high).

• �Formal Requirement� node (e.g. F_Brake_HPMU on Figure 4.1) formally ex-
presses one temporal requirement. In general, one formal requirement is derived
from an informal one. In Figure 4.1, F_Brake_HPMU is derived Brake_HPMU.
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Figure 4.1: Example of a Requirement Diagram

All formal requirements are further described by a TRDD (Temporal Requirement
Description Diagram, see subsequent sections). Therefore, a formal requirement def-
inition include a name, a type, a risk level, and also a TRDD reference (see, e.g.,
<TDRR>= FB_HPMU on Figure 4.1).

• A �TObserver� node (e.g. Brake_HPMU_Observer on Figure 4.1) refers to one
observer in charge of guiding formal verifications against one formal temporal require-
ment (i.e. one �Formal Requirement� node). Observers and formal requirements
are linked with �verify� relations (In Figure 4.1, see, e.g., the �verify� relation
from Brake_HPMU_Observer to F_Brake_HPMU ). An observer is defined by a
name, a type (design, analysis), the name of the diagram targeted by formal verifica-
tion, and a Violated_Action attribute. Let us assume an observer OBS is linked to
one formal requirement FR. Each time FR is violated during reachability analysis,
OBS performs one synchronization action whose name equals the identifier given by
the Violated_Action attribute of OBS. This way, FR’s violation may be detected by
inspection of the reachability graph transitions’ labels.

Figure 4.2 defines the meta-model of TURTLE Requirement Diagrams. Informal and
formal requirements are new stereotypes defined from SysML Requirements (::SysML::Requirement
class). A formal requirement may be derived from an informal one (association labelled by
derive), not the opposite. TObserver is a new stereotype defined from the SysML stereo-
type "TestCase" (::TTDTestingProfile:: TestCase class). A test-case is an element used
for requirement verification. Since an observer verifies one formal temporal requirement,
it is connected to one formal requirement with a �verify� relation.
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Figure 4.2: TURTLE Requirement Diagram Meta-Model
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4.3 Modeling temporal properties with TRDDs

4.3.1 Related work and context

Temporal requirements may be expressed in a qualitative or a quantitative way. The former
approach exclusively addresses the temporal ordering of events. The latter considers the
order of events and temporal distances between events. Table 4.1 sets up a correspondence
between temporal requirements and the bounded promptness properties defined in [7].
Notation: S |= R stands for "system S satisfies requirement R".

Kind of TR Definition
Promptness R ensures that an event occurs before a deadline Tmax.

S |= R is true if that event occurs before Tmax.
Minimal Delay R ensures that an event occurs after a minimum time Tmin.

S |= R is true if that event occurs after Tmin.
Punctuality R ensures that an event occurs at one punctual date T.

S |= R is true if that event occurs at the T date.
Periodicity R ensures that an event occurs regularly at modulo T dates.

S |= R is true if that event occurs at modulo T dates.
Interval Delay R ensures that an event occurs between/outside a temporal

interval ]Tmin;Tmax[.
S |= R is true if that event occurs inside/outside temporal
interval ]Tmin;Tmax[.

Table 4.1: Temporal Requirements taxonomy based on [7]

In KAOS (Keep All Objective Satisfied [181]), requirements are expressed by logic
formulas written in RT-LTL (Real Time Linear Temporal Logic). KAOS also includes a
method for goal driven requirement elaboration. The KAOS tool Objectiver [148] allows
analysts to elicit and specify requirements in a systematic way and to achieve traceability
from requirements to goals. The interest of the KAOS methodology is to formalize and
trace functional and non-functional requirements (including security, safety, accuracy, cost,
performance) throughout the design cycle. Like KAOS, TURTLE handles formal require-
ments from capture and its toolkit contributes to achieve traceability.
Scenario based modelling techniques are also candidates for temporal requirement descrip-
tion. Timed Use Case Maps [103] (see TUCM in Table 4.2) describe Use Cases Interac-
tions including absolute time with a master clock and relative time constraints (Duration,
Timer). Visual Timed events Scenario [180] (see VTS in Table 4.2) represent events in-
teractions. An event denotes an action which potentially occurs inside the system. VTS
enables time representation. It may express partial orders and relative time constraints
between events. Finally, Live Sequence Charts [60] (LSC in Table 4.2) extend Messages
Sequence Charts (MSC) to represent scenarios. LSC enable distinction between possible
and necessary scenarios.

TRDDs also reuse the concept of observation points introduced in VTS. Nevertheless,
TRDDs do not implement a scenario paradigm. TRDDs rely on Timing Diagrams.
The ICOS toolbox uses one formalism [81] close to timing diagrams. Real Time Symbolic
Timing Diagrams (RT-STD in Table 4.3) are applied to SoC design. Regular Timing
Diagrams [7] (see RTD in Table 4.3) improve the situation: they enable representation of
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Name TUCM VTS LSC
Reference [103] [180] [60]
Formal Language Clocked Transi-

tion Systems
Timed Computa-
tion Tree Logic

Bűcchi Automata

Verification type Model Checking Model Checking
(UPPAAL/Kro-
nos)

Model Checking

Table 4.2: Scenario-based visual languages with formal semantics

Name RT-STD RTD TRDD
Reference [54] [7] Our contribution
Formal Language Bűcchi Automata Symbolic values RT-LOTOS / UPPAAL
Verification type Model Checking Model Checking Observers

Table 4.3: Visual Languages based on Timing Diagrams

partial order between diagrams.

4.3.2 Contribution: Definition of TRDDs

Figure 4.3 depicts the meta-model of TRDDs which relies on UML Timing Diagrams
[16]. UML Timing diagrams are defined with two notations: the robust one, and the
concise one. TRDDs extend the latter. Basically, a TRDD consists of one requirement
lifeline and two observation points. The Requirement_Lifeline class has several attributes:
Begin and End symbols, N Requirement States (OK or KO) and N-1 Temporal Frontiers.
n_TRD gives the number of elements in the TRDD requirement description (OK or KO,
also called "requirement states"). Observation_Points refers to observation events, i.e.
TURTLE actions used for observing system objects. For example, Start_Action (resp.
Capture_Action) model a requirement capture ignition (resp. completion).

4.3.3 Example of a Temporal Requirement Description Diagram

The right part of Figure 4.4 depicts a TRDD modeling a process that must complete within
10 time units. The process is framed by two actions "Start_Process" and "End_Process"
that we call "observations points". The latter are modeled above a TRDD lifeline. The
diagram also includes a temporal frontier whose value equals 10 units of time. The tem-
poral frontier distinguishes between two time periods - OK and KO - that correspond to
requirement satisfaction and violation, respectively.

4.3.4 TRDD patterns

Three TRDD patterns have been defined in order to easily capture common situations,
and still handle complex temporal ones. More precisely, a first pattern is dedicated to
temporal constraints with one temporal frontier. A second pattern handles situations with
two temporal frontiers. The third and last one supports any numbers of temporal frontiers.
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Figure 4.3: TRDD Metamodel
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Figure 4.4: Example of a Temporal Requirement Description Diagram
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Figure 4.5: Comparison between TRDD patterns and the requirements presented in Table
4.1

Figure 4.5 identifies the three TRDD patterns and compares them with the taxonomy used
in Table 4.1.

1. TRDDs with one temporal frontier. Corresponding events must occur be-
fore/after T time units. These requirements correspond to Promptness and Mini-
mal Delay requirements, respectively.

2. TRDDs with two temporal frontiers. Corresponding events must occur be-
tween/outside interval ]T1, T2[. These requirements correspond to Interval Delay
and Punctuality requirements, respectively. A TRDD with two temporal frontiers
T1 = T − 1 and T2 = T+1 corresponds to a Punctuality requirement on date T.
Punctuality is verified on both sides of date T.

3. TRDDs with N temporal frontiers and N+1 requirement states (OK or
KO). P1 and P2 represent two possible requirement states (OK or KO). Note: this
kind of requirements is not referred in the taxonomy presented in Table 4.1.

4.3.5 Extending TRDDs

TRDDs presented so far may not model periodic events, bounded events and bursts. Pe-
riodic events happen every n time units. A bounded event may happen at any time, but
its occurrence date is bounded by a time interval. Finally, burst events happen as grouped
events with a maximum density per time interval. We have proposed extensions so as to
model these schemes [79]. However, a more generic approach has been proposed in TEPE
(see section 4.5).
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4.4 Formal verification with TRDDs

4.4.1 Observer generation: rationale and related work

The three verification tools interfaced with TTool implement reachability analysis (i.e.,
RTL, CADP and UPPAAL). A reachability graph characterizes the states the system may
enter from its initial state. Reachability analysis raises two issues related to the graph
generation itself and to the graph’s exploitation in order to decide whether a given require-
ment is met or not.
Dealing with graph generation, a first solution is to compute the entire graph. It raises
two conditions. First, the system should be bounded, which means it should have a finite
number of states. Second, sufficient computer resources should be available to generate
and store the graph. When the two conditions are not met, partial reachability analysis
is an alternative. For instance, model checkers such as CADP and UPPAAL implement
on-the-fly model checking algorithms to detect property violations and satisfaction. TTool
not only invokes external verification tools; it also provides verification results analyzers.
In particular, it eases quick search of identifiers in large-size graphs. Moreover, TTool
hides the complexity of formal verification by implementing a press-button approach: no
knowledge of underlying formal languages is necessary. For instance, Well-known model-
checking properties such as liveness or accessibility of some action A are answered by one
single click on the UML action state of A.
Dealing with graph exploitation, we suggest transforming the graph into a Labeled Tran-
sition System (LTS). The latter’s transitions are labeled with TURTLE synchronization
action names. When two objects rendezvous, one transition is added to the graph and
labeled by an identifier which unambiguously characterizes the rendezvous. Transitions
no related to rendezvous are labeled by "nil". The information conveyed by the transi-
tion labels should allow one to decide whether requirements are met or not. TTool users
may select a subset of rendezvous identifiers (i.e. transitions labels): other rendezvous
transitions are subsequently labeled by "nil". Requirement satisfaction may then be de-
cided from the result of searching for one or several transition labels. Also, the labeled
graph may be minimized using Milner’s observational equivalence. The resulting quotient
automaton gives an abstract view of the system. This approach has often been used for
communication architecture validation: the protocol layer is modeled in TURTLE and the
reachability graph is minimized in such as way the quotient automaton characterizes the
service rendered by the protocol layer.
Besides usual situations where two system’s objects rendezvous, the post-generation analy-
sis of the reachability graph particularly looks for rendezvous between the system’s objects
and other objects, termed as "observers", in charge of observing how the behavior of the
system’s objects influences on the satisfaction of the requirements to be verified. Let R be
the requirement to be verified and OBS the observer which drives the verification against
R. The gate list and behavior associated to OBS are hard to conceive since we expect OBS
to remain non intrusive and to perform one synchronization action every time R is violated,
so as that action appears as transition label in the reachability graph. Thus, OBS must
synchronize with all objects whose behavior modifies R’s satisfaction. Designing OBS by
hand is therefore error-prone. We further expect OBS to remain non intrusive, the activity
diagram of OBS is particularly complex to build. We have thus experimented with
the automatic derivation of observers from TRDDs [80, 79].
The work on adding observers to a system model was pioneered by [107] for the ISO-based
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formal description technique Estelle. The idea was to model the system’s architecture and
behavior in Estelle and to link the resulting model to a set of observers modeled using
an Estelle-like language that grants access to all the variables, queues and timers of the
modules included in the Estelle model of the system. The observer may output statistics
on the simulation and stop or focus the simulation on particular points depending on the
values of variables, queued messages and timers. Also, an observer may check the temporal
ordering of events during one simulation run.
The simulation approach proposed by [107] for Estelle has been extended to verification
and adapted to other modeling languages such as SDL and UML [52] [155] [72] [147].
In [107] and [72], observers are built up by hand. By contrast, [155] automates observers’
construction. In particular, [155] uses CxUCC to link requirement expression to formal
verification. Likewise, our contribution connects TRDDs to formal and observer-guided
verification. The method we propose manages requirements before starting analysis. Con-
versely, [155] manages requirements during the analysis phase using context automata
(termed as "use case charts"). An important difference is that TURTLE Requirement
Diagrams enable description of both functional and non functional requirements, where
use-cases exclusively address functional requirements.

4.4.2 Observer Synthesis and Traceability matrix

A TURTLE design defines a set of objects interacting inside a "closed world" that is im-
possible to access from the system’s environment. The observer in charge of guiding formal
verification against temporal requirements must therefore be integrated into the TURTLE
model of the system. Thus, we give observers (i) access to the system’s inner workings and
(ii) the possibility to issue reports on any action that violates the temporal requirements
whose TRDDs have served as starting point to create the observers. Unlike the observer-
based simulation implemented by VEDA [107] for Estelle, the observer-guided verification
implemented by TTool does not grant observers complete access to system’s objects. Our
solution relies on the following assumption: any change in the observed object OBJ that
may be of interest to decide whether requirement R is met or not, should lead the observer
OBS and OBJ to rendezvous. The activity diagrams of OBJ and OBS must be accordingly
extended with relevant synchronization actions. OBJ and OBS rendezvous on paired gates.
An association attributed by a Synchro operator links the OBJ and OBS objects in the
TURTLE class diagram and an OCL formula states the two gates are paired.
A first option to design observers is to manually extend class and activity diagrams of
the system’s models with a set of synchronization actions having counterpart synchro-
nization actions in the activity diagram of the observer: this is obviously error prone. We
have thus defined a transformation algorithm that takes TRDDs and observers’ description
(identifier, observed diagram and violated action name) as input so as to automatically
generate observers. That algorithm is implemented by TTool. It works with the interme-
diate language defined in TTool (TIF - TURTLE Intermediate Format), which means that
observers are built directly in TIF and integrated into the TIF specification obtained from
considered diagrams. TIF is an intermediate language used as TTool to have a common
structure between UML diagrams and underlying formal languages. Basically, TIF is close
to a textual form of TURTLE designs, that is, it is based on object decomposition, syn-
chronous objet relations, and object behaviours described with activities. Since observers
are directly generated in TIF, observed TURTLE diagrams remain unmodified. Addition-
ally, observers are designed to be non-intrusive. More precisely, the behavior of observed
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Figure 4.6: Observer-based formal verification procedure

objects is unmodified as long as low-level risk requirement are observed. Conversely, the
verification process stops as soon as one high-level risk requirement is violated. In that
latter case, observation remains non-intrusive as long as requirements are satisfied.
The fully automatic observer-guided verification process encompasses the following steps
(see Figure 4.6):

1. TURTLE design diagrams are translated into a TIF specification, using the usual
translation process.

2. For each observer linked to one formal requirement and referencing one design dia-
gram, an observer is added to the TIF specification.

3. A reachability graph is generated using, e.g., the RTL verification tool.

4. The reachability graph is analyzed using model-checking techniques or minimized
with respect to an equivalence relation and a set of events. The output of the model-
checking or minimization process provides information to create a traceability matrix.
For each requirement R listed in the matrix, it is indicated whether R is satisfied or
not.

4.4.3 Observer generation

4.4.3.1 Observers

An automatically generated observer is a TURTLE class stereotyped by � TObserver �
(see Figure 4.7) and defined at the TIF level. Its name matches the name of the observer
defined in the TURTLE Requirement Diagram. Its attributes refer to the dates defined in
the temporal frontiers of the TRDD of the formal requirement verified by the observers.
A TObserver also includes gates. Three types of gates are defined.

• Gates to observe the model. They correspond to the observation points defined
in the TRDD of the observed requirement. Synchronizations are made possible by
the Synchro relations that link the observer to the objects of the observed system.
An observation gate observes either the start or the capture observation points (see
[79])
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Figure 4.7: Meta-model of observers

• Gates to trace the observed temporal and formal requirement. These gates
correspond to Violated_Action defined in observers.

• Gates to control the system in which the observer is inserted. They enable
to stop the verification process when a high-level risk requirement is violated.

4.4.3.2 Observers behavior

Like any active TURTLE object, an observer’s behavior is defined by one activity diagram
(Figure 4.7). The latter is structured into three sub-parts: an anti-blocking system, the
observation of the property itself, and the stoping of the system when a high-level risk
property is violated. All these behaviours are thoroughfully explained in [79].

4.4.4 Traceability matrix

The reachability graph generated by RTL or CADP conveys information for creating a
traceability matrix dedicated to temporal requirements. In practice, TTool seeks the
reachability graph for transitions whose labels correspond to violated actions. Results
of search for violated actions are collected in a traceability matrix. As suggested by Figure
4.8, a traceability matrix lists the temporal requirements declared in the TURTLE Re-
quirement Diagrams of the system and assigns each requirement one verdict: OK if the
requirement is met; KO otherwise. In Figure 4.8, formal requirements F_Brake_HPMU
and F_Cruise_HPMU are violated (c.f. the KO labels in the Satisfiability column).
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Figure 4.8: Traceability matrix of the HybridPowerManagementUnit requirement

4.5 A more generic approach to property modeling: TEPE

4.5.1 Context and related work

TRDDs have been succesfully used for the proof of basic temporal properties [79]. How-
ever, as explained in previous sections, they are totally dedicated to temporal situations
(e.g., punctuality) and can definitely not be integrated in more complex properties (e.g.,
prove a punctionality property only when a given boolean variable is equal to "true"). The
TEPE language has been introduced for that purpose: dealing with complex properties
made of logical and temporal sub-properties.
The TEPE language is appropriate for a wide range of system models originating from
labeled transition systems. A labeled transition system consists of states and transitions
between these states. Transitions are triggered by so called events which may either refer
to a single atomic action or to a set of atomic actions carrying the same label. In this
article, we use the latter meaning of event as a synonym for signal, also subsuming a set
of similar events.
This section reviews popular languages in the field of property verification, some of which
are built upon UML while others define their own syntax. Especially in the hardware com-
munity, verification statements referred to as assertions are interwoven with the (Register
Transfer Level) source code and are closely tied to clock cycles as a sampling event. That
means, whenever it comes to defining the temporal scope of conditions, the notion of clock
cycles is taken as a reference. TEPE puts emphasis on the temporal and logical relation of
signals and properties, without attaching an outstanding importance to a particular sig-
nal. TEPE has been published for the first time at UMLFM’2010 [112] and fully defined
in [120].

4.5.1.1 Property specification

System Verilog [5] provides concurrent assertions for describing behavior that spans over
time. The underlying event model is based on clock ticks. TEPE constraints operate on
physical or logical time.
The e-language [185] somewhat extends the System Verilog event model by introducing
user defined events derived from behavior or other events. However, temporal expressions
require a trigger event to be selected for condition evaluation. In TEPE, constraints may
specify several sampling events (e.g. signals) which may evolve over time.
PSL [6] can be considered as an extension of LTL and CTL temporal logics and the expres-
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siveness of its temporal layer resembles the System Verilog specification language. PSL
is also tightly coupled to clock based events. So called "properties" are used to describe
behavior over time and they are made up of a Boolean expression and a clock expression
amongst others. However, the aforementioned languages fail to model physical time inde-
pendently of clock cycles.
The SystemC Verification Standard [150] addresses the creation of test benches and al-
lows both for random stimulus generation and recording of resulting transactions. To our
knowledge, it does neither comprise a syntax for expressing temporal properties, nor au-
tomated ways to verify them.
[174] advocates a nice graphical notation which aims to simplify the formalization of re-
quirements for model checking. System executions are expressed in the form of timeline
diagrams discriminating optional, mandatory, fail events and related constraints. As for
other trace-based approaches, conditional or varying system behavior cannot easily be ex-
pressed. Moreover, the approach does not address real-time or performance requirements.

4.5.1.2 Property specification in UML

The MARTE profile embraces the Value Specification Language VSL [153]. The language
alone is not able to describe valid system executions: its goal is to verify the values of con-
straints, properties and stereotype attributes particularly related to non-functional aspects.
When used in combination with sequence diagrams, VSL does not compensate the poor
formal expressiveness of the latter. Live Sequence Charts [61] [95] address this issue by
discriminating mandatory from provisional behavior. However, capturing a set of accept-
able traces still relies on condition and loop primitives of conventional sequence diagrams
and is therefore cumbersome. Additionally, the integration of equations that have to be
fulfilled as a function of the system behavior is not straightforward in UML and requires
the usage of OCL, thereby circumventing the graphical notation.
The MARTE Time model has defined an unambiguous time structure which can be lever-
aged to build precise timed models amenable to formal analysis. A corresponding concrete
syntax is the clock constraint specification language (CCSL) [140] [14], which describes
system events of different types as abstract clocks. The language supports relationships
between clocks: for instance periodicity, precedence alternation, etc. The work inspired
ours as it provides a solid theoretical foundation for sequential and time constraint mod-
eling. However, TEPE does not require the user to abstract events to clocks. The user
just has to identify structures similar to signals and attributes. This procedure should
be straightforward for formalisms stemming from labeled transition systems. Moreover,
our objective was to suggest a concrete syntax (based on UML/SysML) paving the way
for a seamless integration into various modeling environments (e.g., TURTLE, AVATAR,
DIPLODOCUS, but also other UML profiles).

4.5.2 Contribution: TEPE is based on Parametric Diagrams

TEPE constraints directly refer to states, e.g. particular valuations of system attributes
and also to signals. Model of Computations having one of two attributes are amenable
to verification with TEPE. That way, TEPE acknowledges the fact that properties are
sometimes more conveniently formulated in either a state-based or an event-based fashion.
As a rule of thumb, whenever a system’s history is relevant for a property, a state-based
expression is preferable. If a property applies in very different scenarios, which are char-
acterized by common behavioral patterns, then events are the formalism of choice.
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TEPE was built on the two simple insights that properties are often not invariants and
that liveness and safety properties should be easily expressible and distinguishable. As de-
picted in Figure 4.9, vertically cascaded TEPE constraints determine the activation period
(AP) of the constraint immediately above. This is suggested by vertical activation period
arrows. In turn, they only operate on signals and properties during the interval specified by
the constraints immediately below. Properties are propagated along the vertical axis (cf.
property arrows in the figure), named state axis. A constraint receives an input property
to be verified and produces an output property, which may be the final result or subject to
further verification. During its activation period, a constraint observes three signals rep-
resented by horizontal arrows in Figure 4.9. The signal s1 serves as precondition for the
verification of the liveness of s2, and the safety of the system prohibiting the occurrence
of s3 between s1 and s2. To account for time constraints, TEPE operators may specify a
minimum (Tmin) and maximum duration (Tmin) of the interval bounded by s1 and s2, as
formerly defined in TRDDs.
We have formalized with transfer functions (Fprop, Fsig, Fact) how incoming arrows in Fig-
ure 4.9 (s1, s2, s3, APn−1, Pn+1) relate to outgoing arrows (Pn, sout, APn). Only main
ideas of this semantics are given herefater, full details are nonetheless provided in [120]

Since SysML Parametric Diagrams (PDs) establish constraints between elements of
the system design - i.e., parameters -, TEPE introduces a small set of SysML Constraints
called TEPE Contraints, or TC for short. As opposed to informal SysML PDs, TEPE
PDs are amenable to automated verification.
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Figure 4.9: Intuition for the TEPE semantics

In TEPE, each property is expressed as a graph of TEPE Constraints: Alias Con-
straints, Conjunction Constraints, Disjunction Constraints, Equation Constraints, Logical
Constraints, Sequence Constraints, Temporal Constraints, Property Definition Constraints
and Setting Constraints. Constraints are related to each other using three types of param-
eters: Signals, Attributes and Properties. An excerpt of TEPE meta model is depicted in
Figure 4.10. All stereotypes of PDs are derived from their respective SysML counterpart:
Blocks, Constraints and Links. A block provides a scope to Attributes, Signals in order
to unambiguously map them to the system model. Properties are assembled by means of
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Links which are attached to the ports of Constraints. Links may be established between
two parameters of the same type (Attribute, Signal or Property). Ports must obviously
have the same data type as the connected Link, and two connected ports must have a
converse input/output configuration.

Figure 4.10: Excerpt from the TEPE PD Meta Model

A TEPE PD can be constructed in the following way:

1. First, Blocks are represented with their particular Attributes and Signals subject to
verification. These entities have been identified during the design phase. A Block
may refer to any entity in the system model providing a scope to Attributes and
Signals.

2. Values derived from original attributes and signals are introduced (cf. Equation and
Alias constraints).

3. The reasoning about the sequential and temporal traces of the system is expressed in
terms of logical and temporal constraints. These constraints can be composed using
Signals and Property parameters.

4. Several Properties may be combined via logical property constraints such as Con-
junction, Disjunction and Property Definition constraints.

5. Finally, using a reference label, the formal property to be verified is linked to an
informal testcase of a SysML RD. The formal property is tagged with a quantifier
attribute: (non-) liveness or (non-) reachability.

6. To avoid overloaded diagrams, properties can be split over several diagrams.

4.5.3 Example of a TEPE model

The example in Figure 4.11 informally presents operators of PDs, which are described in
[120] in more detail. The depicted PD defines two Blocks: BlockA has two attributes x and
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y as well as two signals s1 and s2. BlockB declares a signal called s3. A Setting constraint
declares a temporary variable z = x + y which simply serves as a shorthand to derive
other expressions. The equation z > 0 is connected to the Logical Sequence (LS) operator
and is therefore only verified during its activation period. An Alias constraint combines
the two signals s1 and s2. The resulting signal corresponds to a logical disjunction and is
thus raised upon occurrence of either s1 or s2. The two properties, established by the LS
and TC constraint, are evaluated by an AND constraint. The LS constraint requires that
upon occurrence of an s3 signal, the compound signal resulting from the Alias constraint
must be observed as well, i.e. s1 or s2. Note that the negated input of the LS constraint is
connected to the toggle signal of the equation. Therefore, if the value of z changes or the
equation z > 0 is not satisfied between the occurrence of s3 and the compound signal, the
LS constraint evaluates to false. The property established by the TC constraint requires
the signal s2 to be occur less than 10 time units after signal s1. The property resulting
from the AND constraint must be satisfied for every execution. This is made explicit with
a Property Definition constraint configured for the verification of liveness.

Figure 4.11: Example of a TEPE Parametric Diagram

4.5.4 TEPE semantics

The combination of Metric Temporal Logic (MTL) [125] and Fluent Linear Temporal Logic
(FLTL) [132] is especially useful for reasoning about temporal properties in terms of both
system states and events. They both serve as support for defining the semantics of TEPE
operators [120].
Metric Temporal Logic (MTL) is presented in [125]. Basically, MTL enriches LTL with
bounded temporal operators: []∼d P , <>∼d P and P U∼dQ where ∼∈ {<,≤, >≥} and
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d ∈ N. Therein, P stands for a MTL formula, [] and <> for the LTL operators always and
eventually.
MTL is defined with respect to a temporal distance function dist : N× N → T , where T
is the time domain and dist (i, j) denotes the time elapsed between position i and j in a
trace. The distance function is required to exhibit the properties of a metric.
Fluents are defined in [132] as "state predicates whose value are determined by the occur-
rence of initiating and terminating events’". A fluent is thus a two tuple comprising an
initiating event σ1 and a terminating event σ2 6= σ1 and is initially defined to be false.
A generic TEPE constraint is a nine tuple (Fi, fneg, fout, Tmm, Fai, Fao, Fprop, Fsig, Fact)
comprising

• A set of input fluents: Fi = {f1 . . . fn}, 0 ≤ |Fi| ≤ 2

• At most one negated fluent: fneg

• At most one output fluent: fout

• A set of time parameters: Tmm, 0 ≤ |Tmm| ≤ 2

• At most one pair of an activation period input and a property output: Fai =
{fn−1, Pn}

• A set of pairs of an activation period output and a property input:
Fao = {{fn,1, Pn+1,1} . . . {fn,j , Pn+1,j}}, 0 ≤ |Faio| ≤ 2. To simplify matters, fn,1, Pn+1,1

is written as fn, Pn+1 if there is exactly one pair.

• A transfer function for the property output if applicable Fprop:
Fi × fneg × {Pn+1,1 . . . Pn+1,j} × fn−1 × Tmm → Pn

• A transfer function for the output fluent if applicable Fsig : Fi × fn−1 → fout

• A transfer function for the activation period output if applicable Fact : Fi × fn−1 →
{fn,1 . . . fn,j}

As explained in [120], all TEPE constraints are built upon this generic definition.

4.6 Results and future work

Requirement modeling and property expression is a topic of utmost importance in semi-
formal engineering. Requirement modeling in SysML is a quite recent topic, and property
modeling is still an open issue, with various contributions in OCL, CCSL, UML timing
diagrams, or TEPE. The first results we obtained with UML Timing requirements diagrams
have been used as a basis to define a more generic property language suitable for both
logical and temporal properties. The proofs of so-described properties with automatically
generated observers is also part of our contributions.
Modeling TEPE diagrams is now possible in TTool. TEPE Diagrams can be used either
in the scope of DIPLODOCUS [120] or AVATAR models [112] (AVATAR is defined in
chapter 5). In the case of DIPLODOCUS, simple TEPE diagrams can be taken as input
by the coverage-enhanced simulation engine defined in DIPLODOCUS, and so, formal
verification of properties can be conducted taking as input DIPLODOCUS models and
properties expressed in TEPE. Example of this is provided in [120].
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Since TEPE definition is recent, the modeling of properties in several case studies will
surely modify the current semantics. However, up to now, complex logical or temporal
properties have been modeled in small-size diagrams. The full integration of TEPE in
other profiles is still an open issue that shall be addressed in a near future. In particular,
its relation with MARTE is also under study.
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Chapter 5

AVATAR: Handling Safety and
Security Issues in the Same Models

5.1 Context and problematic

For over ten years, the TURTLE UML profile has been used for modeling many different
kinds of systems, e.g. in order to dimension these systems [32], to analyze protocols [22], to
design embedded systems [35], and to deploy software components [36]. It has been used
in several industrial and research contexts. Reviews from papers we submitted, partners’
remarks, returns from users experience helped us to identify a few drawbacks. In particular:

• TURTLE was based on UML 1.4. Even if improvements were made progressively
towards a UML2 flavor, the core of TURTLE remains built upon an old version of
UML. For example, composite structure diagrams are not supported in TURTLE,
thus leading to interconnect classes only at class diagram levels, without any notion
of ports or parts. This problem was partially addressed in the CTTool profile [8].

• Another issue is the support of requirement and property capture, which was pro-
posed to be made with SysML or UML2 diagrams [80, 113]: Thus, SysML diagrams
are now mixed in TURTLE with UML 1.4 diagrams.

• TURTLE design behavior is based on activity diagrams. It is now very common that
activity diagrams are used only in analysis stage, and state machines for describing
the behaviour of components.

• Security is now a topic of utmost importance in embedded systems, in addition to
safety issues. Reworking TURTLE was thus necessary to handle both safety and secu-
rity proofs from the same UML and SysML models. A lot of work is concerned with
modeling environments capturing safety properties during all development stages,
including requirements engineering and design. To reduce verification complexity,
formal proofs at design stage are usually applied to high-level models, or to subparts
of more detailed designs. Unfortunately, current approaches are mostly dedicated
to safety properties. And so, the developer has to come up with additional models
relying on different formalisms dedicated to security proofs. Additional effort has
therefore to be spent on the creation and maintenance of two models - one for safety
issues, and one for security ones - instead of one, and also on model consistency.
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Adding security to UML has already been proposed [108]. Unfortunately, the inher-
ent structure of UML lead to solutions where security mechanisms and properties are
mixed on the same diagrams. On the contrary, SysML clearly distinguishees between
requirements and design over different views and diagrams.

For all these reasons, we decided to propose a new SysML-based environment - named
AVATAR - and to integrate security properties and mechanisms in the core of this environ-
ment. AVATAR borrows from TURTLE many points, in particular formal proofs can be
performed with a press-button approach in TTool. AVATAR supports the same method-
ological stages, with sometimes very similar modeling schemes (e.g., the analysis stage),
or different ones (system architecture at design stage). The most interesting novelty is
described in this chapter: the support of security properties and mechanisms. The new
AVATAR methodology is first sketched in section 5.2. Design diagrams are then presented
in section 5.3. Security support is described, from requirement capture stage until the
formal verification stage (section 5.4). The prototyping stage has been deeply enhanced
with regards to the TURTLE one: it is thus presented in section 5.5. At last, section 5.6
concludes this chapter.

5.2 A new SysML-based methodology

1. Requirements. Requirements of the system are first captured with SysML Re-
quirements Diagrams. Requirements are organized in a tree-based fashion. Both
safety and security requirements can be captured. Attacks can be modeled within
Parametric Diagrams specifically customed to support attack trees.

2. Analysis. The analysis phase relies on sequence diagrams structured either with
activity diagrams or interaction overview diagrams. This stage is very similar to the
TURTLE’s analysis stage.

3. Design. The general structure of the system is modeled with SysML block Diagrams.
The behaviour of each block is described with a state machine.

4. Simulation and formal verification. A press-button approach makes it possible
to perform simulations with model animation. Safety and security proofs can also be
performed directly from the design models without prior knowledge about underlying
formal verification techniques. Models can then be modified depending on verifica-
tion results. Safety and security proofs rely on UPPAAL [43] and on ProVerif [46],
respectively. Safety properties can be expressed in TEPE [112]. Security properties
can be expressed within pragmas [158].

5. Code generation and prototyping with SocLib. The TTool code generator
can output C/POSIX code from design models. The generated application code can
then be compiled along with MutekH using the appropriate kernel configuration and
cross-compiler to target a PowerPC based SoCLib platform. The SoCLib simulator
can then be started and the code - generated and compiled during previous step -
is loaded and executed like on real hardware. Debugging can be performed at two
levels using both the GNU debugger, and simulations traces. Simulations traces can
be displayed in TTool during code execution or later. These traces are displayed in
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TTool under the form of UML sequence diagrams. AVATAR models can then be
further modified as needed in order to generate a new code.

Simulation and formal proofs are meant to be executed during first iterations on the
system model. On the contrary, the prototyping of the system is expected to be performed
during the last iterations, that is, on more refined models. In all cases (simulation, ver-
ification and prototyping), results are directly displayed by TTool in a SysML fashion,
therefore facilitating the identification of problems directly on SysML models.

5.3 AVATAR design

Apart from their formal semantics, AVATAR Block and State Machine Diagrams only have
a few characteristics which differ from the SysML ones.
An AVATAR block defines a list of attributes, methods and signals. Signals can be sent
over synchronous or asynchronous channels (TURTLE supports only synchronous com-
munications). Channels are defined using connectors between ports. Those connectors
contain a list of signal associations.
A block defining a data structure merely contains attributes. On the contrary, a block
defined to model a sub-behavior of the system must define an AVATAR State Machine.
AVATAR State Machine Diagrams are built upon SysML State Machines, including hier-
archical states. AVATAR State Machines further enhance the SysML ones with temporal
operators:

• Delay: after(tmin, tmax). It models a variable delay during which the activity of
the block is suspended, waiting for a delay between tmin and tmax to expire.

• Complexity: computeFor(tmin, tmax). It models a time during which the activity
of the block actively executes instructions, before transiting to the next state: that
computation may last from tmin to tmax units of time.

The combination of complexity operators (computeFor()), delay operators, as well as the
support of hierarchical states - and the possibility to suspend an ongoing activity of a sub-
state - endows AVATAR with main features for supporting real-time system schedulability
analysis. The semantics of AVATAR has been first defined in UPPAAL, but the semantics
of a subset of the profile has also been defined in the pi-calculus language supported by
ProVerif [46]. This semantics is further explained in the next section.

5.4 Extending AVATAR for security purpose

5.4.1 Modeling and verifying embedded systems with security constraints

A wide range of methodologies and tools has been proposed for modeling and verifying
security in embedded systems.
[177] proposes to verify cryptographic protocols with a probabilistic analysis approach.
Protocols are represented as trees whose nodes capture knowledge whilst edges are as-
signed with transition probabilities. Although these trees could include malicious agents
in order to model attacks and threats, security properties are nonetheless not explicitly
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represented. Moreover, for threat analysis, attacks should be explicitly expressed and man-
ually solved. [179] defines a formal basic set of security services for accomplishing security
goals. In this approach, security properties analysis strongly relies on designer’s experi-
ence. Moreover, threat assessment is not easily feasible.
In more recent efforts, temporal logic languages are used for expressing security properties.
For instance, [75] embeds a first order Linear Temporal Logic (LTL) in the theorem prover
Isabelle/HOL, making it possible to model both a system and its security properties. Al-
though this is a rigorous approach, security properties and goals can be built upon security
concepts, unfortunately leading to non-easily reusable specific models. Another example
of temporal logic based verification is presented in [71]. In that approach the designer has
to establish assumptions, knowledge and communication axioms, and represent them in
a temporal logic language, and so specialized skills are definitely necessary. Additionally,
the proposal only targets authenticity and is protocol oriented.
Evaluating both security and performance is tackled in [9]. If the methodology aims to of-
fer a good trade-off between Quality of Service (QoS) and Security, it nonetheless requires
a qualitative evaluation of security leaks. Indeed, when security flaws are detected, the
designer must decide to use a new security mechanism - and so to degrade performance -
or to keep the leak, in case the designer assumes that it is of low importance in the system.
As a consequence, this approach strongly relies on designer skills and experience.
Assessment of security in embedded systems mostly relies on formal approaches. How-
ever, [145] mixes formal and informal security properties. The authors argue that unified
security approaches won’t provide enough flexibility to cope with highly heterogeneous
requirements of distributed scenarios. Thus, the framework allows a user to define his own
security properties and create dependencies between them, making the model probably dif-
ficult to reuse. Furthermore, the overall verification process is not completely automated,
again requiring specific skills. Analogously, the Software Architecture Modeling (SAM)
framework [10] aims to bridge the gap between informal security requirements and their
formal representation and verification. Indeed, SAM uses formal and informal security
techniques to accomplish defined goals and mitigate flaws. Thus, liveness and deadlock-
freedom properties can be verified on LTL models relying on the Symbolic Model Verifier
(SMV). Even if SAM relies on a well established toolkit - SMV - and considers a threat
model, the "security properties to proof" process is not yet automated.
UMLsec [108] defines how to integrate security design elements, and security properties in
a UML methodology. However, design elements and security properties are mixed on the
same diagrams, as well as functional and non functional requirements. Also, UMLsec is
not formally defined nor it covers threat analysis (e.g., attack trees).

As a conclusion, all these solutions usually make a trade-off between rigorousness and
simplicity. On the one hand, security in embedded systems obviously requires rigorous-
ness in the formal verification process. On the other hand, the complexity and diversity
of systems and requirements, along with time-to-market and software-engineering criteria
advocate for user-oriented tools with automated and simplified verification. AVATAR pos-
itively answers that need: it is based on a popular and friendly language (SysML), it is
supported by an open-source toolkit (TTool) which relies on a recognized security verifi-
cation toolkit (ProVerif). AVATAR further supports threat analyses and code generation,
therefore supporting all secure system development phases: analysis, design, formal proof
and code generation. On the contrary, other tools such as ST-Tool [89] and STA [50] are
dedicated to one given system development phase, and based on non-reusable models.
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Figure 5.1: Example 1: Block diagram of the Alice and Bob system

5.4.2 Extending AVATAR for security purpose

Let’s consider the following Alice and Bob system, in which Alice wants to send a confiden-
tial data to Bob, using a pre-shared symmetric key, and relying on an authentic message
containing the ciphered confidential data of Alice. Figure 5.1 presents the SysML internal
block diagram of this Alice and Bob system.

Several limitations make it difficult to prove confidentiality and authenticity properties
in this toy system, and more generally in system design with security issues:

• Initial knowledge: It is not easy to model the pre-sharing of a key by Alice and
Bob. Indeed, AVATAR provides no way to pre-share data, i.e., make data common
to several blocks before the system starts. Cryptographic protocols often assume the
pre-sharing of cryptographic data, e.g., cryptographic keys.

• Cryptographic functions: Cryptographic systems commonly rely on a set of well-
known functions (symmetric cipher and decipher, compute MAC, etc.) that are not
defined in AVATAR, and have thus to be explicitly modeled by a designer.

• Communication architecture: AVATAR channels cannot be listened by an ex-
ternal Block, i.e., a network on which an attacker could listen packets has to be
explicitly modeled using blocks.

• Attacker model: AVATAR does not include any attacker model. Having a default
attacker model, e.g., based on Dolev-Yao [73], would avoid users of AVATAR to have
to model by hand an attacker model.

• Security properties: Security properties cannot be defined in AVATAR Require-
ment Diagrams, nor in TEPE, nor at Block Diagram level.

Previous limitations justify the following enhancements to AVATAR:

1. Analysis stage. Security requirements are captured within SysML Requirement Di-
agrams. Attacks are modeled in Parametric diagrams. This stage remains unformal.

2. Design stage. AVATAR blocks can be customized as "security blocks". The latter
contains the definition of cryptographic methods. Global knowledge can also be
modeled within pragmas listed in UML notes.

3. Security property modeling. Confidentiality and authenticity properties are for-
mally defined within pragmas listed in UML notes. These properties are obtained
by refining refined security requirements.
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4. Formal proof. The AVATAR design enhanced with pragmas is translated into a
ProVerif specification. Results given by ProVerif are represented directly in TTool.

All those stages are now more deeply explained. They are also further detailed in [156,
100, 158, 157].

5.4.2.1 Security analysis

SysML Requirement Diagrams have been extended to support security requirements [100]
and parametric diagrams can be used to model attack trees. Additional benefits of this
approach are a more precise definition of the use cases, the verification of existing attacks,
the identification of new attacks, and a more explicit mapping of security requirements to
functions and assets.
In our proposed framework, security requirements are modeled in SysML Requirement
Diagrams (RD). Main operators of SysML RD are Requirement Containment and Derive
Dependency formalisms used to define relationships between requirements. Also, the con-
tainment relationship can contain multiple sub-requirements in terms of hierarchy and
enables a complex requirement to be decomposed into its containing child requirements
whereas, deriveReqt determines the multiple derived requirements that support a source
requirement. These requirements normally present the next level of requirement hierarchy.
A Security Requirement stereotype is introduced to make clear distinction between func-
tional requirements and security requirements of the system. In this way system engineers
can model both functional and non-functional requirements of the system in one modeling
environment. Furthermore, a Kind parameter is defined to specify the category of the
security requirement such as, confidentiality, access control, integrity, freshness, etc,.
Attack trees can be modeled with slightly customized SysML Parametric Diagrams [152].
Attacks are modeled as values embedded into blocks representing the target of the attack.
Attacks can be linked together with the following constraints: or, and, after, before,
sequence. An attack can also be tagged as a root attack, meaning that this is attack is at
the top of the tree. Last but not least, attacks can be linked to requirements, thus allowing
an automated coverage of attacks.

5.4.2.2 Security design

• Initial knowledge

SysML offers several ways to share data between classes, using for example block attributes,
or using a dedicated block storing that shared knowledge. Unfortunately, those solutions
suffer two drawbacks:

1. The sharing is not really explicit, i.e., it is not clear which block intends to use a
given block attribute, or given data of a dedicated block.

2. The sharing is defined for the entire system execution: in security, we are interested
by the pre sharing of information, not by the sharing of this information during the
entire system execution.

To overcome those two limitations, we propose to use specific directives - or pragmas - in
notes of Block Diagrams. The pragma is as follows:

] InitialCommonKnowledge BlockID.attribute [BlockID.attribute]*
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Figure 5.2: Example 2: Block diagram of the Alice and Bob system

Figure 5.2 contains the internal block diagram of the Alice and Bob system enhanced
with AVATAR extensions for security. Similarly to the first design depicted in Figure 5.1,
the new design has two blocks (Alice and Bob), and declares two data structures (Key and
Message). A note now declares that sk is a pre-shared data (a key) between Alice and
Bob:

] InitialCommonKnowledge Alice.sk Bob.sk

Sometimes, the knowledge is not common to all protocol sessions, but is initialized for
each protocol session. The following pragma can be used to handle this situation:

] InitialSessionKnowledge Alice.sk Bob.sk

• Cryptographic functions

AVATAR includes the definition of a specific block called cryptographic block. That block
defines a set of cryptographic functions that can be used as regular methods by the state
machine of these blocks (some methods are visible in Figure 5.2). For example, both
Alice and Bob declare a set of cryptographic methods. A few examples of cryptographic
functions we have defined:

• encrypt(Message msg,Key k) and decrypt(Message msg,Key k), for encrypting
and decrypting messages with asymmetric keys, respectively.

• sencrypt(Message msg,Key k) and sdecrypt(Message msg,Key k), for encrypting
and decrypting messages with symmetric keys, respectively.

• MAC(Message msg,Key k) and verifyMAC(Message msg,Key k,Message macm),
for computing the MAC of a message, and verifying the MAC of a message, respec-
tively.

For instance, the behavior of Alice and Bob is provided within two respective State Machine
Diagrams (see Figures 5.3-a and 5.3-b, respectively). Alice first puts its secretData into a
message m.data = secretData, then encrypts this message m1 = sencrypt(m, sk) with the
symmetric encryption function, and finally sends the resulting message on the broadcast
channel chout(m1). Bob waits for a message on the broadcast channel chin(m2). Then,
Bob tries to decrypt the received message m = sdecrypt(m2, sk) and then extracts from
the message the secretData sent by Alice: receivedData = m.data.

• Communication architecture
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a – Alice b – Bob

Figure 5.3: Example 2: State Machine Diagrams of the Alice and Bob system

AVATAR communications are based upon unidirectional one-to-one synchronous or asyn-
chronous communications between blocks. Security extensions consists in adding the pos-
sibility to tag a link with private or public. A public link can be listened at by an attacker,
a private link cannot. If a public link is declared as connecting a block to itself, then all
sub blocks of that block can use that link: it can be used to model a network common to
a set of entities.

• Attacker model

In AVATAR, the attacker model is implicit, i.e., there is no need to model an attacker
either at Block Diagram level, or at State Machine Diagram level. Indeed, AVATAR relies
on the attacker model of ProVerif, see section 5.4.2.4.

5.4.2.3 Security properties

TEPE [123] has already been proposed for modeling safety-related properties in AVATAR.
However, safety properties are commonly complex to express. Indeed, they generally in-
volve several attributes and signals of blocks, as explained in [123] on an elevator system.
On the contrary, security properties can be usually defined with a type (e.g., confiden-
tiality), and with elements related to that kind (e.g., the confidentiality of the attribute
of a block). This property simplicity advocates for a basic modeling solution, that is not
based on complex diagrams or operators. Finally, our solution relies on pragmas provided
in notes of Block Diagrams: confidentiality and authenticity can be directly expressed at
this level. These low level properties are expected to be obtained after a refinement of
high-level security requirements, during an iterative process.

• Confidentiality
Confidentiality in AVATAR can be modeled as a simple pragma provided in the note
of a Block Diagram. Confidentiality must be specified as the confidentiality of an
attribute of a block:

] Confidentiality block.attribute

Coming back to the example provided in Figure 5.2, the following statement models
that the attribute secretData of Alice shall remain confidential i.e., never accessible
to an attacker:
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] Confidentiality Alice.secretData

• Authenticity
Authenticity in AVATAR is also modeled as a pragma. An authenticity pragma
states that a message m2 received by a block block2 was necessarily sent before in
a message m1 by a block block1. The authenticity pragma specifies two states: one
of the sender block, i.e. one state s1 of block1, and one state s2 of block2. Also, in
the state machine diagram of block1, s1 corresponds to the state right before the
sending of m1. Analogously, s2 corresponds to the state right after message m2
has been received and accepted as authentic. Finally, the authenticity pragma is as
follows:

] Authenticity block1.s1.m1 block2.s2.m2

For example, in Figure 5.2, the authenticity pragma states that all messages m1 sent
by Alice after state sendingMessage shall be authentic for Bob receiving it into a
message named m2 before its state messageDecrypted.

] Authenticity Alice.sendingMessage.m1 Bob.messageDecrypted.m2

5.4.2.4 Formal proof of security properties

Several environments target the proof of security properties, e.g., SHVT [149], AVISPA
[37], and ProVerif [46]. Proofs within the SHVT environment cannot be automatically con-
ducted: so, it was excluded. In AVISPA, the tool is system dependent, and really focused
on cryptographic protocols, which is not the case of AVATAR which targets embedded
systems in general. ProVerif is based on process algebra, and is therefore well suited for
modeling communicating entities as found in embedded systems. Also, to our experience,
ProVerif nicely solves the trade-off between expressiveness, complexity and automation of
formal approaches. We finally selected ProVerif, but AVISPA may also have been used.
ProVerif [46] is a toolkit that relies on Horn clauses resolution for the automated analysis
of security properties over cryptographic protocols. ProVerif takes as input a set of Horn
Clauses, or a specification in pi-calculus (a process algebra) and a set of queries. ProVerif
outputs whether each query is satisfied or not. In the latter case, ProVerif tries to identify
a trace explaining how it came to the conclusion that a query is not satisfied.
A ProVerif specification contains pi-calculus processes and properties represented as queries.
Our approach takes as input an AVATAR design augmented with design pragmas and
property pragmas, and outputs a ProVerif Specification. The whole process is seamlessly
implemented in TTool.

• Processes are composed of a declaration part, of a definition of a set of sub-processes,
and the definition of a main process.
The declaration part can be used to declare global terms, including channels, and
functions.
Main process operators are summarized in Table 5.1.

• Properties are represented with ProVerif queries. Queries are formal clauses in
which the left hand side of the implication is a set of facts that should be accomplished
whilst the right hand side includes the hypotheses to be verified. Queries can be used
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Table 5.1: Main ProVerif process operators

Construct Semantics
out(c,M);
P

Sending of M in channel c, and execu-
tion of process P , i.e., c̄〈M〉.P .

in(c,
M);P

Receiving of Message M from chan-
nel c, and execution of process P , i.e.,
c(M).P .

new a; P Definition of a new term a, and sub-
sequent execution of process P , i.e.,
(νa)P .

begin(M);
P

Execution of an event, and subse-
quent execution of process P , i.e.,
begin(M).P .

!P Replication of process P , i.e., an infinite
number of instances of P are executed.

P|Q Parallel composition between processes
P and Q.

... ... other pi-calculus operators, such as
if then statements, etc.

to express confidentiality [45] and authenticity requirements [46].
Confidentiality queries directly express which data shall not be accessible to the
attacker, e.g., that a private key shall not be accessible to an attacker:

query attacker:myKey.

Authenticity of messages relies on ProVerif events. Whenever a message m sent by a
process A to a process B shall be authenticated, one event shall be included in each process:
one shall be included in A before the sending of m (e.g., eventSendM), and one after the
receiving of m (e.g., eventReceiveM). Since the attacker is not allowed to execute events,
it suffices to prove that to each receiving event of m corresponds exactly one sending of m.
And so, an injective query is used to model authenticity properties:

query evinj:eventReceiveM(x) ==> evinj:eventSendM(x).

Important note: ProVerif also makes it possible to study the reachability of events,
based on queries.

ProVerif integrates its own attacker model, which is itself a pi-calculus process im-
plementing a Dolev-Yao approach [73]. This process acts like an adversary relying upon
a set of known names, variables and terms, i.e., the attacker knowledge. To increase its
knowledge, an attacker relies on public channel probing and execution of functions non
prohibited to the attacker. And so, ProVerif is not intended to study computational at-
tacks: CryptoVerif [48] could be used for that purpose.

To verify a query, ProVerif implements a resolution algorithm [46], [3] [47] that first
translates the complete pi-process specification to Horn Clauses [46]. To verify a query,
the resolution algorithm determines, based upon a set of inference rules, if the attacker
reasoning is able to derive a trace that contradicts the query, thus proving that the query
is false. Otherwise, if the attacker is unable to find such a trace, then the property is
satisfied. Additionally, if facts on which the query is based upon are not reachable, the
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algorithm informs that the query can not be proved.

5.4.3 Basics of translation:

Again, the translation process takes as parameter an AVATAR design, including its sets of
pragmas, and outputs a ProVerif specification.

Briefly, the translation process is as follows: Let T the translation process that takes
as input a Block Diagram BD, and a set of pragmas P , and Pr the resulting ProVerif
specification:
Pr = T (BD,P ).

• A BD is composed by three graphical entities named<< block >>, << datatype >>
and << pragmas >>. A block contains a set of attributes, a set of functions, a set
of signals and a reference to a State Machine Diagram (SMD). << datatype >>
can be ignored for the translation process since they can easily be removed.

• An SMD is a set of interconnected logical operators: start states, stop states, tran-
sitions - with attribute settings and function calls -, choices, states, sending in a
channel, receiving from a channel.

• The type of a pragma in P is either InitialCommonKnowledge, InitialSessionKnowledge,
Confidentiality, or Authenticity.

T applies the following set of rules:

1. For each block b ∈ BD, a “first” process fp is generated. Then, for each state s of
the State Machine Diagram smd of b, another process ps is generated.

2. fp instantiates all attributes that are not listed in InitialCommonKnowledge, InitialSessionKnowledge
or Confidentiality pragmas: ‘new attr;’. Then, fp makes a call to the ps process
corresponding to the start state of smd.

3. Each ps is created as follows. An event is first called for tracing the reachability of
states ‘event entering_state_nameofs();’. Then, each branch of logical operators
linked from s is taken into account until another state is reached on that branch:

• Sending on a channel c of a message m is translated as an ‘out(c, m);’.

• Receiving on a channel c of a message m is translated as an ‘in(c, m);’.

• The assignment of a variable is translated using a ‘let’ operator, e.g.:
‘let m1.data = m2.data;’.

• The call of a cryptographic function is translated with a ProVerif cryptographic
function and a ‘let’ operator:
‘let mac = MAC(msg1.data, Key.data);’.

• The call of a non-cryptographic function is translated with a simple call to
an event having the name of the corresponding function, and with the same
parameters, e.g., ‘event function(par0, par1);’.

• The various branches starting from state s are translated based on ‘if...else’
ProVerif statements.
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4. The main process mp of the ProVerif specification instantiates all attributes listed in
InitialCommonKnowledge pragmas. Then, it instantiates in parallel, and for an
infinite number of sessions, all fp processes, e.g., ‘(!fp1)|(!fp2)|...|(!fpn)’. In case
an InitialSessionKnowledge pragma is used for attrributes, then the instanciation
of these parameters is done in each session: ‘! (new att; (fp1)|(fp2)|...|(fpn))’

5. Confidentiality pragmas referencing a block b and an attribute attr of b are trans-
lated as a declaration of attr as follows: ‘private free attr.’ and with a query of
the following form:
‘query attacker:attr.’

6. Authenticity pragmas of the form b1.state1.attr1b2.state2.attr2 are translated using
statements of the following form:
‘query evinj:b2_state2(attr2) ==> evinj:b1_state1(attr1).’.
Additionally, in the process ps where s = s1, a call to ‘event b1_state1(attr1);’ is
added at the beginning of the process. Similarly, a call to ‘event b2_state2(attr2);’
is added at the beginning of the process ps where s = s2.

5.4.4 Results

Our contributions on the proof of both safety and security properties from the same mod-
els have been recently published, and so, only a few case studies have been successfully
performed. For example, we can underline that several quite complex cryptographic proto-
cols defined for secured automotive embedded architectures have been modeled and proved
against security properties using TTool/AVATAR [158, 157, 82]. An overall MDE-based
methodology for the development of secured embedded systems is still an open issue that
we intend to tackle in the incoming years.

5.5 Prototyping

5.5.1 Context and problematic

The prototyping of an embedded system is usually a cumbersome task, especially when
multiple hardware targets must be taken into account. The first step is usually to gen-
erate an executable code for the local platform, and to execute it. Unfortunately, strong
differences between the local and the target platforms may reduce the effectiveness of that
step. Another approach is to rely on a virtual prototyping platform which can execute in
a more realistic way the application.
Prototyping platforms have been proposed at different levels of abstractions.
At a very high-level of abstraction, the DIPLODOCUS/TTool approach [33] targets the
design space exploration of System-on-chip. Application functions can be mapped on ab-
stract CPUs or hardware accelerators, and then can be evaluated with simulation [114] or
formal verification techniques [121, 122]. However, results that can be expected at that
level of abstractions are related to bus or CPU loads, rather than to a precise timing exe-
cution on a hardware platform.
SystemC is a widely spread set of C++ libraries and simulation kernel for modeling and
implementing electronic systems [91] [144]. Several levels of abstraction have be defined
in SystemC, ranging from transactional level modeling to a cycle accurate level modeling.
The SoCLib library of component models [175] is based on SystemC. SoCLib supports two
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levels of abstractions: TLM (Transaction Level Modeling) and CABA (Cycle Accurate Bit
Accurate). Other open prototyping platforms like SkyEye [173] and QEmu are not based
on SystemC components.

5.5.2 Our approach: rationale and overview

Our prototyping approach relies on high-level models (i.e., AVATAR models), on code
generation, on an embedded operating system (MutekH), as well as on a SoC prototyping
platform (SoCLib). The overall approach, and a few results, have been published in [16, 17]
and are available in the latest release of TTool.
More precisely, our AVATAR-prototying approach is based on:

• A C/POSIX code generator. TTool can generate C/POSIX code from SysML models,
and link it against libraries implementing AVATAR features (synchronous communi-
cations, timers, etc.).

• An open platform for the virtual prototyping of complex Systems-on-Chip: SoCLib
[175]. SoCLib is a SystemC library of component models. It supports several models
of processors (Mips, Arm, PowerPC, Sparc, MicroBlaze, etc.), of buses, of memories,
and several operating systems, including eCos, MutekH and RTEMS. MutekH is
an embedded operating system used on multiprocessor platforms in various research
projects. It was originally designed with native support for processors heterogeneity
in mind [135]. SoCLib supports two simulation models (Transaction Level Modeling
and Cycle Accurate Bit Accurate), and comes with debugging features like a GNU
debugger server and a memory access checker similar to Valgrind.
Multiple operating system projects are available for use as a target POSIX platform
for code generation which have different features and memory footprints. As our
approach is based on free software projects for modeling or performing simulations
and proofs, the operating system running on the target platform had to be free.
This thus rules out VxWorks and similar proprietary operating systems from the
scope of our demonstration even if the use of such software is technically possible
in our toolchain. The SoCLib prototyping platform has a number of supported
operating systems, including UNIX like implementations such as NetBSD as well as
some lightweight embedded operating systems.
NetBSD and various Linux flavors are system-call based and require a separate set of
user library packages in order to build and run applications. System start-up of such
large operating system kernels running on top of a SystemC simulator may require
a large amount of time.
Most embedded operating systems can be used without system-call interfaces, the
application is thus compiled along with the kernel and all objects files are linked in
a monolithic binary file. Some well known operating systems based on this approach
include FreeRTOS, eCos and RTEMS. eCos and RTEMS may suit our needs because
of their support in SoCLib, and their implementation of the thread POSIX interface.
We expect to support them in the future. The operating system chosen in the scope of
AVATAR is MutekH. It offers similar features: it’s highly configurable and comes with
suitable libraries, and with the additional benefit of heterogeneous multiprocessors
support and a better SoCLib integration.
Moreover, when used along with the SoCLib platform, MutekH can be configured
to provide necessary information related to memory allocation and execution stack
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boundaries to the MemoryChecker SoCLib module. This information along with
details of memory accesses performed by the processors allow this module to track
suspicious memory access and report them to the developer. This feature is of great
help on hardware were no Memory Management Units can be used which prevents
relying on memory protection to find bugs or undersized stacks [161]. Those debug-
ging features apply to both operating system and user codes. In our approach, the
user code refers both to the generated code and also to the C code directly provided
by the user as design model parameters.

From an Avatar design model, TTool generates a C/POSIX code at the push of a
button. The code can be compiled for the local host, or for the SoCLib platform: in that
latter case, MutekH, the generated code and the AVATAR runtime are compiled and linked
against the generated C/POSIX code.
The prototyping phase is intended to be applied on refined models. Indeed, the prototyping
phase is particularly useful to evaluate whether a given hardware platform is well suited
to execute a given set of software components.
A refined model is a model in which some abstractions of a more abstract model have
been resolved. For example, AVATAR designs make it possible to abstract algorithms
with their estimated durations: a computeFor(minDuration, maxDuration) can be added
to state machines transitions. Another example of abstraction is to let branches of choices
undetermined, that is, at a high level of abstraction, all branches of choices may be consid-
ered. At formal verification level, this means that all branches have to be explored. But on
a more refined model, branches of a choice are not randomly taken, but they are usually
rather selected according to the result of operations. Finally, abstractions shall be resolved
before doing the prototyping phase. To do so, an AVATAR user could use the AVATAR
state machines to put more information in its model. Unfortunately, when coming to com-
plex algorithms - e.g., in our case, cryptographic algorithms - , a graphical model based on
state machines is not practical. Therefore, the best option is probably to directly replace
given elements of an AVATAR design with its corresponding implementation code, e.g.
replacing a computeFor(minDuration, maxDuration) by the C algorithm it models. If this
C code included into the model is actually ignored by the integrated simulation and formal
verification capabilities of TTool, this code can be automatically included in the C/POSIX
code generated by TTool.
Finally, the most abstract AVATAR models performed with TTool generally represent the
control part of applications, and can thus be simulated and formally verified. On the
contrary, more refined models resolve non determinism behaviors with low-level represen-
tations (e.g. in C) of data and algorithms. Those refined models are difficult - if not
impossible - to simulate and to formally verify, but are definitely useful for prototyping
purpose.

5.5.3 Code generation

Basically, the C/POSIX code generator of TTool works as follows (More details are given
in [17]):

• One .c and one .h file which contains a representation of the state machine are
generated for each block. The translation of operations on variables, method calls
and tests is quite straightforward. On the contrary, synchronous data exchange,
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asynchronous data exchange, and time manipulation are more complex and are thus
handled by the AVATAR library (i.e., the AVATAR runtime).

• The main file (main.c) is in charge of defining one thread per block, setting the
attributes of those threads (e.g., on which CPU each thread must be executed, which
scheduling policy to use, etc.), starting all threads, and finally waiting for their
termination.

5.5.4 The AVATAR runtime

The AVATAR runtime is a set of libraries that handle all synchronous and asynchronous
communications between blocks. Basically, it relies on data structures to store requests
from blocks, and on mutex and condition variables to achieve necessary synchronization
between threads of blocks. Its implementation is lightweight (about 2000 lines of C code).
The AVATAR runtime is automatically linked against the generated code when compiling
the latter.

5.5.5 Example with an automotive application

The AVATAR prototyping is illustrated with an automotive embedded system designed
in the scope of the European EVITA project [1]. Recent on-board Intelligent Transport
(IT) architectures comprise a very heterogeneous landscape of communication network
technologies (e.g., LIN, CAN, MOST, and FlexRay) that interconnect in-car Electronic
Control Units (ECUs) [171] [169]. The increasing number of such equipments triggers the
development of novel applications that are commonly spread among several ECUs to fulfill
their goals.
An automatic braking application serves as a case study [109]. The system works basically
as follows: An obstacle is detected by another automotive system which broadcasts that
information to neighbor cars. A car receiving such an information has to decide whether
it is concerned with this obstacle, or not. This verification includes a plausibility check
function that takes into account various parameters, such as the direction and speed of
the car, and also information previously received from neighbor cars. Once the decision to
brake has been taken, the braking order is forwarded to ECUs responsible for performing
the emergency braking. Also, the presence of this obstacle is forwarded to other neighbor
cars in case they have not yet received that information. The model of the active braking
system can be prototyped as described here. The generated source code is usually first
prototyped on the local platform. A simple reason for this is that the final hardware target
may not yet be available, or even clearly defined. However, when the hardware platform
has been specified, the prototyping phase is as follows:

1. Generation of the cross-compiler. A cross-compiler for the target platform must
be generated. In our example, we have used gcc-based cross-compilers. In the scope
of our example, we have prototyped the active baking application on various 32-bit
processor architectures, including PowerPC, Arm, Mips and Sparc.

2. Generation of the C/POSIX code. From an AVATAR model in which non
deterministic behaviors have been resolved (ideally), TTool generates a set of .c and
.h files, as explained in previous sections. The main file describes how threads are
mapped on the different CPUs.
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3. Compilation of the code. The generated C code, the AVATAR runtime, and
MutekH are compiled with the cross-compiler, and linked together as one executable
file. The executable file could obviously be run on the real hardware or a virtual
prototyping platform built using SoCLib.

4. Prototyping with SoCLib. The SoCLib simulator is started with the desired
hardware configuration which runs the executable file generated at previous step.
Our example has been tested on several processors: PowerPC, which are wildly used
in automotive systems, but also Mips, Arm and Sparc processors. In all cases, we
have used a 5processor configuration: one CPU per ECU, and one CPU to execute
the environment blocks.

5. Result analysis. Results of the prototyping simulation can be visualized either in
the console, or directly in TTool as a UML sequence diagram (see Figure 5.4). The
GNU debugger gdb can also be used to have more information about the execution of
the code, e.g., about memory allocations, to perform step-by-step execution, to mon-
itor which threads are currently executing, etc. Using traces, important prototyping
information can be obtained. In our case, the latency between the receiving of an
emergency message and the corresponding braking action can be clearly evaluated
for each processor type.

Figure 5.4: Prototyping environment based on TTool, MutekH, and SoCLib
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5.6 Conclusion

The combination of AVATAR/SysML/TTool, UPPAAL, ProVerif and SoCLib/MutekH
offers an integrated platform for embededd systems engineering. Indeed, this platform
offers at the same time a well-known modeling language (UML, SysML), an easy-to-use
proof environment and a prototyping simulation platform comprising several commonly
used microprocessors and operating systems. Simulation, proofs of both safety and security
properties, and prototyping can be performed at the push of a button and their results
are displayed directly in the model. This research work has been published in several
conferences [156, 100, 158, 157, 16, 17] and used in the scope of the EVITA project [83, 82].
Most TURTLE users have now switched to AVATAR, and return from experience is really
encouraging. Main remark is about a better integration of safety and security. Indeed,
security proof is still limited to a few properties, and some AVATAR operators must be
avoided to allow ProVerif to more easily come to an answer about security properties.
Work will address those issues in the incoming years.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

6.1.1 Discussion

So many (too many?) contributions have addressed the modeling and verification of com-
plex systems. Many formal languages were introduced in the 80’s, using a wide variety of
formats. Each of them was commonly adapted to only one kind of systems (e.g., Estelle for
communication protocols), or was targeting one given modeling aspect (e.g., state charts
for behaviour modeling). Progressively, modeling notations were enhanced with graphical
elements (operators, diagrams, views), with models of computation and communication,
and with methods. Some of these graphical notations finally merged in the mid 90’s to
create the Unified Modeling Language. The definition of the latter being informal, and not
adapted to many application domains, several domain-specific profiles were subsequently
defined - Some of these profiles formally. Methodologies on how to use such profiles were
also widely published. TURTLE was part of this past adventure.
Since my Ph.D. defense in June 2002, the OMG has released several well-known language
specifications (e.g., SPT, SysML, MARTE) with the same limitations (e.g., lack of method-
ology, lack of formal definition). Model-Driven Engineering is probably the main contribu-
tion of the last decade in modeling approaches. MDE targets system analysis, modeling,
simulation, code generation, and documentation. MDE relies on the UML language, and
on meta-modeling in order to define Domain-Specific Languages. Model Driven Architec-
ture specifically targets two abstraction levels: Platform-Independent Model (PIM) and
Platform Specific Model (PSM). PSM is constructed from PIM with model transforma-
tion techniques, and executable code is expected to be generated from PSM. Raising the
abstraction level (PIM) combined with model transformation techniques help simplifying
portability, interoperability, documentation, and maintenance. Portability is a direct con-
sequence of a higher abstraction level. Interoperability is due to the independence of PIM
from any hardware or middleware support, thus authorizing PSM components created
from PIM-level models to exchange information. Documentation can be generated from
both PIM and PSM levels. Documentation includes argumentation for choices: the higher
the abstraction level, the most important is the documentation on choices, because late
re-engineering is more costly. Maintenance can be done on both abstraction levels. But
contrary to documentation handling, in case of identified problem in the software, mainte-
nance shall first be performed on the PSM, and if necessary in the PIM. Indeed, the higher
in abstraction levels modifications have to be performed, the most costly they are.
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Extreme programming (XP) [41] is another software-centric methodology. XP is based on a
defensive programming approach, with small step-by-step code increments strongly tested
and documented. Documentation is given within the code. This approach partially avoids
dealing with models, and thus it avoids working at different abstraction levels in which
model coherency and refinement may slow down the software development task. XP also
allows for formal proof with static code analysis techniques. However, even in extreme
programming, testing and verifications must be done according to requirements that need
to be captured. They are commonly captured either in databases or within models: in XP,
annotations can be used to reference requirements. But tracability and refinement of re-
quirements is something that extreme programming can definitely not easily address. Nor
the allocation of resources which has to be evaluated along the code creation. XP tries to
address some these issues mentioned above using annotations that are semantically close to
concepts found in the MDA approach. Yet, the XP approach can be seen as a much lighter
version than more complex MDE-based methodologies (e.g., Rational Unified Process).
Finally, mixing code and annotations mixes elements with strong semantical differences,
which explains that we do not support that kinds of methodology for critical systems.
Another software-based methodological approach is called Agile Software Development
[189]. Software ability to handle specification changes is one of the main focus of Agile.
Agile includes an iterative and incremental process until the final code release. Exchange
between developers is expected to frequently occur. Models are not really mentioned in
Agile, apart from documentation. Indeed, models cannot really be executed and tested
like software, and usually require extra work w.r.t. direct coding. A few initiatives target
the reconciliation between Agile and modeling (e.g., Agile Modeling, and Agile MDA).
Finally, new software-centric graphical engineering techniques have been introduced during
the last decade, and in particular the MDE/MDA approaches standardized at OMG. Our
contributions do not rely on meta-modeling, but rather on the profiling of UML. We have
taken that research path because meta-modeling has not yet - in our opinion - demonstrated
that software-development teams are ready to develop their own modeling environments,
for several reasons we will discuss in the future work section. However, concepts behind
MDE, in particular the different levels of abstraction of MDA, have been taken into account
in our research work. Also, our contribution does take hardware constraints into account.
Last but not least, our contributions are settled upon the most recent OMG modeling
languages: SysML and MARTE, in particular.

6.1.2 Recall of contributions

This document contains an overview of research work I have conducted since my Ph. D.
defense, a decade ago, in the field of Model-Driven Engineering and of Model Driven Ar-
chitecture. My Ph.D. thesis sketched a first semi-formal UML profile for the modeling
and formal verification of time critical embedded systems. Since then, a lot of work has
been achieved, always with the same main objective: simplifying proofs along a system
engineering processes targeting the development of complex embedded systems.
First, to fully support an engineering process, from system dimensioning until system de-
ployment and code generation (chapter 2). The engineering process is now supported with
an open-source software (TTool), and has been experimented in several academic, publicly
funded research projects and industrial partnerships.
Second, a new approach has been developed for the design space exploration of Systems-



87

on-Chip: DIPLODOCUS (chapter 3). DIPLODOCUS is based on two abstraction levels
that facilitate the modeling of Systems-on-Chip: Application level (PIM), Architecture and
Mapping levels (PSM). DIPLODOCUS follows several concepts introduced in the MARTE
OMG profile. DIPLODOCUS supports very fast simulation and formal verification tech-
niques. Also, we have developed our own formal verification toolkit that supports variable
model coverage. DIPLODOCUS has been used in the scope of several projects, and has
received several industrial grants. TTool fully implements DIPLODOCUS, including its
coverage-enhanced simulator.
Third, although much work has been achieved on system modeling, requirements and
property capture in high-level languages has not been tackled efficiently up to now. Re-
quirement capture is still not covered enough in MDE processes, which probably explains
contributions proposed outside of MDE processes, e.g., KAOS. Our research work tackles
the efficient capture of functional and non functional requirements within SysML Require-
ment Diagrams. It also addresses graphical property modeling based on Timing diagrams
or Parametric Diagrams. The automatic generation of observers or CTL formula from
property models has been experimented in both TURTLE and DIPLODOCUS (chapter
4). Two Ph.D. thesis have focused on this issue [79, 120], and new results are expected in
the incoming year, in particular, in the security field [100].
Last but not least, security issues is now handled within a new profile called AVATAR
(chapter 5). Security threats are now clearly at stake in many critical embedded systems.
Yet, safety and security issues are rarely addressed in the same modeling environments.
AVATAR tackles offers the possibility to perform both safety and security proofs from
the same system models. AVATAR has been succesfully used in the scope of automo-
tive systems, and is now used worldwide for teaching activities in engineering schools and
universities, and trainings to engineers.

6.2 Future work

6.2.1 Discussion

Most contributions around MDE commonly address the same old problem, that is, offer-
ing the graal methodologies and modeling environments for addressing the safety issues
in complex, distributed and real-time embedded systems. Timing constraints analysis,
scheduling analysis, resource allocation, and concurrency analysis are commonly handled
by these environments and methodologies. MDE targets application domains such as in-
formation systems, embedded systems, web-based systems, and graphical user interfaces.
However, for companies developing systems in those domains, the interest for them to
use meta-modeling techniques, or specific profiles for software-based systems, is not yet
obvious, and following questions still need to be answered.

• Is it really worth training engineers to these new techniques, i.e. what kind of gains
with MDE can really be expected with regards to currently used software develop-
ment methodologies? For what kind of projects is it really worth? Can modeling
skills be reused between projects? Can MDE really be an answer to handle software
integration when (meta-)models or profiles have not been made by teams working in
the same departments or companies? From a purely financial perspective, it is still to
be demonstrated that MDE increases the margin of companies. Moreover, it already
has been demonstrated that maintenance is probably one of the most costly part of
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software development . . . and this is probably also the development phase which still
needs to be addressed in a more thorough and precise way by MDE.

• If a company decides to use modeling techniques, what is the real interest in using
MDE techniques, and not simply use UML models as cartoons, i.e., as documentation
mainly, for showing things rather than writing them. Of course, keeping away from
MDE forces to use good old specific techniques for software parts that require sim-
ulations, and more rarely formal verification. We guess a high percentage of models
performed in companies are used for documentation purpose only, and with regard
to that, one important challenge companies face is to handle the coherency between
models (or documentation) and what is effectively in the released application code.

• Tool useability and maturity is another challenge that must be addressed. Free
meta-modeling tools are already available, and exchange of models and meta-models
between tools is something that has progressed during the last years. However,
meta-modeling is only used to define the semantics of operators and diagrams, and
definitively not to define methodologies that are expected to be used along with
the defined operators. And so, research work shall now address the adaptation of
software-development processes according to in-house meta-models. Coherency be-
tween the meta-models and processes, and processes interoperatibility are other open
issues.

Our contributions intend to offer a good compromise between a too specific approach
limited to one class of systems or properties, and a too open one based on meta-modeling,
that requires more advanced skilled to be efficiently used. We also expect our simple but
formal profiles to be easily adapted to well-known software-centric methodologies. Yet,
our contribution, with the handling of PIM and PSM in the DIPLODOCUS profile, and
the definition and support of software-centric methodologies follows the MDE approach
supported by OMG.

However, since a lot of research work has been achieved on the design part of systems
development, contributions now mostly focus on how to integrate other system modeling
issues around a system-design oriented ecosystem: property modeling, robustness, security,
for example. Thematics listed in last national and european project calls on system mod-
eling clearly reflect that trend. For example, the last national call on future aeronautics
platforms (CORAC) clearly focused on how to integrate security and certification issues
into a well-known safety-oriented design methodology.

This sketches out our future work for the incoming years.

6.2.2 So, what’s next in a short term?

More concretely, our research work is oriented according to contract and project oppor-
tunities in the field of semi-formal environments for integrated and embedded systems.
This research field is still challenging since it is a common belief that raw formal methods
are scarcely used in industrial contexts. Thus, we still think formally-based model driven
engineering is still to be investigated for enhancing its industrial acceptance.
More precisely, in the scope of my research work, I foresee three topics of interest for the
next few years.
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6.2.2.1 Static model analysis

Most contributions on semi-formal environments, including ours, are based on model trans-
formation techniques, and then in the execution of the transformed model so as to verify
properties. The raw use of formal methods often lead to combinatory explosion. Unfor-
tunately, the use of automatic model transformation does not resolve that issue since the
transformation process commonly ignores the combinatory explosion issue.
A first solution we have explored relies on an efficient combination of formal verification
techniques. For example, whenever a modeling pattern that is known for favourizing com-
binatory explosion in a given verification technique is detected at transformation stage,
then, another verification technique is used. We have been working on that issue for a few
years. Our first idea was to combine model-checking techniques with first order logics [18].
In particular, when transforming a UML model in LOTOS, it is common to have recursive
call of processes: this scheme is not supported by CADP: This particular situation was
specifically targeted with [18].
Another technique we have explored relies on well-know static analysis techniques, that
we have transposed to UML models. For example, in the scope of DIPLODOCUS, the
coverage-enhance simulator uses a set of static model analysis techniques before executing
the model: impact of variables (live variables), etc. We do think that some others static
analysis techniques could be used, such as the invariant technique defined years ago for
Petri Nets. We have already started to work on that issue, and we expect new results in
a few years.

6.2.2.2 Security properties

• The identification of attacks and requirements is of utmost importance to build secure
embedded systems. First proposals have been made so as to efficiently capture attacks
and requirements based on a first high level architecture design [100]. Yet, an efficient
traceability and refinement of attacks and security requirements in model-driven
engineering is still an open issue that we intend to tackle in the incoming years.

• AVATAR is a UML profile dedicated to the proof of both safety and security proper-
ties. Currently, only confidentiality and authenticity properties are supported. When
working on the EVITA projects, many requirements could be refined in confidential-
ity or authenticity properties. But some others could not, in particular, requirements
dealing with freshness or integrity. Research work must therefore be conducted in
formal description techniques handling those properties, and on model transforma-
tion so as to extract relevant information from AVATAR models. Other kinds of
systems could benefit from this work: information systems in particular.

6.2.2.3 Energy consumption

If the DIPLODOCUS approach can efficiently take into account performance constraints
(e.g., "can a chip decode a HD video?"), power consumption issues are insufficiently ad-
dressed. Now that those issues are at stake in embedded devices - greenIT -, we intend to
integrate power consumption criteria in DIPLODOCUS. In particular

1. Software (power managers) and hardware (power controllers) mechanisms dedicated
to power management shall be analyzed in several hardware platforms for mobile
devices. The result of this study shall be a proposal of how to efficiently abstract
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those power management techniques, so as to invent new UML diagrams - using
meta-models - dedicated to model power managers and controllers. The relation
between those diagrams and the ones defined in MARTE [154] shall also be studied.

2. The definition of techniques for performing formal proofs from models defined at pre-
vious step. Formal proofs shall not consider any hardware / software implementation
at that stage, but only functions performed by power managers and controllers. In
other words, the idea is to prove (safety) properties on a power management system
independently from its implementation.

3. The integration of power managers and controllers in DIPLODOCUS abstract ar-
chitectures. Once again, the idea is to define meta-models for positioning power
management functions in a software / hardware embedded architecture : interaction
with operating systems running on CPUs, interaction with hardware components i.e.,
how the power controller drives execution modes of CPUs, memories, etc.

4. The definition of simulation and formal proof techniques for validating the previous
stage, i.e., the integration of power management functions into a hardware / software
architecture. In particular, the objective is to prove that a given power management
integration does not lead the system to a wrong functioning mode (e.g., deadlock
situation).

Thus, We expect to enhance TTool / DIPLODOCUS with energy-aware diagrams,
and in particular it shall be possible to capture under TTool - using UML diagrams - the
characteristics of power managers and controllers, and to verify them with a press-button
approach.
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