
Analyzing a χ Model of a Turntable System

using Spin, CADP and Uppaal

E. Bortnik a, N. Trčka b, A.J. Wijs c,1, S.P. Luttik b,c,
J.M. van de Mortel-Fronczak a, J.C.M. Baeten b,

W.J. Fokkink c,d, J.E. Rooda a

aDepartment of Mechanical Engineering, Eindhoven University of
Technology,P.O.Box 513, 5600 MB Eindhoven, The Netherlands

bDepartment of Mathematics and Computer Science, Eindhoven University of
Technology,P.O.Box 513, 5600 MB Eindhoven, The Netherlands

cDepartment of Software Engineering, CWI,P.O.Box 94079, 1090 GB Amsterdam,
The Netherlands

dVrije Universiteit Amsterdam, Department of Theoretical Computer Science, De
Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Abstract

Nowadays, due to increasing system complexity and growing competition and costs,
industry makes high demands on powerful techniques used to design and analyze
manufacturing systems. One of the most popular techniques to do performance
analysis is simulation. However, simulation-based analysis becomes insufficient since
it cannot guarantee the correctness of a system. Furthermore, it is not suitable
for functional analysis. Our research focuses on examining other methods to do
performance analysis and functional analysis, and trying to combine the two. One
of the approaches is to translate a simulation model that is used for performance
analysis to a model written in an input language of an existing verification tool.
We translate a χ [1] simulation model of a turntable system into models written
in the input languages of the tools CADP [2], Spin [3] and Uppaal [4] and do a
functional analysis with each of them. This allows us to evaluate the usefulness of
these tools for the functional analysis of χ models. We compare the input formalisms,
the expressiveness of the temporal logics, and the algorithmic techniques for model
checking, that are used in those tools.

1 Corresponding author. Tel.: +31-20-592-4165; fax: +31-20-592-4199.
E-mail address: A.J.Wijs@cwi.nl (A.J.Wijs).

1 Introduction

The χ language is a modeling and simulation language for the specification
of industrial systems. It can be used for creating discrete-event, continuous
or combined, so-called hybrid, models. The language and simulator have been
successfully applied to a large number of industrial cases, such as an inte-
grated circuit manufacturing plant, a brewery and process industry plants [5].
Simulation is a powerful technique for performance analysis, like calculating
throughput and cycle time, but for functional analysis (verification) it is less
suitable. It can, for instance, show that (a model of) a system has a deadlock
but it cannot show that the system is deadlock-free. For the purpose of verifi-
cation first the discrete-event part of χ has been formalized [6]. The language
was mapped onto the very expressive, process algebra like, language called χσ

for which an operational semantics was defined and a state space generator
has been built [6]. Recently, a new formalization of χ, including the hybrid
part, resulted in a more elegant language [7]. The discrete-event part of this
language is very similar to χσ [8].

The main goal of the TIPSy project [9] (Tools and Techniques for Integrating
Performance Analysis and System Verification) is to combine performance
analysis with verification, particularly in the χ environment. At the start of
this project we are focusing on verification. There is no tool support for the new
version of χ yet and the current toolset for χσ is a prototype, meant only for
educational purposes. Therefore it is not comparable, when it comes to state
space generation, to more developed toolsets. Since we do not expect that a
dedicated tool for χ, that would be able to compete with existing optimized
model checkers, could be built within reasonable time, our aim is to translate
χ models to input languages of other existing tools. While doing this, we want
to compare input formalisms of different tools and see which are best suited
for translating χ models to. We also want to investigate the expressiveness of
temporal logics and algorithmic techniques for model checking that are used
in those tools.

For this paper, we choose the well-known specification and verification tools
CADP [2], Spin [3] and Uppaal [4]. There are several reasons why we make
this choice:

(1) The three tools are quite popular and have been used to detect design
errors in applications from many different domains.

(2) Each tool has a different input language. We use µCRL [10] as the
modeling language for CADP. It is an action-based, process algebraic
(ACP[11,12,13]) language with excellent data support. Spin’s input lan-
guage, Promela, is a state-based, imperative language. Finally, Up-
paal’s input language is a specific class of timed automata, combining

2

both action-based and state-based features.
(3) Each tool handles time differently.
(4) Each tool has a different logic for expressing properties of a model. In

CADP, regular alternation-free µ-calculus [14] is applied, while Spin and
Uppaal use a temporal logic, LTL and TCTL [15] respectively.

(5) Each tool uses a different strategy for verification. In CADP (with µCRL
as input) the whole state space must be built. Spin does model checking
on-the-fly. Uppaal checks invariant and liveness properties by on-the-fly
exploration of the state space of a system in terms of symbolic states
represented by constraints.

Our case study is a turntable device, a rotating drilling machine. We choose
this particular case study because:

(1) It is not too complex; otherwise it would take the emphasis away from
translating and comparing and make the modeling unnecessarily difficult.

(2) It is complex enough in the sense that it contains many interesting fea-
tures to model, such as parallelism and time.

(3) It is a case study that has been used before [6], making it possible for us
to look at existing models and extend them.

(4) We have access to a physical turntable system and we can use it to
perform physical experiments.

In this document, we show how the turntable model can be mapped to the
input languages of the mentioned tools and how it can be verified in those
environments. We do not cover translations of general χ models and rather
focus on the turntable only, but it should be clear that the same story holds for
a large class of χ specifications. Of course, models resulting from a translation
of χ models might be very different from those made from scratch. Our aim
is to have translations resemble the original χ model closely so that possible
verification errors in these translations can be related back to the original
model. We show that many interesting properties of the turntable can be
verified but that none of the three tools can easily express all of them. We
also compare experiences of working with the tools and results such as the
number of states generated.

The structure of the document is as follows: First, the turntable device is
explained. Then, we give an introduction to χ and present the model of
the turntable. The next three sections are devoted to each tool. We give an
overview of the input language and the verification mechanism, we explain how
we deal with the translation problems and we present the verification of the
turntable in detail. The last section gives some comparisons and conclusions.

3

0

1

2

3

s2

s1

s3

c1

c2

t1

t2

DRILL

TEST

ADD

REMOVE

d1

d2

Fig. 1. The turntable system

2 Turntable description

The turntable system is an example of a real-life manufacturing system that
is used for (real-time) control research [6,16,17].

The turntable system consists of a round turntable, a clamp, a drill and a
testing device (Figure 1). The turntable transports products to the drill and
the testing device. The drill drills holes in the products. After drilling a hole the
products are delivered to the tester, where the depth of the hole is measured,
since it is possible that drilling went wrong. To control the turntable system,
sensors and actuators are used. A sensor detects a physical phenomenon, and
changes its state. The controller reads the state of the sensor, and sends output
to actuators. The actuators translate output from the controller to a physical
change in the machine.

4

The turntable has four slots that can hold a product. Each slot can hold at
most one product and can be in input, drill, test or output position. There are
three sensors attached to the turntable: the sensor s1 at the input position (to
detect if a product has been added by the environment), the sensor s3 in the
output position (to detect if a product has been removed by the environment)
and the sensor s2 that detects whether the turntable has completed the turn.

The drilling module consists of the drill and the clamp. Every product should
be locked before drilling and unlocked afterwards. To detect whether the clamp
is locked or not two sensors are used (c1 and c2 respectively). The drill also
has two sensors to detect whether the drill is in its up (d1) or down (d2)
position. These sensors are located above the surface of the turntable, so it is
not possible to say whether the product has been drilled successfully or not.

In the testing position there are two sensors to detect whether the tester has
reached its up (t1) or down (t2) position. If the tester has reached its down
position the test result of the product is good and if the sensor at the down
position did not send a signal during a certain amount of time the test result
of the product is bad.

The turntable control system consists of the main controller, turntable con-
troller, drill controller, and tester controller. The main controller supervises
the other controllers and the environment. It stores current information about
products and operations being performed and based on this information it
issues commands to the other controllers and the environment to start opera-
tions. When operations are completed the main controller updates the infor-
mation about the products.

The turntable controller gets signals from the turntable sensors and passes
them to the main controller. It also starts rotation of the turntable at the
command of the main controller.

The drill controller supervises the drill and the clamp. It switches the drill
on/off and commands to lock/unlock the clamp or to start or stop drilling.
The drill controller also gets signals from the drill and clamp sensors.

The test controller sends a signal to the tester to start the operation. Then
it waits for a signal from the sensor at the down position. If the hole is not
deep enough, the sensor is not activated and the current product should be
rejected.

The operation-routing sequence of each product is following: add a product
to the input position, make a turn (now product is in the drilling position),
lock the clamp, switch on the drill, drill, switch off the drill, unlock the clamp,
make another turn (now product is in the test position), test, and make a turn
again (product is in the removing position).

5

No product can be added if the adding slot is not empty. No drilling, testing or
removing can be performed if the corresponding slot is empty. The turntable
can treat up to four products at the same time, that means that the operations
can be done in parallel.

Design rules and assumptions Creating the model we consider only
”good weather” behavior, i.e. the assumption is that the system works with-
out faults and there is no product loss. The initial state is defined as follows:
all slots are empty and no operation is started.

For reasons of simplicity, we decided to concentrate on the control system.
That means that we do not model material flow as this information can be
obtained from the information stored by the main controller.

We assume that the main controller sends messages to the environment to
allow adding and removing of products and the environment informs the main
controller when the operations are completed. The environment can skip the
adding or removing operations. A product can be removed from the removing
position only if it has been drilled properly. If a product has a good test result
and it has not been removed, it should not be drilled and tested again. If a
product has a bad test result it must be drilled and tested again. That means
that the information whether product has been added or removed is necessary
only after the rotation of the turntable.

When the other sensors change their states, the control system must be no-
tified immediately. For instance, if the clamp sensor does not report that the
clamp is locked, the drill cannot start drilling. This difference causes different
implementation of the sensors. The turntable sensor states are checked by the
control system just before a turn, while the other sensors inform the control
system about their state changes immediately.

We also assume that the order of starting and ending of the adding, drilling,
testing and removing operations is not known in advance.

The execution of each turntable operation requires a certain amount of time.
Because the duration of the turntable operations has not been defined any-
where, we have decided to use the delays, that have been defined in other
turntable models, like [6]. We assume that the environment needs 2 time units
to perform adding or removing of a product. The clamp needs 2 time units
to lock or unlock a product. The drilling operation takes 3 time units and
returning the drill to its up position takes 2 time units. Testing and returning
the tester to its initial (up) position require 2 time units each.

6

Verification properties Traditionally, verification properties have been
classified into safety and liveness properties. Safety is usually defined as a
set of properties that the system may not violate, while liveness is defined
as the set of properties that the system must satisfy [3]. Safety, then, defines
that something bad will never happen, and liveness defines that eventually
something good will happen.

Given those assumptions we want to verify the following properties:

(1) The system does not contain a deadlock, i.e. it cannot come to a state
from which it cannot continue operating (safety).

(2) If drilling (testing, adding or removing) is started then it is also finished
and the turntable doesn’t rotate in the meantime (liveness).

(3) If the product has a bad test result then the product remains on the table
and is drilled again (liveness).

(4) If the product has a good test result then the remover will be called to
remove the product (liveness).

(5) No drilling (testing or removing) takes place if there is no product in the
slot and no adding is performed if there is a product in the slot (safety).

(6) Every added product is drilled in the next rotation (liveness).
(7) Every product eventually leaves the table (liveness).
(8) When a product is added it takes between 21 and 30 time units to get

its test result (liveness).

The property 7 is a liveness property that requires a fairness principle, which
makes this property the most complicated one.

First, a product can be removed only if it has a good test result. However, the
remover can always decide not to remove and the tester can always generate
bad test results. This can happen because the choices whether the product
will be removed and whether the test result of the product is good or bad are
non-deterministic. In order to verify this property we must put some notion
of fairness to the verification process, i.e. exclude unfair paths, in which a
product yields a bad test result infinitely often.

Second, since there are at most four products on the table it can happen that
one of the products stays on the table while the other ones are drilled properly
and removed. In order to verify that every product will eventually be removed
we must identify them in some way. The most common solution is to give
colors to the products, for instance, red and white, and change the adder so
that it adds (non-deterministically) zero or more white products, then one
red, and then again zero or more white ones. We want to make sure that if a
red product is added then a red one will leave the table eventually. Another
solution would be to assign unique identifiers to products or use some other
way to distinguish them.

7

The fairness constraints can be expressed syntactically in linear temporal logic
(like PLTL), but not in branching temporal logic (like CTL). In µ-calculus
fairness properties can be expressed very efficiently [14].

The last property (so-called bounded liveness) also requires identification of
the products. First we calculate manually the time interval within which a test
result of a product is known based on the assumptions. After that we check
this interval automatically.

3 The turntable model in χ

3.1 The χ language

The χ language was designed as a hybrid, modeling and simulation language.
Since we are interested only in discrete-event models and verification, we
present here just a part of the language, disregarding features that are used
for simulation and to model hybrid behavior. For a complete reference of χ,
see [1]. The discrete-event subset of χ is described in [18].

Data types The χ language is statically strongly typed. Every variable has
a type which defines the allowed operations on that variable. The basic data
types are boolean, natural, integer and real numbers and enumerations. The
language provides a mechanism to build sets, lists, array tuples, record tuples,
dictionaries, functions, and distributions (for stochastic models). Channels
also have a type that indicates the type of data that is communicated via the
channel.

Time model The time in χ is dense, i.e. timing is measured on a continuous
time scale. The weak time determinism principle, or sometimes called the time
factorization property, (time doesn’t make a choice) and maximal progress (a
process can delay only if it cannot do anything else) are implicit. The time
additivity (if a process can delay first t1 and then immediately following t2 time
units then it can delay t1 + t2 time units from the start) is not present. Delaying
is enforced by the delay operator but some processes can also implicitly delay,
e.g. send.

Atomic processes The atomic processes of χ are process constructors and
they cannot be split into smaller processes. They are:

8

(1) The assignment process (x := e). It assigns the value (must be defined)
of expression e to variable x. It doesn’t have the possibility to delay.

(2) The skip process. It performs the internal action τ and cannot delay.
(3) The send process (m !e). It sends the value of the expression e via channel

m. The value of e must be defined and of the right type. It is able to delay
arbitrarily long.

(4) The receive process (m?x). It receives a value via the non-empty channel
m and assigns it to the variable x which must be of the right type. It is
also able to delay arbitrarily long.

(5) The delay process (∆ e). It delays a number of time units equal to the
value of the expression e or less. The value of e must be a positive real
number.

Communication model Communication in χ is synchronous, meaning that
a send and a receive action on a same channel cannot happen individually but
only together, as a communication action.

Operators Atomic processes can be combined by means of the following
operators. We present each one of them together with their (informal) seman-
tics.

(1) The guard operator (→). A process b → p behaves as p if the value of
the boolean expression (guard) b is true, otherwise it deadlocks.

(2) The alternative composition operator ([]). A process p [] q represents a
non-deterministic choice between p and q.

(3) The sequential composition operator (;). A process p; q behaves as p
followed by the process q.

(4) The repetition operator (∗). A process ∗p behaves as p infinitely many
times.

(5) The parallel operator (||). A process p || q executes p and q concurrently in
an interleaved fashion, i.e. the actions of p and q are executed in arbitrary
order. If one of the processes can execute a send action and the other one
can execute a receive action on the same channel then they communicate,
in other words p || q executes the communication action on this channel.

(6) The scope operator (|[|]|). A process |[s | p]| behaves as p in a local state
s. The state s is used to define local variables and channels visible only
to the process p. It is recursively defined as the empty state or as dcl, s′

where s′ is a state and dcl is a variable declaration (x : type[= val]) or a
channel declaration (m : ? type for receiving and m : ! type for sending).

Process definitions The language χ provides the possibility to define pro-
cesses. We don’t give a syntax definition here but rather an example:

9

proc p(c : ? nat , b : bool) = |[x : nat | b → c ? x]|

The process p has two arguments, a channel c that can transport natural
numbers and a boolean variable b. It has only one local variable, x. The process
can now be instantiated (e.g. p(m, y > 7)) inside another process.

3.2 The turntable model

The turntable system architecture is depicted in Figure 2. The mechanical
components are represented by means of the processes tester, drill, clamp
and turn table. These components are controlled by switching commands:
cDrillOnOff switches the drill on/off, cDrillUpDown instructs the drill to
start or stop drilling, cClampOnOff instructs the clamp to lock or unlock
the product, and cTesterUpDown instructs the tester to start or stop testing.
The other signals that are used are cRotate (commands the turntable to start
turning), cEnvCanAdd, cEnvCanRemove (inform the environment that it can
perform adding or removing operations respectively). As already mentioned,
the sensors are implemented in several ways (more explanations are given in
the descriptions of the corresponding processes).

The control system model consists of the main controller, drill and clamp con-
troller, tester controller and turntable controller which are modeled by means
of the processes main control, drill control, tester control and TTC respec-
tively. The processes env add and env remove represent the environment.

Below we explain all processes in detail. Of each process, a description is given
followed by the χ code that models the component.

The turn table process In the turn table process we define three boolean
variables representing the turntable sensors. The variables bS1 and bS3 cor-
respond to the sensors at the adding and removing positions respectively. The
variable bS2 corresponds to the turntable sensor that detects whether the
turntable is rotating or not. The current states of the sensors are sent via
channels cS1, cS2, cS3. The sensor states are updated by the environment
when a product is added or removed (cEnvAdded, cEnvRemoved). In the real
system the states of these sensors are automatically updated while turning.
To achieve this we add two more channels (cUpdateS1, cUpdateS3). A dif-
ferent way to model a change of the sensor states can be found later in the
description of the main control process. When the turn table gets the signal
cRotate it performs a delay. Reading and updating the sensors are ’atomic’
and instantaneous actions. The control system is modeled in such a way that
it is not possible to perform those actions in parallel. This allows us to use
alternative composition instead of the parallel one and reduce the state space.

10

Drill-Clamp

Control

Main

Control

TurnTable

Control

Environment

Add

Environment

Remove

ClampDrill

Tester

Control

Tester

TurnTable

cT
esterU

pD
ow
n

cT
esterD

ow
nD
one

cT
esterU

pD
one

cD
rillO

nO
ff

cD
rillO

nD
one

cD
rillO

ffD
onecD

rillU
pD
ow
n

cD
rillU

pD
one

cD
rillD

ow
nD
one

cC
la
m
pO
nO
ff

cL
oc
ke
d

cU
nl
oc
ke
d

cS
ta
rt
D
ril
lcD

ril
lE
nd
ed

cS
tartT

est

cT
ested

cE
nv
Ca
nA
dd

cE
nv
Ad
dF
ini
sh
ed

cEnvCanRemove

cEnvRemFinished

cEnvAdded
cE
nv
Re
m
ov
ed

c
S
1

c
U
p
d
a
te
S
1

c
U
p
d
a
te
S
3

c
R
o
ta
te

c
T
u
rn

c
T
u
rn
e
d

c
G
e
tS

1

c
G
e
tS

3

c
S
e
tS

3

c
S
e
tS

1

c
S
3

c
S
2

Fig. 2. The turntable model architecture

11

proc Turn table(cEnvAdded , cEnvRemoved
, cRotate , cUpdateS1 , cUpdateS3 : ? bool
, cS1 , cS2 , cS3 : ! bool
)=

|[bS1 : bool = false, bS2 : bool = false, bS3 : bool = false, x : bool
| ∗(cS1 ! bS1

[] cS2 ! bS2
[] cS3 ! bS3
[] cEnvAdded ? bS1
[] cEnvRemoved ? x ; bS3 := false
[] cUpdateS1 ? bS1
[] cUpdateS3 ? bS3
[] cRotate ? bS2 ; ∆4.0; bS2 := false
)

]|

The clamp process The clamp has one actuator that is used to switch it
on/off (cClampOnOff). The clamp also has two sensors to detect if it is locked
or unlocked. When the states of the sensors are changed, the process clamp
reports to the control system via the channels cLocked and cUnlocked.

proc Clamp(cClampOnOff : ? bool
, cLocked , cUnlocked : ! bool
)=

|[x : bool
| ∗(cClampOnOff ? x ; ∆2.0; cLocked ! true

; cClampOnOff ? x ; ∆2.0; cUnlocked ! true
)

]|

The drill process The drill is controlled by two independent actuators.
One of the actuators is used to switch the drill on/off (cDrillOnOff). The
other one (cDrillUpDown) instructs the drill to start drilling or to return in
its initial (up) position. The states of the sensors are detected through the
channels cDrillDownDone, cDrillUpDone. The commands are handled inde-
pendently, that is why we use the parallel composition in the drill process. On
the other hand, both actuators are the parts of the one physical component
(the drill) and that is why we do not represent them by means of two separate
χ processes, instead, we combine them into one process.

12

proc Drill(cDrillUpDown , cDrillOnOff : ? bool
, cDrillUpDone , cDrillDownDone
, cDrillOnDone , cDrillOffDone : ! bool
)=

|[x : bool
| ∗(cDrillUpDown ? x ; ∆3.0; cDrillDownDone ! true

; cDrillUpDown ? x ; ∆2.0; cDrillUpDone ! true
)

|| ∗(cDrillOnOff ? x ; cDrillOnDone ! true
; cDrillOnOff ? x ; cDrillOffDone ! true
)

]|

The tester process The tester is controlled by one actuator (cTesterUp-
Down) that is used to start or stop testing. It has two sensors as well. One of
them is used to detect a test result of a product. The other one detects whether
the tester is in its initial (up) position. Possible test results are implemented
by non-deterministic choice. When the test result of a product is good the
process tester sends a signal via the channel cTesterDownDone. Otherwise,
the process tester waits for the command to move up to the initial position
(cTesterUpDown) and, then, sends a signal through the channel cTesterUp-
Done.

proc Tester(cTesterUpDown : ? bool
, cTesterUpDone , cTesterDownDone : ! bool
)=

|[x : bool
| ∗(cTesterUpDown ? x

; ∆2.0
; (cTesterDownDone ! true [] skip)
; cTesterUpDown ? x
; ∆2.0
; cTesterUpDone ! true
)

]|

The main control process The main control process keeps track of the
slot states and operates the other controllers. We use four integer variables
(p0, p1, p2, p3) to describe the state of every slot. The variable values range
from 0 to 4 (0 means that there is no product in the slot, 1 - there is a
product in the slot and it is not drilled, 2 - a product has been drilled, 3 - a
product has been tested and has a bad test result, and 4 - a product has been
tested and has a good test result). First, the main control process checks the
states of the slots and starts corresponding processes (adding, drilling, testing

13

and removing). As we assumed, the order of starting and finishing of these
operations can vary and is not known a priori. In order to implement it, we
use nested parallelism. The operations (cEnvCanAdd, cStartDrill, cStartTest,
cEnvCanRemove) are started according to the following rules:

• The environment is allowed to add a product if there is no product in the
slot.

• Drilling can be performed if there is a product in the slot and it has not
been drilled yet or it has a bad test result.

• Testing is allowed if there is a product in the slot and it has been drilled.
• The environment is allowed to remove a product if there is a product in the

slot and it has a good test result.

If these operations have been started the main control process waits till they
are completed (cEnvAddFinished, cEnvRemFinished, cTested, cDrillEnded).
After that, it gives the command to the turntable controller (the process TTC)
to read the states of the sensors at the adding and removing positions (cGetS1,
cGetS3) and gets their current states (cSetS1, cSetS3). If their states have
been changed (that means that the products have been added or removed),
the main control updates the information about current slot states. Then, it
sends the command to the turntable controller to rotate the turntable (cTurn)
and waits till the turn is completed (cTurned). Then, the loop is repeated. In
the real system the states of the sensors at adding and removing positions
are automatically updated during the turn. To achieve this in the model we
send new states of the turntable sensors over the channel cTurn. In our model
main control sends the value of the sensors after the turn over the channel
cTurn (the information is coded as an integer in following way: p = 0 means
that there is no product in the adding and removing positions, p = 1 means
that there is no product in the adding position and there is a product in the
removing slot, p = 2 means that there is a product in the adding position
and there is not product in the removing position, p = 3 means that there
are products in both slots). Another approach to update the sensor states is
to duplicate the information about all slots in the turn table process [6]. This
approach allows one to separate the physical and control systems easier and
simpler but leads to a larger state space.

14

proc Main control(cDrillEnded , cTested , cTurned , cSetS1
, cSetS3 : ? bool
, cEnvCanAdd , cEnvAddFinished
, cStartDrill , cStartTest
, cEnvCanRemove , cEnvRemFinished
, cGetS1 , cGetS3 : ! bool , cTurn : !nat
)=

|[x , y : bool , p : nat = 0, pp : nat = 0,
p0 : nat = 0, p1 : nat = 0, p2 : nat = 0, p3 : nat = 0

| ∗((
(p0 = 0 → cEnvCanAdd ! true; cEnvAddFinished ? x
[] p0 6= 0 → skip
)

|| (p1 = 1 ∨ p1 = 3 → cStartDrill ! true; cDrillEnded ? x ; p1 := 2
[] ¬(p1 = 1 ∨ p1 = 3) → skip
)

|| (p2 = 2 → cStartTest ! true; cTested ? y ; (y → p2 := 4 [] ¬y → p2 := 3)
[] p2 6= 2 → skip
)

|| (p3 = 4 → cEnvCanRemove ! true; cEnvRemFinished ? x
[] p3 6= 4 → skip
)

)
; (p0 = 0 → cGetS1 ! true; cSetS1 ? x

; (x → p0 := 1 [] ¬x → skip)
[] p0 6= 0 → skip
)

; (p3 = 4 → cGetS3 ! true; cSetS3 ? x ; (¬x → p3 := 0 [] x → skip)
[] p3 6= 4 → skip
)

; pp := p3 ; p3 := p2 ; p2 := p1 ; p1 := p0 ; p0 := pp
; (p0 = 0 → (p3 = 0 → p := 0 [] p3 6= 0 → p := 1)

[] p0 6= 0 → (p3 = 0 → p := 2 [] p3 6= 0 → p := 3)
)

; cTurn ! p ; cTurned ? x
)

]|

The drill control process The process drill control gets the command to
start drilling from the main control over the channel cStartDrill. Then, it sends
a signal to lock the clamp (cClampOnOff) and waits for the reply from the
clamp sensor (cLocked). When the clamp is locked the drill control uses the
other switching command (cDrillOnOff) to start drilling and waits for the con-
firmation (cDrillOnDone). Then, it gives a signal to start drilling (cDrillUp-
Down), waits for confirmation from the sensor (cDrillDownDone), sends a sig-
nal to return the drill in its initial (up) position (cDrillUpDown), and waits for

15

confirmation from the sensor (cDrillUpDone). Then, the drill control switches
the drill off (cDrillOnOff), and waits for confirmation (cDrillOffDone). After
that, the drill control switches the clamp on again (cClampOnOff), waits for
the signal from the clamp sensor (cUnlocked) and reports to the main control
that drilling is completed (cDrillEnded).

proc Drill control(cStartDrill , cLocked , cUnlocked
, cDrillUpDone , cDrillDownDone
, cDrillOnDone , cDrillOffDone
, cDrillEnded : ? bool
, cClampOnOff , cDrillUpDown
, cDrillOnOff : ! bool
)=

|[x : bool
| ∗(cStartDrill ? x

; cClampOnOff ! true; cLocked ? x
; cDrillOnOff ! true; cDrillOnDone ? x
; cDrillUpDown ! true; cDrillDownDone ? x
; cDrillUpDown ! true; cDrillUpDone ? x
; cDrillOnOff ! true; cDrillOffDone ? x
; cClampOnOff ! true; cUnlocked ? x
; cDrillEnded ! true
)

]|

The tester control process Tester control gets a command to perform
testing from main control (cStartTest) and switches tester on (cTesterUp-
Down). To perform the testing operation, tester needs 2 time units. If the
tester has reached its down position within 2 time units, the test result of the
product is good (cTesterDownDone) and if the sensor does not react in 2 time
units, the test result of the product is bad. However, in our model tester control
waits for the signal from the tester for 4 time units instead of 2. The reason
for this is that if tester and tester control delay for the same amount of time,
there is a possibility that tester control would make its choice before tester.
So, in order to ensure that tester always makes its choice before tester control
the latter delays longer. In that case, tester makes a choice in 2 time units and
after that tester control has no choice anymore. Then, tester control stores the
test result (bTstRes), switches tester off (cTesterUpDown), and sends the test
result to main control over the channel cTested.

16

proc Tester control(cStartTest , cTesterDownDone
, cTesterUpDone : ? bool
, cTesterUpDown , cTested : ! bool
)=

|[x , bTstRes : bool
| ∗(cStartTest ? x

; cTesterUpDown ! true
; (cTesterDownDone ? bTstRes

[] ∆4.0; bTstRes := false
)

; cTesterUpDown ! true
; cTesterUpDone ? x
; cTested ! bTstRes
)

]|

The TTC process The process TTC (the turntable controller) gets com-
mands from main control to perform the turn or update sensor information.
When the turn is completed TTC sends a signal to main control over the
channel cTurned.

proc TTC (cTurn : ?nat, cS1 , cS2 , cS3
, cGetS1 , cGetS3 : ? bool
, cSetS1 , cSetS3 , cUpdateS1 , cUpdateS3
, cRotate , cTurned : ! bool
)=

|[x : bool , bS1 : bool = false
, bS3 : bool = false, ss : nat = 0
| ∗(cTurn ? ss ; cRotate ! true

; cUpdateS1 ! ss = 2 ∨ ss = 3
; cUpdateS3 ! ss = 1 ∨ ss = 3
; cS2 ? x; cTurned ! true

[] cGetS1 ? x; cS1 ? bS1 ; cSetS1 ! bS1
[] cGetS3 ? x; cS3 ? bS3 ; cSetS3 ! bS3
)

]|

The environment processes There are two environment processes in the
model: adding and removing. They get appropriate signals from main control
to add or remove a product (cEnvCanAdd, cEnvCanRemove). After perform-
ing (or skipping) the operations the environment processes notify main control
that they have finished (cEnvAddFinished, cEnvRemFinished). If a product is
added or removed the environment processes send corresponding messages to
the turn table process through the channels (cEnvAdded, cEnvRemoved).

17

proc Env add(cEnvCanAdd : ? bool , cEnvAdded
, cEnvAddFinished : ! bool
)=

|[x : bool
| ∗(cEnvCanAdd ? x

; (skip [] cEnvAdded ! true)
; cEnvAddFinished ! true
)

]|

proc Env remove(cEnvCanRemove : ? bool , cEnvRemoved
, cEnvRemFinished : ! bool
)=

|[x : bool
| ∗(cEnvCanRemove ? x

; (cEnvRemoved ! true [] skip)
; cEnvRemFinished ! true
)

]|

The state space As already mentioned, there is no tool available for χ
yet. Therefore we have generated the state space in the χσ toolset with the
following results: the number of states is 32570 (6839 states after minimization
under strong bisimulation).

4 Promela/Spin

4.1 Introduction to Promela/Spin

The full presentation of Promela, a very complex language, is beyond the
scope of this paper. We give here only a brief overview mentioning only those
parts of the language that we are interested in. For more information, see
[3,19,20] or consult the Spin’s web page http://spinroot.com.

Promela’s syntax is derived from C [21], with communication primitives
from CSP [22] and control flow statements based on the guarded command
language [23]. It has many language constructs similar to χσ constructs.

A common specification consists of global channel declarations, variable decla-
rations and process declarations with possibly one special init process. Pro-
cess declarations specify behavior, channel and variable declarations define the
environment in which the processes run. Promela has a rather limited set of

18

data types, only bool, byte, short, int (all with the unsigned possibility)
and channels. It also provides a way to build records and arrays and to de-
fine macros (processed by the C language preprocessor). Message channels are
declared, for instance, as chan m = [2] of {int} meaning that the channel
is buffered and it can store (at most) two values of type integer (has only
one field of type int). Channels can also be of length 0, i.e. unbuffered, to
model synchronous communication. They can also have more than one field,
not necessarily of the same type.

Every variable must be declared before use. The exception is the special
dummy variable ’ ’ which is a predefined write-only variable, that can be
used to store scratch values. The type of this global variable is int. It is an
error to use or reference its value.

Process declarations are of this form:

proctype name(parameters) {

local variables and channels;

body

}

Local variables and channels specify the local state of the process and they
are not visible to other processes. The same rules as for global variables apply
here. The body is a list of statements, itself a statement. Any expression
can be used as a statement, enabled precisely if it evaluates to a non-zero
value. Assignments are also statements and have the usual semantics. The
skip statement executes the action (1) and has no effect on variables. The
send statement (m!e 1,...,e n) sends a tuple of values of the expressions e i

to the channel m. The receive statement (m?E 1,...,E n) retrieves a message
from the non-empty channel m, for every E i that is a variable assigns a value
of e i to it and for every other E j makes sure that its value matches the value
of the e j. If the channel is buffered, a send is enabled if the buffer is not full; a
receive is enabled if the buffer is non-empty. On an unbuffered channel, a send
(receive) is enabled only if there is a corresponding receive (send) that can
be executed simultaneously. There are also many variants of these statements
(message can be left in or removed from a channel after receiving, send/receive
can only be offered etc.)

There are several ways to combine statements. The alternative composition is
defined by the selection statement:

if

:: statements

...

:: statements

19

fi.

It selects one among its options and executes it. An option can be selected
if its first statement is executable. A selection blocks until there is at least
one selectable option. If more than one option is selectable, one will be chosen
non-deterministically. The repetition is achieved by the statement

do

:: statements

...

:: statements

od.

It is similar to the selection statement except that the choices are executed
repeatedly, until control is explicitly transferred to outside the statement by
break or the goto statement. The break terminates the innermost repetition
statement in which it is executed and cannot be used outside a repetition.

Another way to combine statements is to use sequential composition denoted
as p;q or b -> p. The latter is usually used to emphasize that a process p is
guarded by the conditional expression/statement b.

The original version of Promela/Spin is untimed but there is a discrete time
extension, called DTPromela/DTSpin [24]. The idea is to divide time into
slices and then frame actions into these slices. The time between actions is
measured in ticks of a global digital clock. By having a variable t declared as
timer, setting its value to some expression that evaluates to a natural number
(by doing set(t,e)) and waiting for t to expire (by stating expire(t)) a
process can be enforced to postpone its execution for n time slices (where
n is the value of e). When DTSpin executes the timeout action, all timers
synchronize and time progresses to a next slice. This action is executed only if
no other actions can be executed, meaning that maximal progress is implicit.
Deadlock is recognized when timeout is about to happen and all timers are
off (not set or already expired).

Promela provides two constructs, atomic{stmt 1;...;stmt n} and
d step{stmt 1;...;stmt n} that can be used to model indivisible events and
to reduce a state space. Their purpose is to forbid the statements from inside
to interleave with other statements in the specifications. The difference is that
additionally d step executes all statements as one (one state in the state
space). These constructs are very useful but have a limitation: statements
other than the first may not block and the d step cannot contain send/receive
statements on unbuffered channels.

Once declared every process can be started by the Promela process cre-
ation mechanism, the run statement. The special init process, if present, is

20

automatically instantiated once, and is often used to prepare the true initial
state of a system by initializing variables and running the appropriate process-
instances. Processes can be started with different parameters. Once started
they execute in parallel with the interleaving semantics. This is the only way
to achieve parallelism because there is no explicit parallel operator. Processes
communicate with each other through global variables and channels.

4.2 The turntable model in Promela

Translation of χ constructs like assignments, skip statement, sequential and
alternative composition and repetition is straight-forward since they have ob-
vious equivalents in Promela.

The data types used in the turntable model are also present in Promela.

Both languages have a notion of channels. Communication in χ is synchronous
and consequently all channels in the Promela translation are of length zero.
For example, channel cRotate is declared as chan cRotate = [0] of {bool}.

In general proc definitions of χ are translated to proctype definitions of
Promela and init process is used to run them all.

For example, the drill control process is translated as

proctype drill_control() {

do
:: cStartDrill?_,1;

cClampOnOff!1; cLocked?_;
cDrillOnOff!1; cDrillOnDone?_;
cDrillUpDown!1; cDrillDownDone?_;
cDrillUpDown!1; cDrillUpDone?_;
cDrillOnOff!1; cDrillOffDone?_;
cClampOnOff!1; cUnlocked?_;
cDrillEnded!1

od;
}

Since in the drill control process we use channels only for synchronization, af-
ter receiving we don’t need the value of x so we replace it by the dummy vari-
able . The additional parameter ’,1’ in cStartDrill? ,1 will be explained
later.

We now present features of which translation requires a more careful consid-
eration.

21

Guards Statements of type b→ p, in general cannot be just translated as b
-> p. This is due to the fact that, since in Promela operator -> is equivalent
to the sequential operator and the boolean expression b is also a statement, if
the value of b is true, Spin will execute the action (1) (e.g. it will pass the
guard) even though process p cannot execute anything. This is different from
χ which looks for both b to be true and for p to be executable before taking
the step.

However, if p in b → p is an atomic process there is a way to translate. The
guarded assignment such as b → x := e is translated as d step{b; x = e}.
With the d step operator we force the statement to be executed as one action
like in χ. If the value of b is false the statement is blocked and if it is true,
since an assignment is always executable, the statement will execute only one
action. Translation is similar for a guarded skip.

In order to translate guarded send/receive actions we must apply a different
trick because those actions can block and therefore cannot be put inside the
d step statement. For a channel that has send/receive actions involved in
guarded statements we first change the declaration by adding another field
argument to it, one of an integer type. We need the extra argument to syn-
chronize on guards and we translate b → m ! e to m!e,b and B → m ? x to
m?x,eval(2-B). We use 2-B instead of just B because the communication
between a guarded send and a guarded receive should not take place if both
guards evaluate to false (2-B = b is equivalent to B=1 and b=1). The eval func-
tion is used to force the evaluation of the expression 2-B. Spin does not do this
automatically in receive statements because the expression can be a variable in
which case it should not serve as a match but instead it would be assigned the
incoming value from the message field. If a communication action, for example
m ? x, is not used in the guarded context but its counterpart send is, then it
should be translated to m?x,1. This goes similarly for m !e when a correspond-
ing receive is guarded. For example, in the main control process a send action
on the channel cStartDrill is guarded, p1 = 1 ∨ p1 = 3 → cStartDrill ! true,
and this statement is translated as cStartDrill!1,(p1 == 1 || p1 == 3).
The corresponding receive action, cStartDrill ?x in the drill control process,
is not guarded and therefore translated as cStartDrill? ,1.

In case of the main control process not only atomic processes are guarded,
but also, for example, we see

p0 = 0 → (p3 = 0 → p := 0 [] p3 6= 0 → p := 1)
[] p0 6= 0 → (p3 = 0 → p := 2 [] p3 6= 0 → p := 3)

To translate this fragment we use the fact that b1 → (b2 → p) is equivalent
to (b1 ∧ b2) → p and that b → (p [] q) is equivalent to (b → p) [] (b → q). This

22

assures that we can distribute guards over the operators and have the equiv-
alent process with guarded atomic processes only. The Promela translation
is therefore:

if
:: d_step{(p0 == 0 && p3 == 0) -> p = 0}
:: d_step{(p0 == 0 && p3 != 0) -> p = 1}
:: d_step{(p0 != 0 && p3 == 0) -> p = 2}
:: d_step{(p0 != 0 && p3 != 0) -> p = 3}

fi;

Time Note that in the turntable model all the delays are natural numbers
so we don’t think that much is lost when switching from continuous to dis-
crete time. The ∆ n statement is translated to the DTPromela statement
expire(t), where t is timer, previously set to the value of n. In cases where

∆ n is not involved in a choice, set(t,n) can be present immediately be-
fore the expire(t). This is, indeed, the case in the translations of the clamp,
turn table, drill, tester, env add and the end remove process. However, in the
tester control process there is an alternative composition of delaying and re-
ceiving:

cTesterUpDown ! true;
(cTesterDownDone ?;
bTstRes := true

[] ∆2;
bTstRes := false

);
cTesterUpDown ! true

In order to prevent time from making a choice, the set(t,4) must be moved
to some place ’safe’, i.e. outside of the alternative composition. That is be-
cause it is always executable and therefore always available as a choice, while
expire(t) is a boolean expression/statement that is blocked until 4 time slices
later. The discussed fragment of the tester control process is translated as:

proctype tester_control(){
bool bTstRes;
timer t;

do
:: cStartTest?_,1; set(t,4);

cTesterUpDown!1;
if
:: cTesterDownDone?_; bTstRes = 1
:: expire(t); bTstRes = 0

23

fi;

. . .

od
}

Parallel operator In Promela there is no explicit parallel operator. Since
processes drill and main control contain it, we encounter a problem when
trying to translate them.

In the drill process no variables are shared (except the dummy x that is re-
moved in the Promela translation anyway) and the parallel operator is not
used in the context of other operators. This means that drill can be split into
two smaller processes that can be translated separately:

proctype drill1() {
timer t;

do
:: cDrillUpDown?_;

set(t,3); expire(t);
cDrillDownDone!1;
cDrillUpDown?_;
set(t,2); expire(t);
cDrillUpDone!1

od
}

proctype drill2() {

do
:: cDrillOnOff?_;

cDrillOnDone!1;
cDrillOnOff?_;
cDrillOffDone!1

od
}

The drill1 and drill2 are executing in parallel when started in the init

process.

On the other hand, in the main control process, the parallel operator is used
within a repetition and a sequential composition context. To solve this problem
we use Promela’s process creation mechanism. The parts of the main control
process that run in parallel are translated to separate process definitions,
namely MC1(), MC2(), MC3() and MC4(). These processes should not be started
in the init process since they are not available from the beginning. The
part that comes after the parallel composition (together with the loop) is
also translated to the new process but with the additional statement at the
beginning of the loop whose role is to start the new processes. This process is
called main control and it must be started in the init process.

There is one more problem to solve. After the main control process starts its

24

subprocesses it should be waiting for them to finish, not run in parallel with
them as would be the case now. Therefore, some synchronization is needed.
We use a global variable WAIT of type integer, initially 0, which is incremented
at the end of each subprocess, and for which the main control waits to be
equal to 4, the number of subprocesses it started. Then, it sets the variable
back to 0 (for later use) and continues. Therefore, main control is translated
as:

proctype main_control(){
bool x;
int p = 0, pp = 0;

do
:: atomic{ run MC1(); run MC2();

run MC3(); run MC4() };

d_step{ (WAIT == 4) -> WAIT = 0 };

. . .

od
}

Note that since variables p0, p1, p2 and p3 are shared between parts that are
now separate processes in Promela, they must be declared in the global
scope.

Remark: Since parts of the main control process that run in parallel don’t
communicate with each other the parallel operator here is just an interleaving
operator. In some cases the interleaving of actions in Promela could also be
achieved with one loop and few additional guards (boolean variables). The
idea is to associate one guard to each action. If there is a choice between two
actions they share the same guard. Only actions available from the start have
there guards initially set to true. When an action is executed, its guard is put
to false and the guard of the action that comes next is assigned true. This is
done in a loop that is exited when all the guards are false. To illustrate the
technique we give an example. The interleaving between a; b and c; (d [] e)
can be expressed as:

bool b1,b2,b3,b4;

d_step{ b1=1; b2=0; b3=1; b4=0; }

do
:: d_step{ b1->a; b1=0; b2=1 }
:: d_step{ b2->b; b2=0 }
:: d_step{ b3->c; b3=0; b4=1 }

25

:: d_step{ b4->d; b4=0 }
:: d_step{ b4->e; b4=0 }
:: !(b1 || b2 || b3 || b4) -> break

od;

The d step is used to prevent state space from growing when introducing
extra actions.

However, this approach results in a Promela model that is not very similar
to the original χ model so we use it only to compare the state spaces generated
by the χσ toolset and Spin.

4.3 Verification of the model in Spin

In this section we first compare state spaces generated by Spin and χσ and
later show how we verified the properties of the turntable.

By performing an exhaustive search, Spin’s verifier, almost instantly, reported
100995 states, 188724 transitions and 5.8975MB of memory used (3.342MB
for states). To compare this result to the size of the state space generated by
χσ (32570 states) we switch off all the optimizations of Spin: like partial order
reduction, statement merging and state vector compression. Now the number
of states increases to 157576, the number of transitions to 455580. This shows
the importance of the optimization features.

The huge difference in the number of states generated by χσ and Spin is mostly
the result of the set actions and the statements used for process creation and
synchronizing in the main control process. To show this we first force set

actions to be executed atomically with the action before. Since this action is
always send or receive we can’t use the d step, only the atomic statement.
For example, in the turn table process

cRotate?bS2; set(t,4);expire(t)

is changed to

atomic{
cRotate?bS2;
set(t,4)

}; expire(t).

Similarly in other processes. The number of states drops to 119616 and the
number of transitions to 212876. Note that the fact that delays are always one
(special) action in χ but can be more (timeout) actions in Promela and the
fact that we used atomic instead of d step, also introduce ’extra’ states but

26

this is unavoidable.

Second, instead of using the process creation mechanism we use the other
trick (see the remark on page 25) to achieve nested parallelism. This results
in 48252 states with 114048 transitions (32768/59154 fully optimized), much
closer to the χσ’s result. In this case, 9.236MB (7.170MB for states) is needed;
3.132MB (1.026MB for states) when fully optimized.

There are several ways to perform verification of properties in Spin but we
use only LTL formulae verification and trace-assertions. The LTL mechanism
checks properties expressed as linear temporal logic formulas over the values of
variables (state based). The trace-assertion mechanism assures that the behav-
ior of the system matches the behavior expressed as a deterministic automaton
(trace) with only send/receive actions on globally declared channels as labels.
In a case where communication is synchronous to prevent Spin from checking
the send offers together with regular sending we use only receive actions as
labels.

Now we discuss how the eight properties from section 2.1 can be expressed in
a way Spin understands them:

(1) The system does not contain a deadlock. Absence of deadlock is
verified in Spin by performing an exhaustive search for invalid end states.

(2) If drilling (testing, adding or removing) is started then it is
also finished and the turntable doesn’t rotate in the mean-
time. To verify this property we introduce two new variables into the
Promela model, drilling and rotating, both initially 0. The idea
is to keep track of states in which the table is turning and the states
in which the drilling is going on. We set the drilling to 1 when the
master controller sends a message to the drill controller instructing it
to start drilling (d step{cStartDrill!1; drilling = 1}), and set it
back to 0 when master controller is informed that the drilling is finished
(d step{cDrillEnded!1; drilling = 0}). We do a similar thing for
rotating. The d step is used to prevent the state space from growing
after the additional statement is added.

The property is now expressed as the LTL formula
[](drilling == 1 -> (rotating == 0 U drilling == 0))

Similarly, for testing, adding and removing.
(3) If the product has a bad test result the product remains on the

table and is drilled again (when it comes to the drilling posi-
tion). Since the result of testing is communicated through the channel
cTested and since it is easy to express the number of rotations we find
the trace-assertion mechanism more suitable to verify this property then
LTL. We must first rephrase this property so that it can be expressed
with receive actions only: if a bad test result is received then in the next

27

rotation the master controller doesn’t instruct the remover to remove and
in the next two rotations (when we are back to the drilling position) the
driller will drill the product again. Now we state this behavior as:

cRotatecEnvCanRemove

cTested?1

cTested?0

cStartDrill

cEnvCanRemovecStartDrill

cRotate

cRotate

cEnvCanRemove

cTested?1

cTested?0

cStartDrill

cStartDrillcTested?1

cTested?0

cTested?1

cTested?0

cEnvCanRemove

cStartDrill

cTested?1

cTested?0

cEnvCanRemove

cRotate

cRotate

trace{ st1: if

:: cEnvCanRemove?_,1 -> goto st1;

:: cTested?1 -> goto st1;

:: cTested?0 -> goto st2;

:: cRotate?_ -> goto st1

:: cStartDrill?_,1 -> goto st1

fi;

st2: if

:: cEnvCanRemove?_,1 -> goto st2;

:: cRotate_1 -> goto st3

:: cStartDrill?_,1 -> goto st2

fi;

st3: if

:: cTested?1 -> goto st3;

:: cTested?0 -> goto st3;

:: cRotate?_ -> goto st4

:: cStartDrill?_,1 -> goto st3

fi;

st4: if

:: cTested?1 -> goto st4;

:: cTested?0 -> goto st4;

:: cEnvCanRemove?_,1 -> goto st4;

:: cRotate?_ -> goto st5

:: cStartDrill?_,1 -> goto st4

fi;

st5: if

:: cTested?1 -> goto st5;

:: cTested?0 -> goto st5;

:: cEnvCanRemove?_,1 -> goto st5;

:: cStartDrill?_,1 -> goto st6

fi;

st6: if

:: cTested?1 -> goto st6;

:: cTested?0 -> goto st6;

:: cEnvCanRemove?_,1 -> goto st6;

:: cRotate?_ -> goto st1

fi;

}

(4) If the product has a good test result the remover will be called
to remove the product. Similarly to the previous case we can rephrase
the property and come out with the following trace:

28

`

cEnvCanRemove

cTested?1

cEnvCanRemove

cRotate

cTested?1cTested?0

cRotate

cTested?0

cRotate

cTested?1

cTested?0

cEnvCanRemove

trace{ st1: if

:: cEnvCanRemove?_,1 -> goto st1;

:: cTested?0 -> goto st1;

:: cTested?1 -> goto st2;

:: cRotate_1 -> goto st1

fi;

st2: if

:: cEnvCanRemove?_,1 -> goto st2;

:: cRotate?_ -> goto st3

fi;

st3: if

:: cTested?1 -> goto st3;

:: cTested?0 -> goto st3;

:: cEnvCanRemove?_,1 -> goto st4

fi;

st4: if

:: cTested?1 -> goto st4;

:: cTested?0 -> goto st4;

:: cRotate?_ -> goto st1

fi;

}

(5) No drilling (testing or removing) takes place if there is no prod-
uct in the slot and no adding can be performed if there is a
product in the slot). The LTL formula that represents this property
is:

[]!(p1 == 0 && drilling == 1)

but the following event-trace can be used as well:

cRotate!1

cDrillFinished!1

cStartDrill!1

cRotate!1

trace{ st1: if

:: cStartDrill?_,1 -> goto st2

:: cRotate?_ -> goto st1

fi;

st2: if

:: cDrillFinished?_ -> goto st2;

fi;

st3: if

:: cRotate?_ -> goto st1

fi

}

and similarly for other cases.

(6) Every added product is drilled in the next rotation. This property
can be interpreted as: when you add and rotate afterwards then you must
drill before you rotate again. The corresponding automata is:

29

cRotate

cRotate

cEnvAdded

cEnvAdded

cEnvAdded

cStartDrill

cStartDrill

cStartDrill

cRotate

trace{ s1: if

:: cEnvAdded_1; goto s2;

:: cRotate_1; goto s1;

:: cStartDrill?_,1; goto s1;

fi;

s2: if

:: cRotate_1; goto s3;

:: cStartDrill?_,1; goto s2;

fi;

s3: if

:: cEnvAdded_1; goto s3;

:: cStartDrill?_,1; goto s4;

fi;

s4: if

:: cEnvAdded_1; goto s4;

:: cRotate_1; goto s1;

fi;

}

(7) Every product eventually leaves the table. To verify this property
we first introduce a variable pstn that can have values 0, 1, 2 and 3.
It represents the position of the turntable (or some mark on the rotat-
ing disk) with respect to the adding position. After every rotation the
value of pstn is changed by the rule pstn = (pstn + 1) % 4. Second,
variables removed and added are introduced. They keep track in which
position the product was removed (added). They have two extra values:
-1, meaning that the removing (adding) was skipped, and -2, a neutral
value. The variable removed (added) is set to the neutral value after the
remover (adder) has made a choice, to remove (add) or to skip. To verify
the property we must now prove the following four LTL formulas:

[](added == 0 -> <> removed == 3)

[](added == 1 -> <> removed == 0)

[](added == 2 -> <> removed == 1)

[](added == 3 -> <> removed == 2)

We are sure that we are removing the same product we are adding since
added cannot become 0 twice if removed doesn’t become 3 in between
(in the first formula, similarly for the other three). That is because if the
product is not removed in 4k + 3 rotations then in the next rotation we
don’t add because there is already a product in the slot. To add fairness
we forbid the remover to always skip removing while in the position 3
(with a product to remove in place) and to always generate bad test
results in the position 2 (with a product to test in place). The extended
formula is:
(

[](pstn==3 && p3==4 -> <> removed == 3) &&

[](pstn==2 && p2==2 -> <> (bTstRes == 1 && pstn == 2)

) -> [](added == 0 -> <> removed == 3)

30

(8) When a product is added it takes between 21 and 30 time units
to get its test result. For this property we must calculate the number
of clock ticks (timeout actions) between adding a product and receiving
its test result. To achieve this we must keep track of timeout’s somehow.
Since they are not communication actions, trace assertion mechanism
is ruled out. To use LTL mechanism we may try to add a special timer
that counts ticks (it decreases accordingly) but because DTSpin does not
allow values of timers in LTL formulas this would not be of much help.
Another solution is to use timeout in formulas or to code the property
directly as a never claim but at this moment it is hard to see how this
can be done in an optimal and satisfactory way.

We here present a solution that is based on the fact that, if the product
is added in some position that no product is added in the same position
before the test result is known. Because we have to distinguish products
again, we use the same idea (variable pstn) as before. Here we check that
if adding happens in the position 0 then result is known in position 2 in
21-30 time units. Similarly for other positions.

We introduce a variable, called added0, which becomes 0 when adding
does not happen (already a product in the slot) or is skipped (in the po-
sition 0), and 1 when product is added (in the position 0). When added0

becomes 1, we also set a special timer variable, called TT, to 30. The idea
is to check if TT has a value less or equal to 9(= 30− 21) in a place where
test result is obtained (in the position 2) and adding has previously hap-
pened (in the position 0). This is done by assertion mechanism of Spin,
directly in code:

...
cTesterUpDone?_;
if
:: (added0 == 1 && pstn == 2) -> assert(TT.val < 10)
:: else
fi;
cTested!bTstRes;
...

5 µCRL/CADP

5.1 The language µCRL

Basically, µCRL is based on the process algebra ACP [11], extended with
equational abstract data types [25]. In order to intertwine processes with data,
actions and recursion variables can be parametrized with data types. More-

31

over, a conditional construct (if-then-else) can be used to have data elements
influence the course of a process, and alternative quantification (also called
choice quantification) is added to sum over possibly infinite data domains.

The language comes with a toolset [26] that can build a state space from a
specification and store it in the .aut format, one of the input formats of the
model checker CADP [2] (more on this model checker in paragraph 5.3). Next
to that, in order to strive for precision in proofs, an important research area
is to use theorem provers such as PVS [27] to help in finding and checking
derivations in µCRL. A large number of distributed systems have been verified
in µCRL, often with the help of a proof checker or theorem prover [28,29].

We will give a short overview of the language. For a complete reference, see [10].

Data types Initially there are no data types known in a µCRL specification.
Therefore each specification should start by defining the necessary data types
and the functions that work on them. In fact, it is mandatory to define the
boolean type in each specification, since the conditional construct works with
boolean expressions. In the case of the turntable model, the natural numbers
were also defined. One can virtually define any data type.

In µCRL one can specify abstract data types [25] in an algebraic way, with an
explicit recognition of so-called constructor function symbols, which intuitively
cannot be eliminated from data terms [10]. In the case of natural numbers the
zero (0) and the successor function S are constructors, while addition (plus)
is not. For booleans we have the constructors true (T) and false (F). This
explicit recognition of constructor symbols makes it possible to enumerate the
elements of a data type.

To define a data type one uses the keyword sort. A sort represents a non-
empty set of data elements. To declare the sort of booleans one can write:

sort Bool

Now the elements of the data type can be declared. This is done with the
keywords func and map. A constructor symbol, declared with func, has as
target the data type in question. For the booleans we declare T and F both
with func:

sort Bool

func T,F:→Bool

What we state here is that the elements of Bool are T and F.

Now that the structure of the data type is given, one can add additional

32

functions. These can be defined with map. For the booleans we define the
function and and the equality relation eq.

Using rewrite rules one can now define how the functions work. When defining,
it’s allowed to use variables, which have to be defined first using var. Having
added the rewrite rules for and and eq, the declaration of Bool now looks like
this:

sort Bool

func T,F:→Bool

map eq:Bool#Bool→Bool

and:Bool#Bool→Bool

var x,y:Bool

rew eq(x,x) = T

eq(T,F) = F

eq(F,T) = F

and(T,x) = x

and(x,T) = x

and(F,x) = F

and(x,F) = F

In a similar way one can define the sort of natural numbers with the equality
relation eq and the addition function plus:

sort Nat

func 0:→Nat

S:Nat→Nat

map plus:Nat#Nat→Nat

eq:Nat#Nat→Bool

var x,y:Nat

rew plus(x,0) = x

plus(x,S(y)) = S(plus(x,y))

eq(x,x) = T

eq(0,S(x)) = F

eq(S(x),0) = F

eq(S(x),S(y)) = eq(x,y)

33

Actions In µCRL one can declare actions in the act section of a specifi-
cation. These actions may have zero, one or several data parameters. When
parameters are used the data types of these parameters need to be given. In
the next example an action a is defined without a parameter, an action b is
defined with a parameter of type Bool and an action c is defined with two
parameters of type Nat and Bool respectively:

act a

b:Bool

c:Nat#Bool

One can allow processes P and Q to communicate in the parallel process P||
Q. To do this it is possible to define which actions are able to synchronize
with each other using the keyword comm. The following example states that
the actions d and e can synchronize and form the action f together:

comm d | e = f

Finally the process deadlock (δ), which cannot terminate successfully, and the
internal action τ are predefined.

Operators There are eight operators in µCRL. We present each one of them
with an informal semantics.

(1) The alternative composition operator (+). A process p+q proceeds (non-
deterministically) as p or q (if they can proceed).

(2) The sum operator (
∑

d:D X(d)), with X(d) a mapping from the data type D
to processes, behaves as X(d1) + X(d2) + . . ., i.e., as the possibly infinite
choice between X(d) for any data term d taken from D. This operator is
used to describe a process that is reading some input over a data type [30].

(3) The sequential composition operator (.). A process p.q proceeds as p

followed by q.
(4) The process expression p / b . q where p and q are processes, and b is

a data term of data type Bool, behaves as p if b is equal to T (true)
and behaves as q if b is equal to F (false). This operator is called the
conditional operator, and operates as a then if else construct.

(5) The parallel operator (||). A process p || q executes p and q concurrently
in an interleaved fashion, i.e. the actions of p and q are executed in
arbitrary order. For all actions a and b which can communicate with
each other: If one process can execute a and the other one can execute
b then p and q can communicate (p || q executes the communication
action).

(6) The encapsulation operator (∂H). A process ∂H(p) disables all actions of

34

p that occur in the set H ⊆ Act. Typically this operator is used to enforce
that certain actions synchronize.

(7) The renaming operator (ρf), with f: Act→Act, is suited for reusing a
given specification with different action names. The subscript f signifies
that the action a must be renamed to f(a). The process ρf(p) behaves
as p with its action names renamed according to f.

(8) The abstraction operator (τI). A process τI(p) ’hides’ (renames to τ) all
actions of p that occur in the set I ⊆ Act.

Process definitions The heart of a µCRL specification is the proc section,
where the behavior of the system is declared. This section consists of recursion
equations of the following form, for n ≥ 0:

proc X(x1:s1, . . ., xn:sn) = t

Here X is the process name, the xi are variables, not clashing with the name of a
function symbol of arity zero nor with a parameterless process or action name,
and the si are sort names, expressing that the data parameters xi are of type
si. Moreover, t is a process term possibly containing occurrences of expressions
Y(d1, . . ., dm), where Y is a process name and the di are data terms that may
contain occurrences of the variables x1, . . ., xn. In this rule, X(x1, . . ., xn)

is declared to have the same (potential) behavior as the process expression
t [10].

The initial state of the specification is declared in a separate initial declaration
init section, which is of the form

init X(d1, . . ., dn)

Here (d1, . . ., dn) represents the initial behavior of the system that is being
described. In general, in µCRL specifications the init section is used to in-
stantiate the data parameters of a process declaration, meaning that the di are
data terms that do not contain variables. The init section may be omitted,
in which case the initial behavior of the system is left unspecified.

The time model Delaying for a certain amount of time is impossible in
µCRL at first glance. This is because µCRL does not work with time. A
later extension of µCRL to timed µCRL [31] introduced the notion of time.
However, at present creating a timed µCRL specification is not very practical
since the µCRL toolset can only parse timed µCRL code and cannot generate
a state space from it.

There is another way however to simulate some notion of discrete time. In

35

this paper we use a method based on the one from [32]. In short it works like
this: first we define two actions: tick and tick2. The tick action represents
the end of a time slice and the beginning of a new one. In order to share this
notion of time all running processes need to synchronize their tick actions. If
at least one of these processes is busy and therefore unable to perform a tick

the tick action will not take place. This synchronization aspect is essential if
one wants to use global timing. Note that, using this technique, we get discrete
time in µCRL, since we represent a time period as a number of time units.

In most cases when using time in a model the modeler would like to give
normal actions priority over tick actions. In order to realize this χ has implicit
maximal progress, but in µCRL an operator for this does not exist. We can
however get similar results by using the tick2 action and post-processing the
system after linearization (more on the latter in section 5.2).

The differences between tick2 and tick are the following:

• The action tick is used for translating delays, while tick2 is used to make
an action delay-able (which means adding a tick2 self-loop as an alternative
to this action);

• A tick action can synchronize with any number of tick or tick2 actions,
but a tick2 action cannot synchronize with only tick2 actions (at least
one tick action is needed for going from one time unit to the next).

Now, several delay-able processes can delay together if there is a tick action
enabled in at least one process.

5.2 The turntable model in µCRL

In the next few paragraphs we will look at the µCRL model of the turntable
which resulted from translating the original χ model. The µCRL language will
be explained as far as needed. Translating the turntable model was done in an
intuitive fashion in order to get some inspiration for developing a translation
scheme for translating χ specifications to µCRL specifications. In this paper
therefore the way in which we ended up with this µCRL model will not be
discussed in detail. We restrict ourselves to highlighting the interesting parts.
Translating χ constructs like an assignment, a skip statement, a sequential
composition and a guard can be translated straightforwardly since there exist
similar constructs in µCRL. Here we have to note that except for translating
the atomic processes all other translations involve the usage of a program
counter n. This counter is used to control the order of execution within a
process. Initially, when a process starts its execution, the counter equals zero.
By changing the value each time an action is executed and including the
counter in the guards accompanying the actions one can specify the order in

36

which these actions should be executed. Since we translated χ processes to
Linear Process Equations (LPEs) we needed such a counter to translate (for
instance) sequential compositions. Later in this section a definition of LPE
can be found. How the program counter functions in practice will become
apparent when looking at the translations in the next few paragraphs.

Following are remarks on the constructions that could not be translated in an
obvious way:

• In the µCRL model we move from one time slice to the next by synchronizing
tick actions of all the processes in the system. This means that we use
discrete timing. Delays in χ should therefore always be ’discretizable’. A χ
delay of n time units is then translated to n tick actions placed in sequence.

• The usage of time in combination with communication actions is tricky when
translating. If you have a send action in one process and a corresponding
receive action in another which (if any) of the actions can be delayed until
the other action can be executed? In principle both send and receive actions
are delay-able in χ. The maximal progress operator then ensures that pos-
sible communications get a higher execution priority than a delay. In other
words: Both send and receive actions can delay if communication is not
possible. Once communication is possible it will be executed immediately.

In µCRL however, making all send and receive actions delay-able may
result in communications being delay-able as well, since we cannot assign
different priorities to actions (see the time model paragraph in section 5.1);
there is no maximal progress operator. Communications that turn out to be
delay-able in the µCRL specification are therefore bad translations. These
can be fixed once the specification is linearized using the µCRL toolset
though: The linearized version can be (automatically) manipulated in such
a way that these communications become non-delay-able again. In short, to
do this the guards of all tick actions have to be changed in such a manner,
that tick actions only become enabled if no ’normal’ (non-tick) action is.

• Another problem is translating an alternative composition: How to translate
it depends on the number of alternatives that begin with a delay or are
delay-able. This is due to the weak time determinism principle [18]: The
passage of time cannot result in making a choice between the alternatives
that can perform the time transition. In other words: Can both alternatives
perform a delay, then they can delay together after which a choice can still
be made. This principle led basically to two different possible translations
of an alternative composition when translating the turntable model:

(1) None of the alternatives begin with a delay. We can translate this state-
ment using the program counter in the right way; both alternatives are
enabled at the start by extending the guards of both first actions of these
alternatives with the same equation concerning the value of the program
counter.

(2) The left alternative is delay-able and the right alternative begins with a

37

delay. This functions as a time-out: If you can start executing the left
alternative within the time given by the delay of the right alternative,
do that. Otherwise execute the right alternative. This can be translated
by introducing a time counter initially having the value of the delay of
the right alternative. Then we add an extra line to the process where the
process can execute a tick and decrease the time counter by one as long
as the time counter does not equal zero. Using some additional guards
makes the translation complete. This situation can be found later on in
this paragraph in the process TESTER CONTROL. Note however that there
will not be maximal progress in this situation, so processing the linearized
version is necessary (see the paragraph on the time model in section 5.1).

• In LPEs we are not allowed to use parallelism, as can be seen by looking
at its definition later on in this section. In the χ turntable specification
however there are two instances where we find parallelism inside a process:
In the drill process and in the main control process.

The nested parallelism in the drill process can be easily translated by
really translating the two subprocesses of drill to separate processes and
placing them in parallel in the init line.

The second instance however poses a bigger problem since the subpro-
cesses share variables. Since we cannot use shared variables in µCRL we
have to find some other way to translate this construction. We do that
by translating the subprocesses to individual processes and providing each
process with local copies of the shared variables. Say two processes A and
B share a variable named x. Both processes can read the value of x at all
times, but if one of them changes the value the other one should be aware
of this (and change the value of its own ’copy’ of x likewise). To make this
possible a new action assignx is introduced, which is called by a process
if it has changed the value of x. As a parameter the new value should be
given. This action communicates with another action updatex, which can
be executed by the other process at all times. This last thing is very im-
portant, since an assignment should proceed as soon at it is invoked. Once
the other process can communicate via updatex it receives the new value
for x and assigns this to the local copy.

This does not solve the problem yet though; in the main control process
we can identify four subprocesses running in parallel followed by a fifth sub-
process placed sequentially behind these four. Since in the init line all pro-
cesses need to be placed in parallel we have to force this order of execution
upon the five processes which are translations of the five χ subprocesses. We
can do that by introducing some extra actions which synchronize between
all the processes (this is done in a way similar to how it’s done for tick);
all processes start their execution once they can synchronize on the start

action. Then the four placed in parallel begin while the fifth process starts
waiting for the other four to finish. Once the four processes in parallel are
finished with their execution, they synchronize their stop actions with the
start2 action of the fifth process. Then this process starts the execution.

38

Once it’s finished it synchronizes its stop2 action with those of the other
four processes, after which all processes can start all over again. The actual
processes (named MAIN CONTROL1 through MAIN CONTROL5) will be treated
later on.

The data types First of all a µCRL model starts by defining the data types
used. As is the case with most models the data types Bool and Nat are used
(representing booleans and natural numbers respectively). See section 5.1 for
part of their definitions.

The µCRL turntable model uses a third data type though, which is used for
readability and represents the state of a slot; a slot can be in one of the
following states:

• There is no product in the slot (NoProduct);
• There is a product in the slot which is not drilled and not tested yet

(Product);
• There is a product in the slot which is drilled but not tested yet (Drilled);
• There is a product in the slot which is drilled and had a bad test result

(TestedBad);
• There is a product in the slot which is drilled and had a good test result

(TestedGood).

This data type is called SlotState.

Linear process equations When translating we used Linear Process Equa-
tions (LPEs). The definition of an LPE is as stated in [33]. We chose to trans-
late χ processes to LPEs instead of the more general µCRL processes since
LPEs proved to be better suited for setting up a general translation scheme.
An LPE is of the following form:

X(d:D)=
∑
i∈I

∑
ei∈Di

ai(fi(d, ei)).X(gi(d, ei)) / hi(d, ei) . δ +

∑
i∈I’

∑
ei∈Di’

ai’(fi’(d, ei) / hi’(d, ei) . δ

where I and I’ are finite index sets, D, Di, Di’, Dai and Dai’ are data types,
ai, ai’ ∈Act∪ {τ}, ai : Dai , ai’ : Dai’, fi : D× Di → Dai , fi’ : D× Di’→ Dai’,
gi : D× Di → D, hi : D× Di → Bool and hi’ : D× Di’→ Bool.

Here the different states of the process are represented by the data parameter
d:D. Type D may also be a Cartesian product of n data types. Besides that the
data parameter ei (either of type Di or Di’) can influence the parameter of

39

action ai (or ai’), the condition hi (or hi’) and the resulting state gi (or gi’),
thereby giving LPEs a more general form. The data parameter ei is typically
used to let a read action range over a data domain.

The LPE expresses that in state d it can do two things:

(1) One can perform actions ai, carrying a data parameter fi(d,ei), under
the condition that hi(d,ei) is true; in such a case the resulting state is
gi(d,ei) [10].

(2) One can perform actions ai’, carrying a data parameter fi’(d,ei), under
the condition that hi’(d,ei) is true; after executing one of these actions
the process terminates.

In general, when translating a χ process to an LPE the locally defined variables
si in the scope operator of χ should be translated to parameters of the LPE
(in other words, should become part of the data parameter d:D). The initial
values of these variables can be set at the initialization line. Channels in χ
that a process works with are mentioned as parameters of that process. These
should not be included in the LPE. An LPE can work with communication
actions which are defined globally. More on communication actions in the next
paragraph.

The actions and communication rules The turntable model contains
a lot of different channels. We will not provide a full list here; that can be
obtained from looking at the paragraph about the original χ model. Here we
only give a guideline how to translate channels to pairs of actions. In general
the usage of a channel a in the χ model will be translated as follows:

(1) Sending a message over channel a will appear in the LPEs as the action
sa with possibly a value as a parameter being the message sent; if no
parameter is provided the send functions as a trigger for a certain event.

(2) Receiving a message over channel a will appear in the LPEs as the action
ra or

∑
y:Type(ra(y).X(y)) depending again on the fact whether the

receive action functions as a trigger for an event or really for receiving a
value (of type Type) respectively.

(3) For these two actions a communication rule must be specified which looks
like this: sa | ra = ca. This together with the encapsulation operator
(∂{sa,ra}) forces the actions sa and ra to only execute if they can syn-
chronize.

Next we will look at interesting parts of some of the processes to give an idea
of how the translation is done.

40

The turn table process The first process we look at is the turn table pro-
cess. Here is part of the µCRL specification:

proc TURN TABLE(n : Nat, bS1 : Bool, bS2 : Bool, bS3 : Bool) =
sS1(bS1).TURN TABLE(0, bS1, bS2, bS3) C n = 0 B δ +

. . .

rEnvAdded.TURN TABLE(0, T, bS2, bS3) C n = 0 B δ +

. . .

τ.TURN TABLE(0, bS1, bS2, F) C n = 1 B δ +∑
b:Bool

rUpdateS1(b).TURN TABLE(0, b, bS2, bS3) C n = 0 B δ +

. . .∑
b:Bool

rRotate(b).TURN TABLE(2, bS1, b, bS3) C n = 0 B δ +

tick.TURN TABLE(3, bS1, bS2, bS3) C n = 2 B δ +

. . .

τ.TURN TABLE(0, bS1, F, bS3) C n = 6 B δ +

tick2.TURN TABLE(n, bS1, bS2, bS3) C n = 0 B δ

In every µCRL process of the turntable specification the program counter
n is used to control the order of action execution. Initially this n equals 0.
Therefore the program can start execution only by performing one of the
actions for which the accompanying guard includes the conjunct n=0. The
turntable for instance initially has several alternative options:

• It can send the value of any of the three sensors S1, S2 and S3. The state
will not change after this.

• It can receive the message that the environment has received a new product
or that a product has been removed. This will change the state in the obvious
way.

• It can get new values for the sensors S1 and S3. These will be set.
• It can receive the request to rotate. Rotating takes four time units.
• The lines beginning with τ are in fact translations of χ assign actions.
• The line beginning with tick2 is there to make some actions delay-able.

The guard tells us which actions they are (see the paragraph on the time
model in section 5.1).

The tester control process The tester control process controls the testing
procedure. The following is part of the translation of the original process:

41

proc TESTER CONTROL(t : Nat, n : Nat, bTstRes : Bool) =
. . .

rTesterDownDone.TESTER CONTROL(0, 3, T) C n = 2 B δ +

tick.TESTER CONTROL(t− 1, n, bTstRes) C n = 2 ∧ t 6= 0 B δ +

τ.TESTER CONTROL(0, 3, F) C n = 2 ∧ t = 0 B δ +

. . .

The sequence of actions starts when the command is received to start testing.
Then TESTER is given the command to move the testing device. Should the
message return within 4 time units after the testing device has been lowered,
then bTstRes is set to true, otherwise to false. Note here the usage of counter
t, which indicates the number of time units left before the time out ends. Next
the testing device is raised and the result (the value of bTstRes) is sent to the
MAIN CONTROL process.

The main control subprocesses Finally the most important and compli-
cated process is the main control process. As can be seen in the χ specification
this process really consists of five subprocesses, with at first four of them run-
ning in parallel after which a fifth starts execution. Once the fifth subprocess
has finished the four others restart etc. Since the subprocesses share some
variables this requires special attention when translating. Basically each of
the subprocesses is translated to an LPE using several special actions to syn-
chronize the values of the local copies of the originally shared variables.

The first subprocess is called MAIN CONTROL1. Part of it is given here:

proc MAIN CONTROL1(n : Nat, p0, . . . , p3 : SlotState) =∑
s:SlotState

updatep0(s).MAIN CONTROL1(n, s, p1, p2, p3) +

. . .

start.MAIN CONTROL1(1, p0, p1, p2, p3) C n = 0 B δ +

sEnvCanAdd.MAIN CONTROL1(2, p0, p1, p2, p3) C n = 1 ∧ p0 = NoProduct B δ +

stop.MAIN CONTROL1(4, p0, p1, p2, p3) C n = 1 ∧ p0 6= NoProduct B δ +

rEnvAddFinished.MAIN CONTROL1(3, p0, p1, p2, p3) C n = 2 B δ +

stop.MAIN CONTROL1(4, p0, p1, p2, p3) C n = 3 B δ +

stop2.MAIN CONTROL1(0, p3, p0, p1, p2) C n = 4 B δ +

tick2.MAIN CONTROL1(n, p0, p1, p2, p3)

The first four lines show update actions which can be executed at any time
due to the fact that there are no guards. The encapsulation operator together
with the synchronization rules provided in the µCRL specification however
force the update action only to take place if another process executes the

42

corresponding assign action. These update actions make sure that the process
always works with the latest values of the variables p0, p1, p2 and p3.

The process itself ensures that products are added to the turntable. It starts
executing once it can synchronize its start action with the start actions of
the other subprocesses. Then if there is no product in slot p0 available it sends
the command to add a product. Once it has received the message that the
product adding has finished it stops execution. Notice (this remark also holds
for the other four subprocesses) that after executing stop2 the values of the
slots are moved to the next slots of the turntable. In other words, the effect of
a rotation is here expressed; each product moves to the next position of the
turntable. In the original specification this rotation cannot be found at this
place, but it is needed in the translation in order to prepare for the rotation
happening in the fifth subprocess.

The last subprocess which runs after the others have stopped executing is
called MAIN CONTROL5. Part of its translation is the following:

proc MAIN CONTROL5(n : Nat, x : Bool, p : Nat, p0, . . . , p3 : SlotState) =
. . .

τ.MAIN CONTROL5(9, x, p, p3, p0, p1, p2) C n = 8 B δ +

. . .

Rotating the turntable in a 90 degrees turn can be done with one τ action
compared to the four actions in the original χ specification. To rotate the
table in the χ specification four assignments need to be done to update the
slot states. In µCRL it is possible to provide the new values of all four states
at once as parameters of a recursive call.

The initialization line Now that all the processes have been translated
all that remains is writing the right initialization line. In this line two special
operators are used:

• The first one is | {tick} |, which is basically a parallel composition operator
which forces tick and tick2 actions of the two processes to synchronize.
For a better understanding of this usage of time see the paragraph on the
time model in section 5.1.

• The second one is | SVTPC | which functions as a parallel composition opera-
tor that synchronizes both time (like the operator stated above) and assign
/ update actions that are needed to use shared variables (for the usage of
shared variables see the remark at the beginning of this section).

43

5.3 Verification of the model in CADP

From the µCRL specification a state space in the .aut format was gener-
ated by the µCRL toolset [26]. This state space could then be used by the
verification tool CÆSAR ALDÉBARAN Development Package (CADP) [2].
Using this tool one can express properties in the regular alternation-free logic
µ-calculus [14]. These properties can then be verified on the state space gen-
erated from the model. The CADP tool, together with µ-calculus, was used
for verifying the properties of the turntable model.

The state space After having translated the χ specification, the state space
of the µCRL specification was generated using the µCRL toolset. This took
about 8 seconds, resulting in a state space of 25926 states and 50835 transi-
tions (12957 of them were τ -transitions). After reduction modulo branching
bisimulation [34] we ended up with a state space consisting of 4687 states and
7579 transitions, of which 931 were τ -transitions.

When looking at the state space itself, we noticed the following differences:

• While the state space resulting from the χ specification shows assignments
as actions, these cannot be found in the state space generated from the
µCRL specification. Instead one finds τ actions in these places. In short,
µCRL does not have assignment actions. Instead one assigns new values to
parameters of a recursion variable. Because by the definition of LPE a re-
cursion variable has to be preceded by an action an assignment is translated
to τ .

• In the fifth main controller subprocess of the χ specification multiple assign-
ments were used for rotating the turntable 90°. These assignments together
were translated to a single τ action followed by a recursive call containing
the new values of the parameters, thus resulting in a smaller state space.

• Special actions that were added to the translation, such as start and stop,
didn’t show up in the state space due to the fact that they were hidden. It
was chosen to do this because then the state space would become smaller
(after reducing modulo branching bisimulation) while these actions are not
important for verifying properties of the system anyway. By hiding these
actions we also accomplished that the state space generated from the µCRL
specification more resembled the state space generated from the χ specifi-
cation.

• Delays need more states and transitions in the state space generated from
the LPEs than in the state space generated from the original χ specification.
This is because a delay of n time units takes up n states and n transitions
in the state space generated from the LPEs.

44

The regular alternation-free µ-calculus To express the turntable prop-
erties we used the regular alternation-free µ-calculus. In this section a brief
introduction to the syntax, that is relevant for understanding the formulas in
this chapter, will be given. For a more detailed description see [14].

The regular alternation-free µ-calculus can only be used to express action-
based formulas. There exists a more elaborate version of this logic which can
express temporal properties involving data values, but that one is not sup-
ported (yet) by CADP.

A formula is built by providing a sequence of actions. We can place actions in
sequence using the “.” operator. Names of actions are placed between double
quotes ("). At places where the name of the action is not important we can
write true. So a statement like "a".true."b" means “first we encounter an
action a, then some other action followed by an action b”.

We can use repetition by using the operator “*”, which denotes that the
statement preceding it can be executed zero or more times.

Finally we have a possibility and a necessity modal operator. The possibility
modal operator (“< >”) is used to express that there exists an execution path
in the state space for which the formula in between holds (or does not, de-
pending on the boolean expression following it). The necessity modal operator
(“[]”) is used to express that for all execution paths in the state space the
given formula holds (or, again, does not, depending on the following boolean
expression).

A formula is usually completed by adding a boolean value at the end. This
value states that the preceding statement holds or does not hold.

Finally an example: The formula ["a"*.true*."b"]false expresses that it’s
not true that in all execution paths in the state space we first find zero or
more actions a, followed by zero or more other actions, followed again by one
action b.

Verifying properties Now, using the state space, one can start verifying
system properties. Here we look again at the properties initially given in the
chapter on the turntable description.

(1) The system does not contain a deadlock. The absence of deadlock
was verified in the CADP tool, which has this functionality built-in.

(2) If drilling (testing, adding or removing) is started then it’s also
finished. The turntable does not rotate in the meantime. This
property is checked using the following µ-calculus formula:

45

[true*."cStartDrill".(not("cStartDrill"

or"cRotate"))*."cDrillEnded"]true

It states that after every cStartDrill action eventually cDrillEnded

can be found without another cStartDrill or cRotate being called be-
fore it.

(3) If the product has a bad test result it remains on the table and
is drilled again (when it comes to the drilling position). This
property can be expressed in µ-calculus as the following formula:

[true*."cTested(F)".

(not"cRotate")*."cRotate".

(not("cRotate"or"cEnvRemoved"))*.

"cRotate".(not"cRotate")*."cRotate".

(not("cRotate"or"cStartDrill"))*.

"cStartDrill"]true

It expresses that in every possible execution path of the state space where
you encounter a failed test (cTested(F)) you will find later at some point
three rotations without the product being removed in between. After that
a cStartDrill can be found because the product needs to be drilled
again.

(4) If the product has a good test result then the remover will be
called to remove the product. This is represented in µ-calculus by
the formula:

[true*."cTested(T)".(not"cRotate")*.

"cRotate".(not"cRotate")*.

"cEnvCanRemove"]true

(5) No drilling (testing or removing) takes place if there is no prod-
uct in the slot and no adding can be performed if there is a
product in the slot. Because of the usage of the regular alternation-
free µ-calculus one can only verify action-based properties, but state-
based properties can in general be checked in an action-based way by
first changing the model slightly [34]. In essence what happens is that if
you want to check the value of parameter x of process X you extend the
specification of X so that it can perform an action having x as a parameter
that does not have a real effect on the system. For this one can define a
special action. Moreover, after executing this action the process returns
to the state where it was when starting the action. In other words, the
process performs a self-loop. Although this does not have an effect on the
behavior of the system, it does provide the ability to see the value of x at
any given time in the state space, since all states are now equipped with
a self-loop of this action with the value of x visible as a parameter.

46

In this case one of the subprocesses of the main control has been
equipped with a self-loop executing the action inslot1, which tells whether
a product is currently in slot 1 or not. Now we can state in µ-calculus:

[true*."inslot1(F)"."cStartDrill"]false

This expresses that you can never encounter an inslot(F) action (there
is no product in slot 1) just before cStartDrill.

In a similar way one can equip one of the subprocesses of the main
control with a self-loop containing the action inslot0, which provides
info on whether slot 0 contains a product or not. Then we can express
in µ-calculus the property that no adding can be performed if there is a
product in the slot:

[true*."inslot0(T)"."cEnvCanAdd"]false

(6) Every added product is drilled in the next rotation. This property
just means that after every call of cEnvAdded (a product has just been
added to the table) and one rotation one can always find a cStartDrill

call. In µ-calculus this leads to:

[true*."cEnvAdded".(not"cRotate")*.

"cRotate".(not"cRotate")*.

"cStartDrill"]true

(7) Every product eventually leaves the table. It is a fairness property
in the sense that the reachability of the action cEnvRemoved is checked
in fair execution sequences. In µ-calculus the notion of “fair reachability
of predicates” is used for fairness, as already stated in chapter 1. To
prove this property the model needs to be slightly changed so it supports
colored products; a product can be either red or white. This is done
by extending the sort SlotState. Next the env add process is extended
so that it ensures that it will constantly add white products except in at
most one instance: Then it adds a red product. This red product can now
easily be tracked at any time. Using this changed model it is possible to
prove the fairness property.

As an intermediate property, first we prove that in an execution se-
quence one can never encounter more than one red product:

[true*."cEnvAdded(Red)".true*.

"cEnvAdded(Red)"]false

Next using this transformed model one could express the property as
follows:

47

[true*."cEnvAdded(Red)".

(not"cEnvRemoved(Red)")*]

<(not"cEnvRemoved(Red)")*.

"cEnvRemoved(Red)">true

This states that once a cEnvAdded(Red) action is encountered it is always
possible to execute the action cEnvRemoved(Red) down the line.

(8) When a product is added it takes between 21 and 30 time units
to get its test result. This property is checked by using the model
with colored products, since we need to track a product to know how
many time units it takes to get from having been added to having been
tested. This model is changed so that the actions cEnvAdded and cTested

provide us the information (as an argument) what the color is of the
product that has been added or tested respectively. In µ-calculus we can
then write a number of formulas:
• No paths exist with 20 tick action or less between cEnvAdded(Red)

and cTested(Red);
• There exists a path with exactly 21 tick actions between cEnvAdded(Red)

and cTested(Red);
• There exists a path with exactly 30 tick actions between cEnvAdded(Red)

and cTested(Red);
• No paths exist with 31 tick action or more between cEnvAdded(Red)

and cTested(Red).
The actual formulas will not be presented here as they are rather large and
really not that interesting, since they can be created straightforwardly.
When verifying these formulas we get the information from CADP that
there exists a path with exactly 21 tick actions but not one with less.
Besides that we also find a path with 30 tick actions while we cannot
find one with a larger number.

6 Uppaal

6.1 Introduction to Uppaal

Uppaal is a tool for modeling, simulation and verification of real-time sys-
tems that can be modeled as a collection of non-deterministic processes with
finite control structure and real-valued clocks. The Uppaal tool creators had
two main aims in mind: efficiency and ease-of-use. For the latter reason Up-
paal has a well-developed and documented GUI and all formal definitions
and semantics are hidden from the user. The formal syntax and semantics are
described in [35].

48

Uppaal allows to make random or directed simulation and verify the models
on-the-fly. Different methods can be used to reduce the amount of the mem-
ory used during verification. The state space reduction options (conservative
or aggressive) allow to generate a smaller state space but require more time. It
is also possible to choose different kinds of the state space representation, like
difference bound matrices, the compact data structure, under approximation
(by bit-state hashing), and over approximation (by convex-hull approxima-
tion) [36]. More detailed information about Uppaal can be found in [4,35].
In this document we give a short description of the Uppaal timed automata.

A model in Uppaal consists of a network of timed automata with clocks,
invariants, variables over basic data types, guards, handshake synchronization,
urgency, and committed locations. Uppaal has a continuous time model (real-
valued clocks). However, bounds of clocks and clock reset values must belong
to the set of nonnegative integers.

A timed automaton consists of a directed control graph with labels on loca-
tions and transitions; every timed automata must have one location marked
as initial. Locations can be equipped with an invariant. Transitions can carry
guards, assignments, and synchronization signals. It is supposed that the in-
variants, guards, synchronization parts and assignments are always given, in
case of absence the invariants and guards can be represented by constant true;
synchronization and assignment parts can be empty.

All Uppaal timed automata work in parallel. Nested parallelism is not al-
lowed. Uppaal allows rendezvous and broadcast synchronization via the uni-
directional channels. Shared variables are used to communicate values from
one process to another. Channels declared with prefix ”urgent” perform syn-
chronization without delay if synchronization is possible. On synchronizing
transition, the assignments on the sender side are evaluated before the assign-
ments on the receiver side.

The scope of the elements (variables, constants, clocks and channels) can be
either global, i.e. visible in the whole system, or local, i.e. visible only in the
process in which the element was declared. Global variables are declared in
the global declaration part and local ones are declared in the declaration part
of the corresponding process.

There are four predefined types (bool, int, clock, chan) in Uppaal. It is pos-
sible to use arrays (including channel arrays and multidimensional ones) and
to define a range of integers (ranges reduce the state space).

49

6.2 The turntable model in Uppaal

In this chapter, we explain gradually how the χ processes can be represented as
Uppaal timed automata. First, we mention the main problems of the trans-
lation. Then, we describe the declaration of the channels, clocks and variables.
After that, we give the description of all Uppaal processes explaining how
χ process terms and operators were translated. When an element (process or
operator) first occurs its translation is explained in detail. We also mention
how the resulting timed automata can be simplified.

Translation problems As it was already mentioned, the translation of the
turntable model from χ into Uppaal timed automata given in this paper is
not formal. In some cases, the ways of translating different χ processes or
operators are specific for the turntable model and cannot be considered as
generic.

The main problem is the translation of the nested parallelism in the main control
process. The nested parallelism can be translated by dividing the process into
several parallel ones. The difficulty consists in the fact that main control can
continue working only when the parallel processes have finished. That means
that we have to use additional shared variables as flags and additional com-
munication. The more detailed description can be found in the main control
translation part.

The other difficulty lies in the translation of the maximal progress. In Uppaal
a delay can be performed only in locations (it is not a transition). That means
that all actions in Uppaal are delayable. To implement maximal progress
every transition must satisfy one of the following conditions:

• the transition contains urgent synchronization
• the transition has a clock guard with equality
• the transition has urgent or committed input location

Note that urgent locations and transitions cannot carry clock invariants or
guards.

Declaration As it was already mentioned, in Uppaal values cannot be
transmitted through channels. That is why we have to declare additional global
variables for every channel through which the value is passed. For instance, the
global boolean variable b UpdateS1 is used to transmit the values through the
channel cUpdateS1 . Note, that in the χ model some channels are used only for
synchronization and the values that are transmitted through these channels

50

are not actually used. To improve the readability and reduce the state space
these variables are not translated. All the channels are declared as the urgent
ones in order to implement maximal progress.

In the χ model we use the variables p0 , p1 , p2 , p3 to store the information
about the slots and the current product states. To improve the readability of
the model we declare the variables as an array (int [0 , 4] p[4] := {0 , 0 , 0 , 0}).
Note, that we define the range of the values that can be stored in the array
(from 0 to 4) because it also reduces the state space. This array is declared
globally, as well as four additional variables (bStartP0 , bStartP1 , bStartP2 ,
bStartP3). This is done in order to translate nested parallelism; more details
can be found in the description of the main control process.

The clocks and local variables are declared locally in the declaration part of
the corresponding processes.

The turn table process In the turn table process, the channels are mostly
used to transmit values. In that case, the corresponding transition consists
of the synchronization part with send or receive signal (for instance, cS1 ! or
cUpdateS1 ?) and the assignment part (for instance, b S1 := bS1 or bS1 := b S1
respectively). In the assignment part the new value is assigned to (or read
from) the corresponding global variable. In Uppaal the assignment part of the
sender is always executed before the assignment part of the receiver. Note,
that the value that is sent through the channels cEnvAdded and cRotate is
always true. This allows us to avoid the usage of additional global variables
while keeping the behavior of the model unaltered.

After the signal cRotate the process must delay. In Uppaal, a delay can be
performed only in a location. To translate the delay we have to declare the
clock (locally). Before the delay the clock must be reset to 0 in the assignment
part of the ingoing transition (clTurning := 0). Then, the process is allowed to
delay in the location. During the delay the value of the clock is increased and
the invariant on the location makes sure that the value of the clock will not
exceed the value of the timeout (clTurning 6 4). The guard (clTurning == 4)
on the outgoing transition ensures that the process delays in the location for
the exact number of time units and will not leave the location earlier (Figure
3, a).

In order to translate the sequential composition (cRotate ? bS2 ;∆4), the end
location of the timed automaton that corresponds to cRotate ? bS2 should be
merged with the input location of the timed automaton that corresponds to
the delay. The resulting timed automaton is depicted in Figure 3, b (note, that
the initial location is marked with double circle). As one can see, the merged
location is defined as a committed one, this is done to make sure that the

51

a) clTurning <= 4

b) clTurning <= 4

c) clTurning <= 4

clTurning := 0 clTurning == 4

cRotate?

bS2 := true clTurning := 0 clTurning == 4

cRotate?

bS2 := true,
clTurning := 0

clTurning == 4

Fig. 3. Delay and sequential composition

process will not delay in this location. In Uppaal several assignments can be
combined in the assignment part of the same transition. In this case, they are
performed sequentially. This possibility allows us to simplify the automaton
(Figure 3, c).

idle turning

clTurning <= 4

(*)

clTurning == 4
bS2:=false

cS1!
b_S1:=bS1

cEnvAdded?
bS1:=true

cUpdateS1?
bS1:=b_S1

Fig. 4. Alternative composition and repetition

In order to translate the alternative composition of the created timed au-
tomata we merged their input locations into the one and did the same with
their end locations (Figure 4). From the united input location the process can
perform transitions synchronizing with other processes. If there is no synchro-
nization available the process delays in the input location. If several of them
are available the choice is made in a non-deterministic way. This behavior
corresponds to the alternative composition in χ.

To translate the repetition operator, we need to add a transition that moves
the process from its end location to its input location. The transition is marked
with (∗) in Figure 4. Again, in order not to allow the process to delay in its
former end location this location is labeled as a committed one. Knowing
that the process must leave this location immediately we can get rid of it.
The translation of the part of the turn table process into the Uppaal timed
automaton is depicted in Figure 5.

The clamp process The translation of the clamp process is similar to the
translation of the turn table process. Note, that in the case of the sequential

52

idle

turning

clTurning <= 4

clTurning == 4
bS2:=false

cS1!
b_S1:=bS1

cEnvAdded?
bS1:=true

cUpdateS1?

Fig. 5. The translated part of the turn table process

composition of the delay and synchronization (∆2 ; cLocked ! true) we cannot
combine the clock guard (clClamp == 2) with the synchronization cLocked !
into one transition. The reason for it is that according to the χ semantics,
the process must perform synchronization after the delay if it is possible,
otherwise it can delay. On the other hand, in Uppaal it is not possible to
use clock guards on the urgent transitions and all channels in the model are
declared as urgent to comply with the maximal progress behavior (Figure 6).

Fig. 6. Sequential composition in the clamp process

The drill process The drill process actually consists of two independent
processes working in parallel. The first process is responsible for switching the
drill on/off and the second one performs drilling. Uppaal does not support
nested processes that is why we have changed the structure of the model.
There is no variable that is shared by the nested processes in the χ drill
process (the value of variable x has never been used) and the clamp process
does not perform any other action. For this reason we can safely divide this
process into two processes. The more complicated case of the nested processes
and its translation is explained in the description of the main control process.

The tester process In the χ tester process the atomic process skip is used.
In this case skip can be translated as a simple transition without any guards,
synchronization or assignment labels. In χ skip cannot delay. To make it non-
delayable in Uppaal the input location of the transition should be marked as
urgent.

The main control process The main control starts up the parallel adding,
drilling, testing and removing operations and waits for their results. This is
another case of the nested parallel processes. We cannot translate this process

53

in the same way as we have translated the drill process because those four
processes are not truly independent. First, they share variables that store the
information about the slot states. Second, main control starts them up and
after their completion it performs other operations sequentially. To translate
this process we have to define four additional processes (MC p0 - adding,
MC p1 - drilling, MC p2 - testing, MC p3 - removing) that will work in
parallel (Figure 7). To start them up from the main control process we use
the flags (bStartP0 , bStartP1 , bStartP2 , bStartP3) that are declared globally
as well as the array where the current slot states are stored.

Main control checks if the adding, drilling, testing and removing operations
can be performed and if they can, it sets the corresponding flags to true. The
flags are used as guards in the additional processes and as soon as they be-
come true, the corresponding synchronization via the channels cEnvCanAdd,
cStartTest, cStartDrill, cEnvCanRemove is performed. When the additional
processes get the signals that the corresponding operations are completed
(via the channels cEnvAddFinished, cDrillEnded, cTested, cEnvRemFinished),
they update the slot states if necessary (Figure 7).

After finishing the additional processes set the flags to false and main control
can continue the execution of the sequential part. Note, that after starting up
the nested processes the main process delays in the location till their comple-
tion. For this reason this location cannot be marked as urgent. To implement
maximal progress we add synchronization over the urgent channel cDummy
to the outgoing transition and a ”dummy” process that can perform only syn-
chronization on the channel cDummy. Note, that in general case the nested
processes can be synchronized with the main process by means of additional
channels instead of flags.

cEnvAddFinished?

bStartP0:=false

Fig. 7. The example of the additional processes of main control

According to the χ semantics of the guard operator, the guarded process can
perform an action if the guard is true and the process can perform the ac-
tion. In order to translate this behavior we need to combine the guard and the
guarded process in one transition (see the translation of p0 = 0 → cGetS1 ! true
in Figure 8).

After finishing the adding and removing operation main control requests the
current slot (sensors) states from the turntable controller (TTC). TTC passes

54

bStartP0:=(p[0]==c0),
bStartP1:=(p[1]==c1 or p[1]==c3),
bStartP2:=(p[2]==c2),
bStartP3:=(p[3]==c4)

not (bStartP0 or bStartP1 or bStartP2 or bStartP3)
cDummy?

cGetS1!
p[0]==c0

cSetS1?

p[0]:=c1
b_S1

!b_S1

p[0]!=c0
cDummy?

p[3]==c4 and bRemCalled
cGetS3!
bRemCalled:=false

cSetS3?

!b_S3
p[3]:=c0

b_S3

p[3]!=c4
cDummy?

s:=p[3], p[3]:=p[2], p[2]:=p[1], p[1]:=p[0], p[0]:=s

p[0]==c0 && p[3]==c0
n_Turn:=0

p[0]==c0 && p[3]!=c0
n_Turn:=1

p[0]!=0 && p[3]==0
n_Turn:=2

p[0]!=c0 && p[3]!=c0
n_Turn:=3

cTurn!
cTurned?

Fig. 8. The main control process

the request to the turn table process and gets the current states (cS1 !,b S1 :=
bS1 , cS3 !, b S3 := bS3). After that, it passes those slot states to main control
(cSetS1 !,cSetS3 !). Note, that we did not define additional shared variables to
pass the current slot states from TTC to main control. Instead, main control
reads the shared variables that have been updated by the turn table process.
We can do this safely because it is only the main control process that can
request to update the variables b S1 and b S3 , and it can read them only
after they have been updated by the turn table process. That means that the
situation, when one process wants to read from and another process wants to
write into the same shared variable, is not possible. Re-using the same variable
for several sequential communications allows us to reduce the state space by
decreasing the number of the shared variables and assignments. As it has been
explained before, the committed and urgent locations are used in order not to
allow the process to perform a delay.

55

The drill control, tester control, TTC and the environment pro-
cesses The rest of the processes have been translated according to the de-
scribed rules, so they do not require any additional explanation.

6.3 Verification of the model in Uppaal

The Uppaal model checking engine allows to automatically establish or re-
fute properties that are expressed in the Uppaal Requirement Specification
Language. This language is a subset of timed computation tree logic (TCTL),
where primitive expressions are location names, variables, and clocks from the
modeled system [35]. Uppaal performs verification on-the-fly and it is not
possible to learn how many states were generated. The Uppaal developers
created a tool named memtime to know how much time and how much mem-
ory the Uppaal model checker verifyta needs. Time and memory consumption
depends on the options of the model checker (search order, state space reduc-
tion technique, state space representation, state space re-use). Verification of
all properties of the turntable system requires 7.988 MB and 56.34 sec, if ag-
gressive state space reduction and breadth-first search order options are used
without re-using of the state space. Verification with conservative state space
reduction requires 20.527 MB and 55.29 sec. Verification without any state
space reduction requires 21.004 MB, 54.42 sec.

The state based properties like ”If drilling, testing, adding or removing op-
eration are started the turntable does not rotate in the meanwhile” or ”No
drilling, testing or removing operation take place if there is no product in the
slot and no adding operation can be performed if there is a product in the
corresponding slot” can be easily expressed as simple TCTL formulas.

The model checking of properties other than plain reachability (for instance,
bounded liveness) might be carried out in Uppaal by means of the test au-
tomata [37] or the ”decoration” method [38]. The latter can also be used to
prove unbounded liveness properties.

(1) The system does not contain a deadlock. The absence of a deadlock
can be easily proved in Uppaal using the TCTL formula
A[] not deadlock

(2) If drilling (testing, adding or removing) is started then it’s also
finished and the turntable doesn’t rotate in the meantime. Aux-
iliary processes MC p0, MC p1, MC p2, MC p3, that we used to translate
nested parallelism in the main control process, can be in the idle or in
progress (adding, drilling, testing or removing) locations. When the pro-
cess is in its progress location that means that corresponding action has
been started but is not finished yet. If the process is in its idle location
that means that it has not been started or it has been already finished.

56

This property we verify with the formula:
A[] (MC_p0.adding or MC_p1.drilling

or MC_p2.testing or MC_p3.removing)
imply not turn_table.turning

(3) If the product has a bad test result it remains on the table and
is drilled again. We can rephrase this property in the following way: a
product with a bad test result will be drilled again if not any product with
a bad test result can be removed or reach the testing position without
being drilled (considering that there is no product loss). First, knowing
that product with a bad test result is indicated by the constant 3, we
verify that it will not be removed:
A[] p[3] == 3 imply not MC_p3.removing

Then, we verify that the product with a bad test result will never reach
the testing position without being drilled again:
A[] MC_p2.testing imply p[2]!= 3

(4) If the product has a good test result then the remover will be
called to remove the product. In order to verify this property we
introduce a new boolean variable bRemCalled. This variable is set to
false before removing started and its value is changed to true when the
remover is called. Then, the value of the guard on the transition before
the turn has been changed in a way that if the product in the removing
position has a good test result and remover has not been called, the
system will be deadlocked. After that, we verify the first property again.

(5) No drilling (testing or removing) takes place if there is no prod-
uct in the slot and no adding can be performed if there is a
product in the slot. Knowing that the constant 0 indicates that there
is no product in the slot we verify this property using simple formulas:
A[] p[1] == 0 imply not MC_p1.drilling
A[] p[0] != 0 imply not MC_p0.adding

(6) Every added product is drilled in the next rotation. This property
can be proved in the way similar to the third property. Knowing that every
added product is indicated by the constant 1 and considering that there
is no product loss we express and verify this property using the formula
A[] MC_p2.testing imply p[2] != 1

(7) Every product eventually leaves the table Properties with fairness
cannot be verified in Uppaal.

(8) When a product is added it takes between 21 and 30 time units
to get its test result. This is so-called ”bounded liveness” property and
it can be verified in Uppaal by the means of test automata or decoration
method [38,37]. We have decided to use the decoration method because
it requires less changes of the model.

We need to identify the products in order to verify that the product
that has been added is tested. We know that there are four slots on the
turntable and each of them can contain no more than one product. We
also know that the products stay in the same slot till they are removed.

57

That means that we can use 4 integers to identify slots and if there is a
product in the slot it can be identified by the identifier of this slot.

To identify slots we use four integers 0 through 3 that are stored in
the array int[0, 3] id[4] := 0, 1, 2, 3. The values stored in the array are the
identifiers and the indexes of the array are the positions of the turntable,
i.e. id[2] == 3 means that the slot (product) with id == 3 is in the
testing position. Every time the turntable rotates, the slots move as well
and the values stored in the array are updated. It is sufficient to verify
the property for a product with one particular identifier.

The property ”When a product is added it takes between 21 and 30
time units to get its test result” actually consist of two properties: ”When
a product is added it takes 30 or less time units to get its test result”
and ”When a product is added it takes 21 or more time units to get its
test result”.

To verify the first property additional global clock clDec and boolean
variable bDec1 with initial value false have been declared. Then, we du-
plicate the transition with communication over the channel cEnvAdded in
the turn table process. We add the guard id[0] == 0 and the assignment
bDec1 := true, clDec := 0 to one of the duplicated transitions and the
guard id[0]! = 0 to the other one (the part of the modified turn table pro-
cess is shown in Figure 9). That means that when the product is added
to the slot with id == 0, the flag bDec1 is set to true and the clock clDec
is set to 0.

idle

turning

clTurning <= 4

clTurning == 4

bS2:=false

cS1!
b_S1:=bS1

cEnvAdded?

cid == id[0]

cid != id[0]

cEnvAdded?

bS1 := true

Fig. 9. The part of the modified turn table process

Then, we duplicate the transition with the communication over the
channel cTesterUpDone in the tester controller, and add the guard id[2] ==
0 and the assignment part bDec1 := false to one of them. We also add
the guard id[2]! = 0 to the other one (the part of the modified TC process
is shown in Figure 10). That means that the flag bDec1 is set to false
when the test of the product in the slot with the id == 0 is completed.

Now we can verify that if the flag bDec1 is true the clock clDec does
not exceed 30 time units.
A[] bDec1 imply clDec <= 30

The property ”When a product is added it takes 21 or more time units
to get its test result” is verified using the same approach.

58

Fig. 10. The part of the modified TC process

7 Comparisons and conclusions

In this section we present three tables to give an impression on the level of
difficulty concerning different aspects on translating the χ model and verify-
ing its properties. In the first table the number of states and transitions is
shown. Note that Uppaal does not generate the entire state space. The Up-
paal verifier required at most 7.988 MB during verification of all properties.
Comparing the sizes of the state spaces generated by Spin and µCRL we can
conclude that the translation to µCRL provides us with a state space which
is smaller than the one provided by Spin, though the state space generated
by µCRL requires more memory to be stored.

Table 1
State space comparison`````````````̀Tool

State space
states # transitions MB used

Spin 100995 188724 5.8975

CADP(µCRL) 25926 50835 (τ : 12957) 7.332

Uppaal - - 7.988

The second and third table use a grading system which should be read as
follows:

• 0: Impossible. Due to differences between the two modeling languages or
the limitations of the temporal logic it is impossible to do this.

• 1: Difficult. For Table 2, translation is not straightforward but can be done
using special techniques; for Table 3, verification cannot be done straight-
away, involves changing the model a lot.

• 2: Needs some work. For Table 2, translation is not completely straight-
forward, but it does not require special techniques; for Table 3, only slight
changes in the model are needed to verify this property.

• 3: Easy. Translation or verification can be done easily.

59

The second table tells us how difficult it is to translate certain χ constructions
in our case study (possibilities not mentioned here do not pose problems for
any of the translations). Both translating to Promela and µCRL can be
difficult under some circumstances, but translating to Uppaal on the other
hand never gets really difficult in our case. These results tell us that, at least
concerning the turntable model, Uppaal is the best choice when selecting a
language based on the difficulty to translate to this language.

Table 2
Comparison of translation problems
`````````````̀Language

Problems
Assignments Delays Guards

Nested
parallelism

Shared
variables

Promela 3 2 1 1 3

µCRL 2 1 3 2 1

Uppaal t.a. 3 3 3 2 3

The third table finally shows how difficult it is to express and verify the prop-
erties of the turntable using the tools. In this table for each property (using
the numbering as in previous parts of this article) the type (safety, liveness,
liveness + fairness, liveness + time) is given. What stands out is that prop-
erty 7 is difficult or even impossible to verify in either tool. Property 8 is
very hard to verify in Spin due to the fact that time is hard to be referred
to when expressing properties. In Uppaal and CADP verifying this property
still needs some work. This is not due to problems with time, but because in
order to prove the property at least some products need to be uniquely identi-
fiable. Overall we conclude that CADP provides the least number of problems
concerning the verification of the properties.

Table 3
Comparison of the verification

XXXXXXXXXXXTool
Property

1(s) 2(l) 3(l) 4(l) 5(s) 6(l) 7(l+f) 8(l+t)

Spin 3 2 2 2 3 2 1 1

CADP(µCRL) 3 3 3 3 2 3 1 2

Uppaal 3 3 3 2 3 3 0 2

All three formalisms are suitable for the analysis of systems that are originally
modeled in χ. When translating we discovered that certain statements have
straightforward translations in one language while they have not in another.
For example, assignments exist in the same way in χ, Promela and Uppaal,
while in µCRL they are represented differently. Additionally, some constructs
like, for example, the parallel operator with shared variables inside the process
definition, we find very hard to achieve in each language, for different reasons.

To reason about the values of variables (state values) in CADP (using reg-

60



ular, alternation-free µ-calculus) one must extend the model with additional
actions that make these values visible. This con of CADP makes the linear
temporal logic, built in Spin, and the timed computation tree logic, built
in Uppaal, more appropriate when reasoning about states than the regu-
lar, alternation-free µ-calculus used in CADP, even though the latter is more
powerful. Action-based properties could be verified in Spin as well, by the
trace-assertion mechanism. In Uppaal proving such properties can be done
using test automata or a decoration technique. When it comes to the fairness
principle, µ-calculus and Spin can express it in a very effective way while in
Uppaal the use of the fairness principle is impossible.

Finally, the graphical user interface makes modeling and verifying in Uppaal
more comfortable than in µCRL. We also find XSpin, a graphical user interface
for Spin, very useful.

Related work

• In the article [17] one of the first attempts to verify a χ model by man-
ual translation to DTPromela and applying the model checker DTSpin
is described. It dealt with a model of an industrial system and had three
objectives. The first objective was to investigate the ability to verify trans-
lated χ models with the model checker DTSpin. The second objective was
to find out whether there are opportunities to automatically translate χ
models into DTPromela. And the third objective was to verify formally
some properties of a manufacturing system model.

• In an article by Y.S. Usenko [39] Spin and µCRL are compared using the
HAVi leader election protocol. Concerning the generation of a state space
for a specification of this protocol, it was concluded that Spin generates
states faster, but the resulting state space has more states. On the other
hand, according to the article, the state space generation capabilities of
Spin and the µCRL toolset cannot be compared due to the differences in
the underlying languages. Furthermore, the results may be misleading, so
the author tells us, due to the fact that the Promela code was derived from
the µCRL code instead of from the informal description. The article ends
by saying that a better comparison may be achieved using much smaller
case studies.

• The article by H.E. Jensen, K.G. Larsen and A. Skou [40] is on comparing
Spin and Uppaal using a collision avoidance protocol as a case study. In the
paper it is indicated that it is possible to model real-time systems and their
broadcast behavior in Uppaal and it cannot be done in Spin. The kind
of properties expressible in the Uppaal requirement specification language
are restricted to invariance and possibility properties. It is possible to verify
bounded liveness properties in Uppaal, though they need to be expressed
as separate test automata.

61



Future work

• Formulating general translation schemes from χ to input languages for
model checkers;

• Investigating how current stochastic tools can be used to determine per-
formance characteristics of χ models and comparing the results with those
coming from the χ simulator;

• Investigating theorem proving capabilities of different verification tools, with
respect to χ.

62



References

[1] R.R.H. Schiffelers, D.A. van Beek, K.L. Man, M.A. Reniers, and J.E. Rooda.
Syntax and Formal Semantics of Hybrid Chi. Technical report, Eindhoven
University of Technology, Department of Computer Science, 2004. To be
published.

[2] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu. CADP - a protocol validation and verification toolbox. In
Proceedings 8th Conference on Computer Aided Verification (CAV’96), volume
1102 of Lecture Notes in Computer Science, pages 437–440, 1996.

[3] G.J. Holzmann. The SPIN model checker. Addison-Wesley, 2003.

[4] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[5] D.A. van Beek, A. van der Ham, and J.E. Rooda. Modelling and Control of
Process Industry Batch Production Systems. In 15th Triennial World Congress
of the International Federation of Automatic Control, Barcelona, Spain, CD-
ROM, 2002.

[6] V. Bos and J.J.T. Klein. Formal Specification and Analysis of Industrial
Systems. PhD thesis, Eindhoven University of Technology, 2002.

[7] R.R.H. Schiffelers, D.A. van Beek, K.L. Man, M.A. Reniers, and J.E. Rooda.
A Hybrid Language for Modeling, Simulation and Verification. In IFAC
Conference on Analysis and Design of Hybrid Systems, Saint-Malo Brittany,
France, 2003.

[8] R.R.H. Schiffelers, D.A. van Beek, K.L. Man, M.A. Reniers, and J.E. Rooda.
Formal semantics of hybrid chi. In First International Workshop on Formal
Modeling and Analysis of Timed Systems, Lecture Notes in Computer Science,
Marseille, France, 2003.

[9] TIPSy Project Website. http://se.wtb.tue.nl/∼awijs.

[10] W.J. Fokkink, J.F. Groote, and M. Reniers. Modelling Distributed Systems.
Unpublished manuscript, 2002.

[11] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1-3):109–137, 1984.

[12] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in
Theoretical Computer Science 18. Cambridge University Press, 1990.

[13] W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, 2000.

[14] R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for
Regular Alternation-Free Mu-Calculus. Science of Computer Programming,
46(3):255–281, 2003.

63

http://se.wtb.tue.nl/~awijs�


[15] R. Alur, C. Courcoubetis, and D. Dill. Model Checking in Dense Real-Time. In
Proc. of the 5th IEEE Symposium on Logic in Computer Science. LICS, 1990.

[16] A.T. Hofkamp and H.W.A.M. van Rooy. Embedded Systems Laboratory
Exercises Manual, 2003.

[17] V. Bos and J.J.T. Kleijn. Automatic verification of a manufacturing system.
Robotics and Computer Integrated Manufacturing, 17:185–198, 2001.

[18] R.R.H. Schiffelers, D.A. van Beek, K.L. Man, M.A. Reniers, and J.E. Rooda.
Discrete-event subset of χσh

. Eindhoven University of Technology.

[19] R. Gerth. Concise Promela Reference. Online document: http://spinroot.
com/spin/Man/Quick.html.

[20] G.J. Holzmann. The Model Checker Spin. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997.

[21] B.W. Kernighan and D.M. Ritchie. The C Programming Language, Second
Edition. Prentice-Hall, 1988.

[22] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs, NJ, 1985.

[23] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
NJ, 1976.

[24] D. Bošnački. Enhancing State Space Reduction Techniques for Model Checking.
PhD thesis, Eindhoven University of Technology, 2001.

[25] J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types.
Wiley-Teubner, Chichester, Stuttgart, 1996.

[26] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and
J.C. van de Pol. µCRL: A Toolset for Analysing Algebraic Specifications.
In Proceedings 13th Conference on Computer Aided Verification (CAV2001),
volume 2102 of Lecture Notes in Computer Science, pages 250–254, 2001.

[27] S. Owre, J.M. Rushby, and N. Shankar. PVS: a Prototype Verification System.
In Proceedings 11th Conference on Automated Deduction (CADE’92), volume
607 of Lecture Notes in Computer Science, pages 748–752, 1992.

[28] W.J. Fokkink, J.F. Groote, J. Pang, and B. Badban. Verifying a Sliding Window
Protocol in µCRL. Technical Report SEN-R0308, CWI, 2003.

[29] J.F. Groote, F. Monin, and J.C. van de Pol. Checking verifications of protocols
and distributed systems by computer. In Proceedings 9th Conference on
Concurrency Theory (CONCUR’98), volume 1466 of Lecture Notes in Computer
Science, pages 629–655, 1998.

[30] B. Luttik. Choice Quantification in Process Algebra. PhD thesis, University of
Amsterdam, 2002.

64

http://spinroot.com/spin/Man/Quick.html�
http://spinroot.com/spin/Man/Quick.html�


[31] J.F. Groote. The Syntax and Semantics of timed µCRL. Technical Report
SEN-R9709, CWI, Amsterdam, 1997.

[32] S.C.C. Blom, N. Ioustinova, and N. Sidorova. Timed verification with
µCRL. In Andrei Ershov Fifth International Conference Perspectives of System
Informatics, volume 2890 of Lecture Notes in Computer Science, pages 178–192,
2003.

[33] M. Bezem and J.F. Groote. Invariants in Process Algebra with Data. In
CONCUR ’94: Concurrency Theory, volume 836 of Lecture Notes in Computer
Science, pages 401–416, 1994.

[34] R. De Nicola and F. Vaandrager. Three Logics for Branching Bisimulation.
Journal of the ACM, 42(2):458–487, 1995.

[35] M.O. Möller. Structure and Hierarchy in Real-Time Systems. PhD thesis,
University of Aarhus, 2002.

[36] F. Larsson, K.G. Larsen, P. Pettersson, and W. Yi. Efficient Verification of
Real-Time Systems: Compact Data Structures and State-Space Reduction. In
Proc. of the 18th IEEE Real-Time Systems Symposium, pages 14–24. IEEE
Computer Society Press, 1997.

[37] L. Aceto, P. Bouyer, A. Burgueño, and K.G. Larsen. The Power of Reachability
Testing for Timed Automata. Theor. Comput. Sci., 300(1-3):411–475, 2003.

[38] M. Lindahl, P. Pettersson, and W. Yi. Formal Design and Analysis of a Gear
Controller. IEEE Transactions on Software Engineering, 3:353–368, 2001.

[39] Y.S. Usenko. State space generation for the HAVi leader election protocol. Sci.
Comput. Program, 43(1):1–33, 2002.

[40] H.E. Jensen, K.G. Larsen, and A. Skou. Modelling and Analysis of a Collision
Avoidance Protocol using SPIN and Uppaal. In Proceedings of the 2nd SPIN
Workshop, Rutgers University, New Jersey, USA, 1996.

65


	Abstract
	1. Introduction
	2. Turntable description
	3. The turntable model in X
	4. Promela/Spin
	5. MuCRL/CADP
	6. Uppaal
	7. Comparisons and conclusions
	Future work
	References

