dit

©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 1

Dpto. Ingenieria de Sistemas Telematicos
Universidad Politécnica de Madrid

An Introduction to LOTOS

Arturo Azcorra Salona
Juan Quemada Vives
Santiago Pavon Gomez

Contents Synchronization: ValuePassing 39

Partial Synchronization: “| [<gates>]|” 40
INTRODUCTION e 2 Example of Partial Synchronization(1) 41
System Specification vs. Implementation 3 Example of Partial Synchronization (I1) 42
Abstract Modeling and Behavior 4 Example of Partial Synchronization (I11) 43
CHAPTER 1. SEQUENTIAL BEHAVIOUR S Full Synchronization: “| | "cccoieii... 44
|nput/OUtpUt ... 6 Exarnple Of Fu” @nchronlzanon 45
INpUL . 7 Summary of Parallel Operatorso.oeeeennn... 46
OUIDUL ... 8 DEAOIOCKo'iee e 47
Action prefix: “; " ... 9 INBCHON: “St OP” © .t te ettt 48
Example of actionprefixoo 10 Exampleof Inaction (1)oouueneeeaeeean 49
Choice; “[t] IO L L L R T T TRV UU SR 11 Exampleof Inaction (I1)ovunee e 50
Exampl? (0] ChOI ce ._. e 12 R%urce Orlentaj SpeCIfICaI on (I) 51
Guard: *[<expl> = <exp2>] ->" 13" Example of Resource Oriented Specification 52
Example of Guard 14 CHAPTER 4: COMMUNICATINGEFSMS 53
Processes R RPN 15 Synchronousvs. Asynchronous Communication 54
Process Definition and Instantiation () 16 synchronous vs. Asynchronous Communication 55
Process Definition and Instantiation (ll) 17" Synchronous Communicationin LOTOS 56
Example of Recursivity (1) ... %g Asynchronous Communication in LOTOS 57
Example of ReClIJrs:cnty (1) Sebding 50 Asynchronous CommunicationinSDL 58
Process: Example of Gate R NG ..o 5, Characteristics of Asynchronous Communication 59
&Jmmary Of ch Opa’ators -------------------------- 1 CHAP‘I’ER 5: HI DI NG’ INTERNAL EVENT’ NON DETER_
Overview Of_ DataTyp& 22 MINISM AND ABSTRACTION 60
DataTypeLibrary (1) ..., 23 HIdiNG © vt 61
DataTypeLibrary (Il) T T T TP 24 Exampleof Hidingccooouiiiiieeeiiiaii., 62
Examples of Data Type Expressions 25 Internal Event: “i ™, 63
Structure of a Specification 26 Example of Non-Determinism 64
CHAPTER 2: EXTENDED FINITE STATE MACHINES .27 Example of Partial Specification () 65
Extended Finite State Machines (EFSM) 28 Example of Partia Specification (I1) 66
The State Diagram e 29 CHAPTER 6: ENABLING AND DISABLING 67
Extended Finite State Machinein LOTOS 30 Successful Termination: “exi t (<val ues>)" 68
Templateof EFSM inLOTOS 31l Enabling: “>> accept <variables> in”" 69
Exampleof EFSM inLOTOS 32 Exampleof Enabling ...l 70
Extended Finite State MachineinSDL 33 Disablingooiiii 71
Exampleof EFSMinSDL 34 Exampleof Disablingooovireeieie 72
CHAPTER 3: CONCURRENCY 35 Summary of Enabling and Disabling 73
Interleavmg. | | | S T 36 CHAPTER 7: DEFINING DATA TYPES 74
Example of Interleaving (1) 37 Writting DataTyYPESo veeeeee e e 75

Example of Interleaving (1)oone. 38 Defining Operationsoeueeeeeeaeeeenn.. 76

Using Variablesinthe Equations 77

WrittingEquationscov i 78
Exampleon WrittingEquations 79
Conditional Equationsas RewriteRules 80
Example of Conditional Equations 81
Correct RewriteSystemst 82
Hintsfor Writing Equations 83
Renaming of Types ... 84
Exampleof Renaming L. 85
CHAPTER 8: MORE ON SYNCHRONIZATION 86
EventStructure 87

SdlectionPredicate: “<event > [<expl> = <exp2>] ;”
88

SymmetricRendez-vousl 89
VaueMatching 90
ValueNegociation ... 91
Example of Value Negociation 92
Summary of Interacion Types, 93
Synchronization Conditionscooveeiann. 94
Multi-way Rendez-vouscciiiiinnin. 95
Constraint Oriented Specification 96
CHAPTER 9: MOREON DATATYPES 97
Defining Parameterized DataTypes 98
Example of a Parameterized Type(l)c... .. 99
Example of a Parameterized Type(Il) 100
Actualization of Parameterized Data Types 101
Exampleof Actualization 102
CHAPTER 10: SCOPE OF IDENTIFIERS 103
Overloading of Identifiers 104
Scopeof Variables ... 105
Scope of Process Definitions 106
CHAPTER 11: OTHER CONCEPTS 107
Termination and Parallelism EI) 108
Termination and Parallelism (1) 109
Let <var> = <expression> in 110
Vaueand GateChoice L. 111

par <gateDeclarations> <parallel Q> 112

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 2

INTRODUCTION

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 3

System Specification vs. Implementation

e A gpecification isaMODEL of asystem at agiven level of abstraction

¢ Animplementation is the system itself

e Specifying means modeling, i.e., abstracting away from some aspects

¢ The specification may be tested, validated, used for performance analysis, ...

¢ The implementation may be obtained by adding to the specification the aspects that
were abstracted away

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 4

Abstract Modeling and Behavior

e Dynamic description of systems by “event ordering”.

e An event is an instance of communication.
¢ Events are atomic, instantaneous and sequential (never simultaneous).

e A system is specified by defining all the possible event orderings that an external
observer may detect.

e Event ordering is structured as arecursive tree.
¢ Graphical Representation:

pd
O
AP

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 4

Abstract Modeling and Behavior

The LOTOS modd of asystem isablack box with a number of gates that can be seen from its environment.
The first step when specifying a system is the selection of the relevant aspects of the system and decide how can these aspects
be mapped to gates. The events that are abstracted to describe a system define the granularity of the behavior of the system.

For example, to model atraffic light we could select three gates (R, G, Y), one for each of the colored lights. These abstraction
has been done under the point of view of atypical driver. Notice that we have abstracted away from many aspects, such asthe
timing mechanism, the power source, etc.

The system behaves by activating its gates. An observable event or action corresponds to the activation of a gate.

The behavior of the system is specified by describing al the possible sequences of events that the system may offer to the
environment. Using again the semaphore example, its behavior could be specified as the following sequence of events:

GYRGYRGYRGYRGYR..
Events always occur sequentially. This is, events never occur simultaneously. This restriction is not so important as it may

appear in afirst moment. In informatics simultaneity is not so frequent (two characters cannot appear simultaneously on the
screen, two keys may not be simultaneously pressed, nor can two telephone calls arrive simultaneously to our telephone).

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 5

CHAPTER 1: SEQUENTIAL BEHAVIOUR

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
ZZ Pg. 6

| nput/Output

¢ An instance of input/output is modeled with an event or action
¢ |nput/output of data takes place through gates

¢ The system has an interface with afixed number of gates

e Example of gate identifiers: Chan_i n, BusVME

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 7

| nput

¢ Input is modeled as accepting a value from the environment at a gate.
e Therecelved valueis stored in avariable

e Thevariablesislocally declared in the value acceptance

¢ The declaration has avariable identifier and avariable sort

e Generic input (value acceptance):
<gate_nane> ? <vari abl e _nanme> . <sort_nane>

e Example of input:
keyboard in ? square_side : nat

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 8

Output

e Output is modeled as offering a value to the environment at a gate.

¢ The offered value is an expression
e An expression isformed by operators and variables

e Generic output (value offering):
<gat e _nanme> ! <expression>

e Example of output:
keyboard out ! (square_side * square_side)

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 9

Action prefix: “; "

e Action prefix denotes sequentiality
e Action prefix composes an event and a behaviour description

¢ Example:
action ; B meansthat the system executesact i on and then behaves as B

Graphical Representation:

action

A

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 9

Action prefix: “; "

The sequentiality between events is denoted by operator “;”, called action prefix. This operator composes an action “a” with a
behavior expression “B”. The composition is another behavior expression from which it is possible to initially observe event
“a’, and afterwards those events belonging to behavior “B”.

The intuitive meaning is that the system will initialy accept event “a@’ behaving afterwards as “B”.

It it important to remember that operator action prefix does not take two behaviors as arguments, as most other operators do. Its
arguments are an event denotation and a behavior expression.

Events are usually represented as a line labeled with the event name. Behavior expression are usually represented as atriangle
(sequential representation) or as a box (parallel composition).

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 10

Example of action prefix

e An IP router recelves datagrams and forwards them
e The IP router may be forced to segment a datagram
e |ts behaviour could be abstracted as.
Netl in ? in_datagram: ip_dtgrm
;, Net2 out ! First _Segnent(in_datagram

;, Net2 out ! Second Segnent (i n_datagram
;, Net2 out ! Third Segnent (i n_datagram

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 11

Choice: “[]~

e The system offers to the environment two (or more) alternatives. Thisis, the system
may behave in severl ways.

e Choice composes two alternative behaviour descriptions. The environment will select
among both behaviour descriptions.

e Example:
<Beh 1> [] <Beh_2> meansthat the system behaves aseither of both behaviours

¢ Graphical Representation of choice;

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 11

Choice: “[]~

Operator choice composes two behavior expressions to form another one that will behave as either of them. The selection
between B, and B, depends on the first event that occurs. Once that an event belonging to B, or B, occurs, the behavior of the
expression will be that of the behavior to which the event belonged. The other behavior is discarded.

Intuitively it may be seen as two two state machines in which their initial states are joined. Thus, once that a transition of the
state machines is fired the system will behave as that particular state machine.

The usua way to represent choice graphically is by joining the root of the behavior trees of both behaviors or the top vertex of
the triangles representing them.

Notice that using action prefix and choice it is possible to describe the behavior of a system as a tree of events. Operator “;”
makes the tree deeper (more levels) and operator [] alows the addition of branches to the nodes of the trees.

Operators“;” and “[]” are the basic operators of LOTOS. The semantics of all the other operators may be represented in terms
of an equivalent treeusing only “;” and “[]”.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 12

Example of Choice

e An IP router may receive datagrams on net 1 or net 2
(Netl in ? in_datagram: ip_dtgrm
, Net2 out ! First_Segnent (in_datagram

.)
[]
(Net2 in ? in_datagram: ip_dtgrm
, Netl out ! First_ Segnent (in_datagram
..)

o Initidlly, eventsNet 1 _in... andNet 2 i n. .. areofferedto the environment.

e Once that the environment selects one, it isonly offered the next sequential event.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 13

Guard: “[<expl> = <exp2>] ->7

e A guard isa predicate over values that prefixes a behaviour
e Thetypical useisto select internally between actions in achoice
e Example of a Teller Machine:

([cash_in_account = true] ->
, Money di spenser ! requested noney
S e)
[]

([cash_in_account = false] ->
, Teller _Machine_screen ! no_noney_ text_nessage

.. .)

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 14

Example of Guard
e An IP router connected to three subnetworks

Netl in ? datagram: ip_dtgrm
o (([route(datagram = 2] ->
; Net2 out ! datagram
...)
[]

([route(datagram = 3] ->
; Net3 out ! datagram
.)

)

e Depending on the value of r out e(dat agr am the datagram will be routed to
network 2 or network 3.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 15

Processes

e A process instantiation is an executing instance of a process definition
e A process definition is a description of the behaviour of a subsystem
e The process construction in LOTOS serves three main purposes.

— Representation of recursivity (loops and infinite behaviors).
— Create behavior abstractions and hierarchies (top-down).
— Gate relabeling.

dut

©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 16

Process Definition and Instantiation (1)

PROCESS DEFINITION PROCESS INSTANTIATION
a b C X Z
= = 5 B & 5
NAVE NAVE
- — — — .
| T
C : XS %7 |
s |
| “:‘:‘ | |
' TiN | |
. o
y A
|
|

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 17

Process Definition and Instantiation (11)

Process Definition:;

PROCESS

<proc_nane> [<formal gates>] (<parans>) : <funct> :=
<behavi our >

VHERE
<| ocal definitions>

ENDPRCOC

Process | nstantiation:

<proc_nanme> [<actual gates>]| (<paraneter_ val ues>)

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 17

Processes

Behavior abstraction is very similar to procedures (more precisely to coroutines) in conventional programming languages. Itis
possible to define a behavior, assign anameto it and later on perform multiple instantiations of it.

A process instantiation is an executing instance of a process definition. A process definition is a description of the behaviour of
asubsystem. The process construction in LOTOS serves three main purposes.

e Representation of recursivity (loops and infinite behaviors).
e Gaterelabdling.
¢ Create behavior abstractions and hierarchies (top-down).

Process definitionisthe only way in LOTOS to specify recursive or iterative behaviors (there are no such statementsaswhi | e,
f or or got 0). Inasmuch as processes may be instantiated recursively, it is also possible to represent infinite behaviors.

In the process definition it is necessary to declare the (formal) gates through which it will interact with the environment. When
the process is instantiated, it is possible to substitute the formal gate list by an actual gate list. This mechanism is called “gate
relabeling” and it isvery similar to formal parameters and actual parameters in conventional procedures.

The syntax of the process definition consists in a header, abody and a set of local definitions.

PROCESS <process nanme> [<fornmal _gates>] (<paraneters>) : <functionality> :=
<behavi our >

VWHERE
<l ocal definitions>

ENDPROC

Header It beginswithkeyword“pr ocess” followed by theprocessidentifier, theformal gatelist (enclosed in square brackets),
the formal parameters (enclosed in parenthesis) and a functionality indication followed by the reserved symbol “: =". The
functionality will be seen later and is approximately similar to the returned value of afunction.

Body The body of the process definition isthe behavior of the process. It may only contain those gates that have been declared
in the process definition header. It may contain other process instantiations, provided that the scope rules are preserved.
The body of the process ends at keyword “wher e” if there are local definitions, else ending at keyword “endpr oc”.

L ocal Definitions Local definitions of data types (explained in following sections) and other process are optional. They begin
with keyword “wher e” and end at keyword “endpr oc”. Therulesfor local process definitions are exactly the same as

for the definitions of processes at the specification level.

The syntax of aprocessinstantiation consistsin the processidentifier followed by the actual gatelist (enclosed in square brackets)
and the actual valuesfor the parameters (enclosed in parenthesis).

<process_nane> [<actual _gates>] (<paraneter_val ues>)

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 18

Example of Recursivity (1)

PROCESS
| P ROUTER[Net1 in,Netl out,Net2 in,Net2 out]:NOEXI T: =
(Netl in ? datagram: ip_dtgrm
; Net2 out ! datagram
;, |P_ROUTER [Netl in,Netl out,Net2 in, Net2 out]

[]
(Net2 in ? datagram: ip_dtgrm
; Netl out ! datagram
;, |P_ROUTER [Netl in,Netl out,Net2 in,Net2 out]

)
ENDPROC

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 19

Example of Recursivity (I1)

PROCESS
TM [Keypad, Mbney] (assets,secretNumnat) : NCEXIT :
Keypad ? Nunber : nat
; [Nunber = secret _num] ->
keypad ? withdraw : nat
o ([assets ge withdraw = true | ->
Money ! w thdraw
; TM [Keypad, Money] (assets-w thdraw, secret Num

[]

[assets ge withdraw = false] ->
Money | assets
, TM [Keypad, Money] (0, secret_num

ENDPROC

@) ©Copyright May 93, DIT-UPM
ZZ Kf LOTOS Tutorid

pg. 19

Recursivity

The example shows a recursive process which instantiates itself in its process definition.
It is possible to define very complex recursive behaviors by cross-instantiating ancestors, brothers, etc.

It is important to remark that LOTOS does not impose a limitation on the number of successive instantiations that can be
performed, asisthe case with conventional programming languages that may run into stack overflow.

Asagenerd rule, any timethat aloop or recursive behavior is needed, it is necessary to define a process.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 20

Process. Example of Gate Relabeling

process
| P ROUTER[Net1 in,Netl out,Net2 in,Net2 out]:noexit :=
Netl in ? datagram : ip_dtgrm
; Net2 out ! datagram
;, |P_ROUTER [Net2 i n,Net2 out,Netl in,Netl out]
endpr oc

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 20

Gate Relabeling

Gate relabeling is equivalent to parameter passing in PASCAL. When the process is defined, alist of formal gates is declared,
exactly as the declaration of formal parameters performed in PASCAL. When the process isinstantiated, a set of actual gatesis
provided, exactly as the provision of values for the parameters when calling a PASCAL procedure.

There are no restrictions to the actual gatelist provided (e.g. the gate list could be formed by repeating a single actual gate), but
of course that they should have been declared within the scope of the process instantiation.

It isvery frequent to instantiate a process with different gate lists, specialy when they are composed with a parallel operator.

In the example, it may be seen a specification of the IP router in which the actual gate list is formed by swapping the gates
corresponding to network 1 and network 2. The effect is that the router will forward from net 1 to net 2 and afterwards from net
2 to net 1 (and so on).

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 21

Summary of Basic Operators

e Events and behavior expressions are composed using operators (statements).
¢ Basic operators:

— Action prefix —; ”"— models sequentiality.

— Choice —*[] "— models alternative.

— Guard —‘[<el> = <e2>] ->"—modelsconditions.

— Process — models recursivity (and also other concepts).

A [] B PROCESS DEFINITION PROCESS INSTANTIATION
a b C X % Z
i i i i i
NAVE NAVE
- - — — - — — —
! K |
C | XS5z |
I & - I
B £ %
N z: Ty
[
I 1 v !
L o—p —pl |
- —p —l -

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 22

Overview of Data Types

Abstract data types with equational semantics.

e types. constructs for the encapsulation of declarations and definitions.
e sorts: digoint sets of values.

e operations. declarations of functions (constants are a particular case).

e eguations. semantics of operations (purely functional, i.e. no memory).

Queues

Bool

plus one)
zsro

@)

Nat

O
plusO

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 23

Data Type Library (1)

e It contains the most usual datatypes and contructions.

e Example of atype:

TYPE Boolean IS

SORTS
bool
OPNS
true, false ; -> bool
not . bool -> bool
~and , or , xor_, _iff_: bool, bool -> bool
_equal _, _ne_ . bool, bool -> bool
EQNS

ENDTYPE

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 24

Data Type Library (II)
TYPE Nat ur al Nunber | S Bool ean

SORTS
nat
OPNS
o, 1, 2, 3, 4, 5 6, 7, 8, 9 ; -> nat
e, ., -, % : nat, nat -> nat
gt , It , ge, le, eq., _ne_: nat, nat -> bool
EQNS

ENDTYPE

dit

©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 25

true
1.0.2

not (f al se)

fal se and true

Examples of Data Type Expressions

((1.0) gt (2.0)) or not(false)

(1.1)

* (1.7)

(*
(*
(*
(*
(*
(*

true *)
1.0.2 *)
true *)
fal se *)
true *)
1.8.7 *)

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 26

Structure of a Specification

SPECI FI CATI ON

<nane> [<gates>] (<parans>) : <functionality>
<data types>

BEHAVI OUR
<Behavi our >

VWHERE
<| ocal definitions>

ENDSPEC

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 27

CHAPTER 2: EXTENDED FINITE STATE MACHINES

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 28

Extended Finite State Machines (EFSM)

e Finite state machine with auxiliar variables for data.

e It isvery frequently used to specify and implement protocols.
¢ A state machineis defined as:

— A set of states.

— A set of state variables.

— A set of inputs to the automata.

— A set of outputs from the automata.
— A set of extended transitions.

e An extended transition is defined by the initial state, the input that fires the transition,
an enabling predicate, the output, a set of actions and the new state.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
ZZ pg. 29

The State Diagram
e EFSM are usually represented using state diagrams:

Dt Req(dt)/ Send(Dt _Fr (NS, dt))

Idle — \WaitAck
Q

NS: Bool

\ / i/ Send(Dt _Fr (NS, dt))

Rec(not (NS))

Rec(NS)

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 30

Extended Finite State Machine in LOTOS

e One process definition is performed for each state.

¢ The variables of each state are mapped to parameters in each process.
e Transitions from a state are mapped to a choice of events followed by process instan-
tiations:
— Each input firing atransition is mapped to an event.

— Predicates over variables that must hold to fire the transition are mapped to a guard
preceding the event.

— The output associated to atransition is mapped to a sequential event after the firing
event.

— The new state is mapped to the instantiation of the corresponding process.
— Actualization of variablesis mapped to paramaters of the process being instantiated.

e Other constructions may be used if neccessary.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 31

Template of EFSM in LOTOS

process Initial State [<gat es>] (* Initial State *)
(Var1l:T1,..,Varn: Tn) (* context variables *)

(* First transition *)

(| <Predi cate>]-> (* Enabling predicate *)
<event s> ; (* Interaction *)
Fi nal Statel [<gates>] (* Final state 1 *)

(Exprl,..,Exprn) (* Actualized variables *)

[1 (* Next transition *)

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 32

Example of EFSM in LOTOS

SPECI FI CATION Bit _alt _sender [usr,snd,rcv] : NOEXIT
LI BRARY Bool ean, Natural Nunber ENDLI B
BEHAVI OUR |dl e [usr,snd, rcv] (true) VWHERE
process ldle [usr,snd, rcv] (NS: bool):noexit:=
usr ? data:nat ; snd ! Dt Fr(data, NS
; Wl t Ack [usr,snd, rcv](data, NS
endpr oc
process Wit Ack[usr,snd, rcv] (dt:nat, NS: bool): noexit:=
rcv ? NR bool
([NR ne NS] -> Idle[usr,snd,rcv](not(NS))
[] [NR eg NS] -> Wait_Ack[usr,snd, rcv] (dt,NS))
[] 1 ; snd ! Dt _Fr(dt, NS)
; Wai t Ack [usr,snd, rcv] (dt, NS)
endproc ENDSPEC

dit

©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 33

Extended Finite State Machine in SDL
e SDL: Specification and Description Language (Rec. Z.100)

e Graphical Syntax oriented to description of EFSM.

C D o)

Start State

Rec <

Input

W) ()

Output NextState

DCL

X Integer,
Y Boolean:

X =X+1

0 |0 <o

dut

©Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 34

Example of EFSM in SDL

PROCESS BitAltSender

-

NS :=true

(e)
Usr(Dat) <
[
Snd(DtFr(Dat,NS))>
I

SET(NOW+13,T)

DCL

Dat Integer,
NS Boolean,
NR Boolean,
TIMER T;

WaitAck

RCV(INR) <

o>

<

Snd(DtFr(Dat,NS))>

(WaitAck) NS := not(NS)

SET(NOW+13,T)

< WaitAck >

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 35

CHAPTER 3: CONCURRENCY

dit

©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 36

Interleaving: “| | |

e Interleaving isaparallel operator.
¢ Parallel operators model concurrency.

¢ Interleaving represents concurrent composition without interaction.

¢ In LOTOS there is no true concurrency, but interleaved one.
¢ The two concurrent subsystems interleave their events.

Graphical Representation:

n
Ney

a C
=

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 36

Interleaving: “| | | ”

When two behaviors are composed in interleaving, both of them evolve in an independent manner. Informally, this means that
If one of the behaviors accepts an event and changes it state, the composition will behave in the same way.

If B accepts event a and changesits stateto B1. Then, if B; isinterleaved with another system B, the resulting behavior will
also accept event a and will change its state to another one equivalent to B interleaved with B..
The graphical representation isthat of two isolated systems with nothing in common: two boxeswith their gates. Notice that in

this case behaviorsare being depicted as boxes instead of triangles (used for trees) because it isusually moreclear for illustrating
concurrency.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 37

Example of Interleaving (1)

An P router as multiple forwarding subsystems:

process
| P ROUTER[Net1 in, Netl out,Net2 in,Net2 out]:noexit :=
FORWARD[Net 1 i n, Net2 out]
| 1]
FORWARD[Net 2 i n, Net1 out]
wher e
process FORWARD[Net _in,Net out]: noexit :=
Net in ? datagram: ip_dtgrm
; Net out ! datagram
;, FORWARD] Net in, Net out]
endpr oc
endpr oc

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 38

Example of Interleaving (11)

Equivalent behaviour of the IP router example

| | | Results in
T Tl
| | 1
[N1_in [1 N2_in
| | |
| | J | ®
| | |
I N2 out | 1 N1_out
| - | |
- -9 -- 9
= = —m =
N1l in N2_out N2_in N1_out / \/
B | NL out / N2_out 7\ N1_out
-/ /A
‘ / / \
\ ® / . @
S l_ 7 N

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 39

Synchronization: Value Passing

e TwoO processes may communicate by synchronizing at given gates.
e Synchronize is equivalent to share a common gate between two processes.

e Two events may synchronize only if they occur at a gate in which two behaviours are
synchronizing.

¢ A value offering synchronizes with a value acceptance if they are of the same sort.

¢ Value passing: the value is communicated from the offering process to the accepting
Process.

¢ The environment perceives the occurrence of only one event.
e It isequivaent to simultaneoudy firing both transitions.
¢ One such event comes from the simultaneous ocurrence of one event at each behaviour.

e For an event to occur at a synchronizing gate, it must occur in both processes.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 40

Partial Synchronization: “| [<gates>]|~

e Partial Synchronization is another parallel operator
e Partial Synchronization represents concurrent composition with interaction.
e The concurrent behaviours synchronize in the gates listed in the operator:

— Events ocurring at gates in the list will synchronize.
— Events ocurring at gates not in the list will interleave.

Interleaving is Partial Synchronization in no gates.
Example:

(keyboard ? num: nat ; line ! num; ...)
|[line]|
(line ? var . nat ; screen ! var ; ...)

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 40

Partial Synchronization: “| [<gates>]|~

Partial synchronization isthe general case of the parallel operator. When using partial synchronizationit is possibleto select the
gates at which the two behaviors must synchronize, leaving the remaining gates evolvein interleaving.

Example: Suppose that we have defined processes Pr ocAl a, b] and ProcB[a, c]. Then, we instantiate the processes
composing them with partial synchronization:

ProcAl a, b]
| [a]l

ProcB[a, c]

Those events that take place at gate a must occur simultaneously in both processes because gate a belongs to the gate set of the
partial synchronization operator. Those events that take place at gates b or ¢ may occur independently in Pr ocA or Pr ocB

(respectively).

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 41

Example of Partial Synchronization (1)

A Teller Machine connected through a network to request authorisation from a Host.

|[I1ne]] Results in
—————— >
e NeT| | - ™ | .
' | | I
I _ | 1 | | Keypad?wd: nat
| Li ne?wd: nat | IKeypad?wd: nat |
| I |
. | [) : : Li ne! wd
' Line L1 I |
| Host _Q wd B—N ILi ne! wd |
' [I
S | * : Host _Q wd
| | I | ®
! Host _R?rs: bool I I Li ne?au: bool |
[| I | Host _R?rs: bool
@ | | ®
[fau=false]-> , [au=true]-> | :
! Linelrs I Money!0 7 N \pney! wd | Linelrs
| | / \ : | |
I _ ® | / \ | o
l_ _ _ _.4 o _. [rs=false]—> // \{rs:true]—>
Money! 0, \Money! wd
= = = = | - Y
Host _Q Host R Keypad Money |- === - — — — —
L 588 —

Host _Q Host R Line Keypad Money

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 42

Example of Partial Synchronization (11)
The LOTOS text of the example.

process AT_NET[Keypad, Money, Li ne, Host _Q Host R]:noexit: =
NET[Host _Q Host R, Li ne]
|[Line]|
TM Keypad, Money, Li ne]
wher e
process NET[Host Q Host R, Line]:noexit:=
Li ne ? wd: nat
;, Host Q! wd
, Host R ? rs:bool
, Line ! rs
; NET[Host _Q Host R, Li ne]
endpr oc

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 43

Example of Partial Synchronization (111)

process TM Keypad, Money, Li ne] : noexit: =
Keypad ? wd: nat

, Line ! wd

: Line ? au: bool

([au = false] ->
Money ! O

, TM Keypad, Money, Li ne]
[]
[au = true] ->
Money ! wd
, TM Keypad, Money, Li ne])
endpr oc
endpr oc

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
ZZ pg. 44

Full Synchronization: “| | ”

e Full Synchronization is another parallel operator.

e Full Synchronization represents sharing all gates (common or not).
¢ Full Synchronization means synchronize in all vissible events.
e Full Synchronization is Partial Synchronization at all gates.

©Copyright May 93, DIT-UPM

@)
LOTOS Tutorial
pg. 44

Full Synchronization: “| | ”

Full synchronization represents total agreement between both behavior in order to accept an event from the environment. If the
events offered at visible gates by the behaviors are different they will not occur.

If both behaviors offer the same event, it may occur and both behaviorswould then change their state. Thisis, if B offersevent
a and changesits state to B1, and if B, offersaso event a and changesits state to B, then, the composition would offer event
a and then would behave as B7 in full synchronization with B5.

Full synchronization is equivalent to partial synchronization where the gate set isthe union of gate sets of the parallel behaviors.

dit

©Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 45

Example of Full Synchronization

A Teller Machine that cannot run out of money and a user asking for 8 units.

USER

Keypad! 8

Money?r e: nat

Keypad

Money

™

Keypad?wd: nat

Money! wd

Results in

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 46

Summary of Parallel Operators

Syntax:

B 1 | B 2 (* interleaving *)

B1|[<gates>]| B 2 (* partial synchronization *)
B 1 B 2 (* full synchronization *)

e Interleaving gate: eventsfrom B _1 and B_2 occur independently.
e Synchronizing gate: eventsfrom B _1 and B_2 occur simultaneously.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 46

Summary of Parallel Operators

The paralel composition operator is used to represent concurrent behaviors. In the current model of LOTOS thereis no redl
parallelism in the sense that two event cannot occur at the same instant. If there are two behavior expressionsin parallel, their
events will occur in an interleaved manner, just as processes execute in a single processor machine. Inasmuch as events are
assumed to be instantaneous in LOTOS, this restriction in the model does not reduce the expressive power of the language.
The interleaved semantics of the parallel composition allows to obtain the equivalent sequential behavior tree of a concurrent
specification.

There are three different syntax for the parallel operator. The partial synchronization operator covers the genera case, so the
other ones are somehow redundant with it. The syntax of a partial synchronization expressionis:

AllG]| B

where A and B are behavior expressions and Gis a gate set. The gates contained in set Gare the ones that have to synchronize.
The remaining gates of A and B are interleaved.

If two behavior expressions A and B synchronize in a gate g1, it is required that every event that occurs at gate g1 occurs
simultaneously in both A and B. This means that behavior A and B cannot evolve independently anymore. Informaly, this

IS equivalent to simultaneous transitions in classical state machines,i.e., two transitions that are simultaneously fired by two
concurrent state machines,

The interleaving operator A | || B is equivaent to the partial synchronization operator with an empty gate set G The full
synchronization operator A | | B isequivaent to the partial synchronization operator with a gate set Gthat contains both the
gatesof Aand B, i.e.,, aparalel composition where all the events that occur must be synchronized.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 47

Deadlock

e A behaviour is said to deadlock when no action can be observed from it.

e Deadlock occurs when the two following conditions hold:

— No interleaving events are offered, and
— The synchronizing events offered are incompatible.

e Most real systems should be designed deadlock-free.

e Example of deadlock:
| [Send, Rec] | Results in

[0=1]-> Send
Send! ack T'T _Qut Rec!frm o
. Rec
| —---
T

Serv Send Rec T Serv

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 48

Inaction: “st op”

e “st op” isthe representation of a behavior such that no event will ever be observed.
e |t can be used to express that a process finishes its execution.
e |t can be used to express explicit deadlock situations.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 48

Inaction: “st op”

Systems are represented in LOTOS as “behavior expressions’ (usually called “behavior” for short). LOTOS provides operators
that allow the combination of behaviorsin order to build more complex behaviors.

“Stop” isapredefined basic behavior. It describesthe system that cannot show any action. Nothing can be observed from “ stop”.
It isused to represent deadlock situation or the termination of the activity of the system.

dit

©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 49

Example of Inaction (1)

An | P router as a process spawning system:

process
| P ROUTER] Net _in, Net _out]:noexit:=
Net Iin ?2dtgrmip _dtgrm
;(RESEND Net _out] (dtgrm
|]
| P ROUTER] Net i n, Net _out])
endpr oc
process
RESEND[Net _out] (dtgrmip _dtgrm:noexit:=
Net out ! dtgrm
, Sstop
endpr oc

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 50

Example of Inaction (I1)

Dynamic creation and destruction of process instantiations:

Net _in?dtgrmip_dtgrm

Net out
| P_ROUTER

Net in

Net _out!dtgrm

—

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 51

Resource Oriented Specification (1)

e The system is designed as a collection of interacting process instantiations

e A process instantiation is an executing instance of a process definition
e It ispossible to instantiate several times a single process definition

e A process definition is a description of the behaviour of a subsystem.
¢ Process instantiations interact by exchanging data through gates.

dut

©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 52

Example of Resource Oriented Specification

NODE
(NewYork)

-3

NODE
(Moskow)
{]

NODE

(Brussels)

Line

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
ZZ pg. 53

CHAPTER 4. COMMUNICATING EFSMs

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 54

Synchronous vs. Asynchronous Communication

e Synchronous communication:

— Simultaneous transmission and reception.
— Requires coordination between parties.
— Example: system call.

e Asynchronous communication:

— Requires buffering (queues) between parties.
— Communication identified by location or by process.
— Example: UNIX pipes.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 55

Synchronous vs. Asynchronous Communication

Thefire brigade simile;

Synchronous Asynchronous

:
B,
R

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 56

Synchronous Communication in LOTOS

e |t isthe basic communication mechanism of the language.
¢ LOTOS supports n-ary symmetric rendez-vous with choice.
e For communicating EFSMs only binary asymmetric rendez-vous required.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 57

Asynchronous Communication in LOTOS

e Asynchronous communication is modeled placing queues between EFSMs.
¢ The queues are specified as processes.

PROCESS Queue [in_g,out _g](queue:string):noexit:=
In_gq ? next:elenent
; Queue [1n_qg,out _q](lpush(next, queue))
[] [queue ne <>] ->
out g ! right(queue)
;, Queue [in_qg,out _qg](rpop(queue))
ENDPRQOC

EFSM_1 Queue EFSM 2
— S

» (ka/gj:)l——l - a0 O QOom

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 58

Asynchronous Communication in SDL

e |t isthe basic communication mechanism of the language.

e SDL supports asynchronous communication identified by agent.

e Every EFSM has an implicit input queue to buffer incomming events.

e Output events are place in the input queue of the destination EFSM.

e SDL 92 hasintroduced remote procedure call: a step to synchronous communication.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 59

Characteristics of Asynchronous Communication

¢ Finitelength queues may lead to deadlock situations.

e Event collision in distributed systems may lead to unconsistent states.
e Unexpected incomming messages must be removed to guarantee.

e It can not be used to model synchronous communication.

¢ Very frequently used as | PC mechanism in operating systems.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 60

CHAPTER 5: HIDING, INTERNAL EVENT, NON DETERMINISM
AND ABSTRACTION

dit

©Copyright May 93, DIT-UPM

LOTOS Tutoria
pg. 61

Hiding

e It allowsto control the environment’s view of the system.

e |t isused to perform stepwise refinement design.

e Its effect isto transform visible events into internal events.

¢ The hidden gates dissapear from the system’s interface.

a

b

1

PART_1 PART_2

1

I(x)

I(y)

| -

PART 3

|-

xxabc
y
X C

hide x,y in

Ho

(%) |

| (=2

o

|)

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 61

Hiding
Hiding is used to hide communication between subsystems (internal communication) to the environment. It alows to offer a
simple interface to the user by hiding internal details.
The effect of hiding isequivalent to substitute the hidden events by internal events, at the global behavior level. It isimportant to
remark that the hiding event isnot distributive, i.e., it isnot equivalent to hidethe events before or after applying other operators.
Hiding is an extremely useful abstraction mechanism. It has the drawback (which is an advantage in some cases) that can
introduce non-determinism in the behavior of the system.

dit

©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 62

Example of Hiding

H de line in

1 Keypad?wd: nat
¢

: Li ne! wd
®

Host Q wd
o

Host R?rs: bool

Linelrs

o—=9

rs=false]-> s N {rs=true]->
Money! 0 , \MMoney! wd

Results in

Host Q Host R Line Keypad WNbney

rs=false]-> s 0 {rs=true]—>
Money! 0, \Money! wd
@
_____ 4_ — — — —
i a—a

1 Keypad?wd: nat

®
|
1 <:
®
Host _Qwd
)

Host _R?rs: bool

L
b=

Host Q Host R Keypad WMbney

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 63

Internal Event: “i ”

e Theinterna event “i ” ispredefined in LOTOS.

e It isan internal transition.
Conseguently, the environment cannot synchronize init.

e |t changes the state of the system.
Consequently, the environment could notice its effects.

e |t appears from hiding avissible event.
e |t isused to express non-determinism.
e |t isused to produce a partial specification of a system.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 63

Internal Event: “i ”

Event “i ” isan special event that does not take place at agate. The reason isthat events occurring at gates are visible from the
environment, while event “i ” cannot be seen from the environment. It is an internal event, much like expontaneous transitions
in state machines.

The syntax for the internal event isareserved word in LOTOS (i.e. there can be no identifier called “i 7).

Although the event itself cannot be seen, an external observer is able to notice its effects. Inasmuch as the system experiments
achangeinits state, the behavior of the system may not be the same before and after the occurrence of the internal event.

For example, let us compose any behavior and an internal event followed by stop with operator choice:

B
[]

I ; stop

An externa observer would notice that in some executions the system deadlocks, while in other executions the system works
properly. It isclear that despite not being visible, theinternal event introduces modificationsin the behavior of systemsthat can
be noticed by the environment.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
ZZ pg. 64

Example of Non-Determinism

An unreliable line may non-deterministically change bits

process UNRELI ABLE LINE [Data in, Data out] : noexit :=
Data in ? bit : bool

;(l
, Data out ! bit
; UNRELI ABLE LINE [Data_in, Data_out]
[]
|
, Data _out ! not(bit)
; UNRELI ABLE LINE [Data_in, Data_ out]
)

endpr oc

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 65

Example of Partial Specification (1)

An P router deterministically discards datagrams in some cases.

process | P_ROUTER [Net_in, Net_out] : noexit :=
Net in ? datagram: ip_dtgrm

;(|
; Net _out ! datagram
; | P_ROUTER [Net _in, Net out]
[
|
; | P_ROUTER [Net in, Net out]
)

endpr oc

dit

©Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 66

Example of Partial Specification (1)

A Teller Machine that can run out of money and a user asking for 8 units.

Money?wd: nat

T™M

Keypad?wd: nat

Results in

Money! O

Money! 8

Keypad

Money

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 67

CHAPTER 6: ENABLING AND DISABLING

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 68

Successful Termination: “exi t (<val ues>) "

e exi t represents the successful termination of a behavior.

e Termination, together with sequential composition, allows the decomposition of a
behavior in phases.

¢ Termination isequivaent to aprocessinstantiation, wherethe processto beinstantiated
IS determined later on.

e The values placed in the exit statement are passed to the instantiated process.
¢ Functionality: isthelist of sorts of values passed in exit

Example:

keyboard ? val:nat ; exit(val)

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 68

Successful Termination: “exi t (<val ues>) "

Another basic behavior expression (in addition to st op) is successful termination: exi t .

The informal semantics of successful termination isthat the current behavior expression terminates, and the system behaves as
the behavior expression in the next phase. Phases are delimited using the sequential composition operator.

The behaviour expression exi t produces only the event “6”, that means successful termination.

The semantics of “6” i1s somehow similar to the interna event, in the sense that it cannot be seen from the environment, but it
produces a change of state in the system.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 69

Enabling: “>> accept <vari ables> i n”

e Enabling allows the decomposition of a behavior in sequential phases (Sequential
Composition).

e Beh 1 >> Beh_ 2 meansthat behaviour Beh 2 beginsright after Beh 1 terminates
successfully.

¢ When the first behaviour executes exi t , the compositiont will behave as the second
behaviour.

¢ The functionality of the first behaviour must match the varible list of the enabling.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 69

Enabling: “>> accept <vari ables> i n”

Operator enabling is used to describe a system as a series of sequential phases. The operator composes two behavior expressions
to produce another behavior expression. The second behavior expression begins when the first one terminates successfully.
Remember that a behavior terminates successfully whenever it executes behavior expression exi t , i.e., whenever it produces
event 6.

The sequential composition A >> B isequivalent to replace the occurrences of behavior exi t in A by behavior B.

Notice that enabling is quite different from action prefix: “; ”. While action prefix composes an event with a behavior, operator
enabling composes two behavior expression. The action prefix expressiona ; B behaves as B after the occurrence of a. The
sequential composition A >> B behaves as B after the occurrence of exi t within A. In the meantime, the composition behaves
as A

Thefuntionality of thefirst behaviour must be the same asthe variblelist of the enabling. Thisis so beacuse the values provided
intheexi t of thefirst behaviour will be used as the values for the variables provided in the enabling operator.

The funtionality is declared in process definition and the correct composition of behavioursis checked when performing static
semantics analysis.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 70

Example of Enabling

Connect phase [sap]
>> accept source:address , dest:address in
Dat a_Transfer phase [sap] (source, dest)
wher e
process Connect phase [sap] : exit(address, address) :=
sap ? CReqg : connreq
; sap ! Connl ndication
; sap ? CResp:connresp
o ([Reject(Cresp) =true] ->
Connect phase [sap]
[] [Accept(Cresp) = true] ->
exit (source(Creq), destination(CReq)))
endpr oc

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 71

Disabling

¢ Allows the representation of interruptions.

e Behavi or _2 destroys (inhibits) Behavi or _1 when it begins.
e Behavi or _2 begins ether because the environment accepts one of itsinitial events
or because it contains an initial internal event.
Example:

Dat a_Transfer phase [sap] (source, dest)
[>
Abort [sap]

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 71

Disabling

This operator is somehow similar to an interruption. The disabling composition A [> B behaves as A until one of the initial
events of B occurs. After that, the composition will behave as B. Informally, we could say that B isinterrupting A.

Theinitial events of B can only when the environment accepts them (unlessthey are internal events).

In case that A executes an exi t the composition A [> B terminates successfully. This means that after exi t has occurred,
behavior B can not interrupt A because the disabling composition has terminated successfully.

It is quite frequent to use the following structure in a specification:

(A[>B) > (C[>D > ...
The above behavior expression is equivaent to:

X>Y > .

This means that the composition will behave as X until it terminates successfully. Behavior Xis(A [> B) . Consequently, it
may terminate because A terminates successfully or because B terminates successfully after having interrupted A.

Disabling is equivalent to put the interrupting behavior in alternative at every node of the behavior tree of the interrupted
behavior. That iswhy theinitial events of the interrupting behavior may occur at any moment.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 72

Example of Disabling

process INIT [start,kill,kbd](pr_id:nat):noexit:=
start ? proc:proc_class
o ([proc=mai | proc]->
(MAILL [Kkill,kbd] (pr_id)
1] INT [start,kill,kbd](pr_id + 1))
[] [proc=other proc]->
(OTHER [kill, kbd] (pr_id)
1] INT [start,kill,kbd](pr_id + 1)))
wher e
process MAIL [kill,kbd] (pr_id:nat):noexit:=
MAI LI NG [kbd]
[> Kill ! pr_id; stop
endpr oc

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 73

Summary of Enabling and Disabling

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 74

CHAPTER 7: DEFINING DATA TYPES

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 75

Writting Data Types
¢ A Data Type can be defined from scratch:

TYPE Convol utional Code 1S
SORTS FEC data, FEC redundancy
OPNS Encode : FEC data -> FEC redundancy ...
EQONS .

ENDTYPE

¢ A Data Type can be defined using sorts and operations from other types:

TYPE Convol utional _Code IS BitString, Bool ean
CPNS Encode : BitString -> BitString
Check : BitString, BitString -> bool
EQONS .
ENDTYPE

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 76

Defining Operations

e Operations are defined by writting equations.
e An eguation is composed by two expressions and an equal sign:

lnc_Md 2(0) =1 ;
| nc_Md 2(1) = 0 ;

e It isrequired to declare the sort of the equations;

EQNS
OFSORT SegNum
|nc_Mod 2(0) =1 ;
lnc_Mod 2(1) = 0 ;
OFSORT Bool
|s Zero(0) = true ;
| s Zero(1l)

I
—
=
9]
®

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
ZZ pg. 77

Using Variables in the Equations

¢ The equations may involve free variables.
¢ The free variables must have been previously declared.

EQNS
FORALL x: Nat, vy, z: Bool
OFSORT nat
X + 0 =Xx;
OFSORT bool
y and false = fal se ;

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 78

Writting Equations

¢ Equations define the semantics of operations.
e An expression is evaluated by repeatedly applying the appropriate equations.
¢ Thetools apply the equations by pattern matching.

¢ Thetoolstry to match the expression under evaluation to the left side of the equation,
If it matches, the expression is replaced by the right side of the equation.

¢ For tools, the right side can only contain variables that appear in the left side.
¢ The equations must be written so the right side is simpler than the left side.

¢ The equations must be written so the result is independent of the order in which they
are applied.

¢ The equations must be written so any expression can be eval uated.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 79

Example on Writting Equations
TYPE Frames | S Natural Nunber, BitString

SORTS Frane
OPNS
MK_Frane . Nat, Nat, BitString -> Frane
SeqNum Fr Type : Frane -> Nat
Dat a . Frame -> BitString
EQNS
FORALL typ, NS: Nat, data:BitString
OFSORT Nat

FrType(MK_Frane(typ, NS,data)) = typ ;
SegNunm{ Mk_Frane(typ, NS,data)) = NS ;
OFSORT BitString
Dat a(Mk_Frane(typ, NS, data)) = data
ENDTYPE

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 80

Conditional Equations as Rewrite Rules

¢ A conditiona equation may have severa premises followed by an imply symbol:
X gey =true = (X -Yy) ge O = true ;
¢ Thetoolstry to match the expression under evaluation to the left side of the equation,
If it matches, the premise is tested before performing the substitution.

e To generate a correct rewriteruleit isrequired that:
The conditional premises only contain variables that appear in the left side of the
eguation.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
ZZ pg. 81

Example of Conditional Equations

Combinations of “x” elementstaken “y” by “y”.

X gey =true, ygt 0O =true =>
Combinat(x,y) = (x/y) * Conbinat(x-1,y-1) ;
Conbinat (x,1) = X ;
Conbinat (x,0) =1 ;

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 82

Correct Rewrite Systems

e Confluency:
— The result must be independent of the order of application of the rules.
— Example on non-confluency: 0 - X = m nus(Xx) ;

e Termination:

— The rewrite rules should not form loops.
— Example on non-termination: X + y =y + X ;

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 83

Hints for Writing Equations

e Chose the operations (constructors) that will represent basic values.
¢ Write the equations for each non-constructor operation.

¢ Rewrite expressions involving the non-constructor to expressions involving construc-
tors.

e Non-constructor operations already defined can also be used in the right side.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 84

Renaming of Types

¢ A Data Type can be obtained as a copy of an existing one.
¢ The new type is obtained by renaming the sorts and operations of the source type:

TYPE Bit Al t SegNum | S Bool ean renanedby
SORTNAMES
SegNum f or Bool
OPNNAMES
| ncMbd2 for Not

ENDTYPE

¢ Renaming is used to make the specification more readable

¢ Renaming isusedto defineanew type by modifying therenamed type, without affecting
the original type.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 85

Example of Renaming

e Enumerated types are obtained by renaming library enumerated types:

TYPE FraneTypes | S Enuner at ed4 renanedby
SORTNANMES
Fr _Type for Enund
OPNNAMES
SABM for Vall
| NFO for Val 2
RR for Val3
RNR for Val4
ENDTYPE

e Thisalowsto write the guard:

[Frame typ = SABM] ->

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 86

CHAPTER 8: MORE ON SYNCHRONIZATION

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 87

Event Structure

¢ An event may have more than one value interaction

e Event structure: ordered list of sorts of value interactions in an event.
e Most timesthere is afixed event structure at gates.

e Thisis, all events at a gate have the same event structure (typed gate).

Examples of valid events and event structures:

Event Event Structure
Net ! NetNum ! nssg Nat, datagram
Bus ! 0! 1! 1! 0! 1 Bit, Bit, Bit, Bit, Bit
Port ! NetNum ? nsg: dat agram Nat, datagram

Keyb ? Id:Nat ? Amount: Nat Nat, Nat

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
ZZ pg. 88

Selection Predicate: “<event > [<expl> = <exp2>] ;”

e A selection predicate is associated to an event.

e A selection predicate imposses conditions on value acceptances.
¢ The expressions may include variables defined in the event.

e Example:

process
ETHERNET MAC Net, DL] (nyaddr ess: ph_addr): noexit :=
Net ? add: ph_addr ? hd:fr_head ? dt:data
[(add eq nyaddress) and (length(dt) It 4.0.0.0)]
, DL ! dt
, ETHERNET NMAC Net, DL] (myaddr ess)
endpr oc

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 89

Symmetric Rendez-vous

e LOTOS supports, in addition to asymmetric rendez-vous, symmetric rendez-vous.
¢ A value offering is more general than an output.

e A value acceptance is more general than an input.

¢ A value offering may synchronize with another value offering.

¢ A value acceptance may synchronize with another val ue acceptance.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 90

Value Matching

e It isthe synchronization of two value offerings.

e Both expressions must be of the same sort.
¢ The value resulting from each expression must be the same.

Example: Using avalue to “split” agatein an | P router.

process
| P ROUTER] Net] (routes:rout _table):noexit :=
Net ? Net i1d:Nat ? datagram: |p_dtgrm
; Net ! Next hop(datagramroutes) ! datagram
; | P_ROUTER] Net] (rout es)
endpr oc

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
ZZ pg. 91

Vaue Negociation

e |t isthe synchronization of two value acceptances.

¢ Both variables must be of the same sort.

e The resulting value of both variablesisthe same.

¢ The resulting value is randomly selected from the sort.

¢ The random selection may be constrained using a selection predicate.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 92

Example of Value Negociation

process INIT [start, kill, kbd, born]: noexit:=
start ? proc:proc_class
, born ? new.id : Nat
o ([proc=nmai |l proc]->
(MAILL [kill,kbd] (new.id)
||] INT [start,kill, kbd, born])

process | D MANAGER [born,kill](free ids:nat_set):noexit:=
born ? new proc : nat
[(new proc Isln free ids) = true |
; | D MANAGER [born,die](free_ids Renobving new proc)

[]

dit

©Copyright May 93, DIT-UPM
LOTOS Tutorial
pg. 93

Summary of Interacion Types

process_A [g] |[d]]

process B [g]

LOTOS synchronization cases

Process | process synch. Interaction | effect
A B condition type
g!E |g? Sx|sort(E)=Sx| value | synchro
passing |x=F
g!'El | g'E2 Fl=E?2 value synchro
matching

g SX|g?: Sy Sx=>S5y value synchro
negotiation | = =y

(generation)

dit

©Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 94

Synchronization Conditions

Two events synchronize if:

1. Their event structure is the same.
2. Their matching value offerings have the same value.
3. Their selection predicates hold for the value offerings.

Examples:

a ?x:bool !'(2+1) !true
a ?x:bool ! (2+2)

a l(3+1) ?y:nat

[y gt 3 = true]

a ?x:bool ! (2+1)

a ?x:bool !3
a ?x:bool 13
a ?x:nat I3
[Xx e 3 = true]
a ?x:bool 13

/\/I\/\/\
vV =~ — V V

(* NO *)
(* NO *)
(* NO *)

(* YES *)

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 95

Multi-way Rendez-vous

e LOTOS supports, in addition to binary rendez-vous, full n-ary rendez-vous.
e Two synchronizing processes may be synchronized with athird one, and so on:

((Ala] [| Bla]) || da]) [| Da]

¢ Thismeans that n processes may synchronize in agiven gate.

e For an event to occur at that gate, all the synchronizing processes must agree on that
event.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 96

Constraint Oriented Specification

¢ The system is designed as a collection of concurrent process instantiations.

e There are no internal gates, i.e. thereis no structure in terms of subsystems.
¢ The process intantiations are composed with partial synchronization.

e Processinstantiations interact by constraining the events observable from the environ-
ment.

e Process instantiations only interact at the interface of the system.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 97

CHAPTER 9: MORE ON DATA TYPES

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 98

Defining Parameterized Data Types

e Parameterized types are similar to ADA’s generics, to OO polymorphism or to the
usage of pointers to functions and valuesin C.

e A parameterized type defines sorts constructed with elements of formal sorts.

e |t ispossible to define operations over the new sorts.

e |t can be required that some operations (formal operations) exist in the formal sort.

¢ The semantics of the parameterized type is independent of the one of the formal sort.
e A parameterized type may only be used to produce an actual type by actualizing it.

e Actualization is performed by providing actual sorts, with actual operations, to fill the
place of the formal ones.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
ZZ pg. 99

Example of a Parameterized Type (I)

TYPE Paraneterized Stack 1S
FORMALSORTS f bool , el enent

FORMALOPNS
FFal se : -> f bool
Feqg : elenent, elenent -> fbool
Fand : fbool, fbool -> f bool

SORTS stack

OPNS
Enpty -> Stack
Push : Elenent, Stack -> Stack
Top . Stack -> El enent
Pop . Stack -> St ack

eqg . Stack, Stack -> f bool

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 100

Example of a Parameterized Type (II)

EQNS
FORALL st1,st2:stack, ell,el2:el enent
OFSCRT St ack
Pop(Push(el 1,stl1)) = stl ;
OFSCRT El enent
Top(Push(el1,stl)) = ell ;

OFSORT Fbool
Push(el 1,st1l) eq Enpty = FFal se ;
Enpty eq Push(el 1,stl) = FFal se ;
Push(el 1,st1) eq Push(el 2,st2) =
(ell Feq el 2) Fand (stl eq st2) ;
ENDTYPE

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 101

Actualization of Parameterized Data Types

e The actualization of a parameterized type produces an actual type that can be used in
the specification.

e A parameterized type is actualized using one (or more actual types).

e The actual sorts and operatiosn of the actual type are used to replace the formal sorts
and operations of the parameterized type.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 102

Example of Actualization

TYPE Stack of nats par |S Paraneterized Stack
RENANMEDBY
SORTNAMES Nat stack for Stack
ENDTYPE
TYPE Stack of nats IS Stack of nats_ par
ACTUALI ZEDBY Nat ur al Nunber, Bool ean USI NG
SORTNAMES
Bool for Fbool
Nat for El enent
OPNNANMES
Fal se for Ffal se
and for Fand
eq for Feq
ENDTYPE

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 103

CHAPTER 10: SCOPE OF IDENTIFIERS

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 104

Overloading of Identifiers

e Two objects of different semantic classes may share the same identifier.
e Thisis, the same identifier can be used for a process, atype, a sort and an operation.

e Operations can have the same identifier if the sorts of their arguments/result are differ-
ent.

¢ Variables can have the same identifier in the same scope if they have different sorts.

e To resolve expressions of ambiguous sort use the qualifier: “of <sort >".
Example:
get ! 0 of nat ; send ! (0+1) of bit ;

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 105

Scope of Variables

e Specification parameters can be used anywhere whithin the main behaviour definition.

e Process parameters can be used anywhere within the process behaviour.
¢ The variable from a value acceptance can be used:

— In the selection predicate of that event.
— Anywhere in the behaviour expression following, after action prefix, the event.

e The variable from an enabling can be used anywhere in the behaviour expression
following the enabling.

e It iIsimpossible to communicate through shared variables.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
ZZ pg. 106

Scope of Process Definitions

In a proccess definition it is possible to instantiate;

¢ Any son (not grandson or deeper) process.
e Any ancestor (father, grandfather, and so on) process.
e Any brother process.

e Any brother process of any ancestor process.

©Copyright May 93, DIT-UPM

@)
LOTOS Tutoria
pg. 106

Scope of Process Definitions

It is possibleto define processes within processes. The scope rulesfor the process definitionsin relation to process instantiation
are quite similar to that of PASCAL: a process may be instantiated by its “brothers’ any direct descendant (son, grandson,...)
and also by its“cousins’ (i.e. processes directly defined within the brothers of its parent process). The main differenceis that
PASCAL imposes the additional restriction that a procedure must be defined before it is used, while LOTOS does not impose it.

The hierarchy of process definition is avaluable tool to provide a suitable architectural decomposition of the system.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
ZZ pg. 107

CHAPTER 11: OTHER CONCEPTS

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 108

Termination and Parallelism (1)

e Two behaviors composed in parallel must terminate successfully in a synchronous

manner.
e Example: (a ; exit) ||| exit)
a o o6 b
a b
® |]| ® a b
o o ® ®
® ® o o

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 108

Termination and Parallelism (1)

Notice that the termination event 6 must always occur synchronously (even if the two behaviors are composed with the
interleaving operator). This means that if two behaviors are composed in parallel, neither of them can terminate successfully
until the other one also terminates successfully.

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
ZZ pg. 109

Termination and Parallelism (1)

e All processes in parallel must have the same functionality:

— Termination is synchronized.
— The sorts of the termination must match the ones of the enabling.

e All the values offered in the termination must match.

e It ispossible to offer aneutral valueusing “any <sort >":
(a; exit(3)) ||| (b ; exit(any nat))

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 110

Let <var> = <expression> in

e Allows to define new symbolic values.

¢ Used to avoid repeating long expressions.

e Conceptually equivalent to value asignement.
Example:

gate ? x : nat
(let ext _val = 3*((x+3)*x-2)**(x+5H),

Int_val = (x*x) + 2 I N
gate ! ext _val ! int_val ; stop
[] gate ? y: nat I int_val ; stop

[] gate ! ext _val ? y:nat

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 111

Vaue and Gate Choice

e Value Choice: choi ce <varl:sortl,var2:sort2,..> []
Composeswith [] multiple behaviours altering the value of one, or several, variables.

e Gate Choice: choi ce <gat e_decl arati ons> []
Composes with [] multiple behaviours altering the value of one, or severa, gates.

Examples:

gate ? x : nat ;

(choice x:nat,y:bool [] [x |le 9]->
SOVE PROC [gate] (x,YVY))

gate ? x : nat ;

(choice gx in [chanl, chan2], gy in [kl, k2] []
SOME_PRCC [gx, gy] (9))

@) ©Copyright May 93, DIT-UPM
LOTOS Tutoria
pg. 112

par <gateDecl arations> <parall el Q>

e Used to compose in parallel multiple behaviours atering the value of one, or several,
gates.

Example;

gate ? x : nat ;
(par gx in [chanl,chan2], gy in [kl, k2] |[gX]]
SOMVE_PRCC [gx, gy] (9))

