
Cámara, Canal, and Salaün (Eds.)
Component and Service Interoperability (WCSI10)
EPTCS 37, 2010, pp. 42–56, doi:10.4204/EPTCS.37.4

c© R. Ameur-Boulifa, L. Henrio, and E. Madelaine
This work is licensed under the
Creative Commons Attribution License.

Behavioural Models for Group Communications

Rabéa Ameur-Boulifa
System-on-Chip Laboratory (LabSoC), Telecom Paristech, Sophia Antipolis, France

Rabea.Ameur-Boulifa@telecom-paristech.fr

Ludovic Henrio and Eric Madelaine
INRIA, CNRS, I3S, University of Nice Sophia-Antipolis, Sophia Antipolis, France

Ludovic.Henrio@sophia.inria.fr and Eric.Madelaine@sophia.inria.fr

Group communication is becoming a more and more popular infrastructure for efficient distributed
applications. It consists in representing locally a group of remote objects as a single object accessed
in a single step; communications are then broadcasted to all members. This paper provides models
for automatic verification of group-based applications, typically for detecting deadlocks or checking
message ordering. We show how to encode group communication, together with different forms
of synchronisation for group results. The proposed models are parametric such that, for example,
different group sizes or group members could be experimented with the minimum modification of
the original model.

1 Introduction

Group communication is a communication pattern allowing a single process to perform a communica-
tion to many clients in a single instruction, this operation can be synchronized or optimized accordingly.
Nowadays group communication is widely used in distributed computing particularly in grid technolo-
gies [27]. Objects can register to a group and receive communications handled in a collective way. Group
membership is transparent to the receiver that simply handles requests it receives. Group communications
are also easy to handle on the sender side because a simple invocation can trigger several communica-
tions. Communication parameters are sent according to a distribution policy; they can be for example
broadcasted or split between the members of the group. Several middleware platforms and toolkits for
building distributed applications implement one-to-many communication mechanisms [1, 6, 23].

This paper addresses the crucial point of reliability of distributed applications using group commu-
nications. The most frequent reliability issue for distributed application is to be able to detect deadlocks,
in the case of group, a dead lock can occur for example when a member of the group does not answer
to its requests while the request sender is waiting for all the results. Such an absence of response might
be due to an issue in message ordering for example. In order to enhance reliability of group applications
we develop methods for the analysis and verification of behavioural properties of such applications, our
method can be applied with automatic tools.

A first contribution of this paper is to provide a model allowing the verification of the behaviour of
group-based applications, in other words, we provide a verifiable model for group communication. We
also illustrate our approach by specifying an application example, instantiating the verifiable model, and
proving a few properties.

To precisely define the semantics of group communications, we focus on a specific middleware
called ProActive [2]. ProActive provides a high-level programming API for building distributed applica-
tions, ranging from Grid computing to mobile applications. ProActive offers advanced communication

http://dx.doi.org/10.4204/EPTCS.37.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 43

strategies, including group communication [31, 6]. In ProActive, remote communication relies on asyn-
chronous requests with futures: upon a call on a remote entity, a request is created at the receiver side,
and a future is created on the sender side that will be filled when the remote entity provides an answer.
What make the handling of groups particular in ProActive is the necessity to also gather and manage
replies for requests sent to the group. Synchronisation on futures is generally transparent: an access
to a future blocks until the result is computed and returned. However, synchronisation on group of fu-
tures, that represent the result of a group invocation, features more specific and complex synchronization
primitives. Consequently, our model also encodes different synchronisation policies.

In [8] we have defined a parameterized and hierarchical model for synchronised networks of labelled
transition systems. We have shown how this model can be used as an intermediate format to represent the
behaviour of distributed applications, and to check their temporal properties. In this paper, we present a
method for building parameterized models capturing the behavioural semantics of group communication
systems; models are the networks of labelled transition systems, whose labels represent method invo-
cations. The language we chose is pNets; it is an intermediate language: the models we present here
should be generated, either from source code or from a higher-level specification. PNets themselves are
then used to generate a model in a lower-level language that will be used for verification of the program
properties. In this paper the advantage of choosing such an intermediate language are the following:
compared to a higher-level language, pNets are precise enough to define a behavioural semantics, and
compared to lower level languages, they provide parameterized processes and synchronization which
allow the expression of the models in a generic manner.

Our approach aims at combining compositional description with automatic model generation. The
formal specification consists in a labelled transition system and synchronisation networks, in which
both events (messages) and processes (group members) can be parameterized and built from a graphical
language. On one hand, having a well-defined semantics made the specification sound; on the other hand,
having a framework based on process algebras and bisimulation semantics made possible to benefit from
compositionality for specification and verification [10]. Parametric synchronisation vectors also allow
us to envision the modelling of dynamic groups with members joining or leaving the group.

Related Work Some work has been done to formally verify properties in group-based applications.
Some of these verifications deal with safety properties, while others remain limited to a case study. In
[22] the formal verification of cryptographic protocols is proposed. It used model-checking tool to verify
confidentiality and confidentiality properties. Model-checking was also used to verify behavioural and
dependability properties [28]. The authors adopted Markov chains to specify the studied protocols. By
using a combination of inductive poofs and probabilistic model checking [24] verified a randomized
protocols. In the same way, [25] used a combination PVS theorem prover and model-checker based on
timed-automata for formal verification of an intrusion-tolerant protocol. [7] presented a simple deadlock
detection mechanism caused by circular synchronous group remote procedure calls. In contrast with all
these, we limit ourselves to apply finite model-checking techniques to abstract semantic models. Our
pNets semantic model is very helpful in this matter, providing us with a very expressive and compact
formalism, but where the usage of parameters is limited in a way that can be easily abstracted to finite
instances.

Group-based systems as well as parameterized systems are particular infinite systems in the sense
that each of their instances are finite but the number of states of the system depends on one or several
parameters. Among these parameters we can distinguish: data structures or variables (e.g., queues,
counters), number of components involved in the system, ... Automatic verification of such systems has

44 Behavioural Models for Group Communications

to face state explosion problem. A variety of techniques to alleviate state explosion has been investigated.
We can cite: techniques based on abstraction [26, 16]; techniques based on finding network invariants
[20, 32, 15, 30], which can (possibly-over) approximate the system with an infinite family of processes.
Others [18, 19] based on finding an appropriate cut-off value of the parameters to bound the system
model. For automatic verification of infinite-state systems [13, 3] propose regular model checking. The
approach is based on the idea of giving symbolic representation in term of regular languages. Our work
tries to take the best of these approaches: whenever possible, we use property-preserving abstractions
to build very small (abstract) data domains for the parameters of the basic processes of our systems;
but for parameterized topologies such abstractions are not generally complete, so we have to use cut-off
strategies as in bounded model-checking.

In the following of the paper, Section 2 overviews ProActive communication model and group con-
cepts, and introduces a running example. Section 3 presents our theoretical model and its graphical
syntax. Section 4 provides a behavioural model for group communication and synchronisation. Section
5 shows our verification methodology, with experimental results on state-space generation and verifica-
tion of properties.

2 The ProActive communication model

ProActive is an LGPL Java library [2] for parallel, distributed, concurrent applications. It is based on
an active object model, where active objects communicate by asynchronous method invocation (called
requests) with futures: upon a method invocation on an active object, a request is enqueued at the re-
mote object’s side, and a future is automatically created to represent the result of the request while the
caller continues its execution. Active objects are mono-threaded and treat the incoming invocations one
after the other, returning a value for the request at the caller as soon as a request is finished. As remote
invocations and future creation are handled transparently, the programmer can write distributed appli-
cations in a much similar manner to standard sequential ones. In ProActive there is no shared memory
between active objects to prevent data race-conditions; consequently, a copy of the request arguments
are transmitted to the remote active objects.

2.1 ProActive Groups

In this paper, we focus on the group communication mechanism offered by ProActive [6]. Groups in
ProActive work as follows: a group of active objects is a set of active objects that behaves as follows.
First, a method invocation on the group results in a remote invocation to all the members of the group
in parallel. Second, a list of futures is automatically created to receive the results returned by the group
members. Groups are typed as usual objects, and thus invocations to a group are made transparently, as
any object invocation. This way, specific primitives for groups are only group creation and management,
and thus code modification to handle group communication is minimal. In ProActive, groups are dynamic
in the sense that objects can join or leave the group at runtime. The main ProActive primitives for
handling groups are the following:

• Group ProActive .newActiveGroup(String Type) creates a new group of the type “Type”.

• void Group.add(Object o) adds an object to a group.

• void Group.remove(int index) Remove the object at the specified index.

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 45

2.2 Synchronisation for ProActive Groups

For classical active objects, synchronisation occurs as follows: a simple access to the future representing
the result of a request automatically blocks until the result is computed, and the future is filled. For
a group invocation, there is one result by group member, those results are stored in a group of futures.
Synchronizing on a group of futures is more complex, here are 3 synchronization primitives of ProActive:

• void ProActiveGroup.waitAll (Object FutureGroup) blocks until all the futures of the group return.

• void ProActiveGroup.waitN(Object FutureGroup, int n) waits until n futures are returned.

• Object FutureListGroup .waitAndGetTheNth(Object FutureGroup, int n) waits for the result from the
n-th member and returns it.

2.3 Example

To illustrate group communication, we consider an application synchronising meetings, it consists of a
master initiator and several clients that contain the agendas of the participants. The initiator suggests a
date to all participants that reply whether they are available or not. For this, we define a class Participant :

p u b l i c c l a s s P a r t i c i p a n t {
Booolean s u g g e s t D a t e (Date d) { . . . }
Boolean v a l i d a t e () { . . . }
void c a n c e l () { . . . }

}

The following code can be implemented by the initiator to coordinate the meeting:

p u b l i c s t a t i c vo id main (. . .) {
. . . .
/ / group c r e a t i o n

P a r t i c i p a n t p a r t i c i p a n t s = P r o A c t i v e . newAct iveGroup ("Participant") ;
. . .

/ / we p o p u l a t e t h e group by add ing one or s e v e r a l e l e m e n t
p a r t i c i p a n t = P r o A c t i v e . n e w A c t i v e ("Participant" , n u l l) ;
p a r t i c i p a n t s . add (p a r t i c i p a n t) ;
. . .
whi le (t rue) {

/ / t h e n we s u g g g e s t a d a t e t o a l l members s i m p l y by :
O b j e c t answers = p a r t i c i p a n t s . s u g g e s t D a t e (d a t e) ;
. . .

/ / c o l l a t e R e s u l t s g e t s t h e r e s u l t and p r o v i d e s an o v e r a l l r e s u l t ,
/ / e . g . r e t u r n s t r u e i f a l l f u t u r e s are t r u e

i f (c o l l a t e R e s u l t s (answers , ProAc t i veGroup . s i z e (p a r t i c i p a n t s))) {
O b j e c t f = p a r t i c i p a n t s . v a l i d a t e () ; / / v a l i d a t e t h e m e e t i n g
w a i t A l l (f) ; / / w a i t s u n t i l e v e r y b o d y acknowledged v a l i d a t i o n
}

e l s e
p a r t i c i p a n t s . c a n c e l () ; / / c a n c e l t h e m e e t i n g

. . . }
}

This example illustrates well the different mechanisms of group management and communication:
first an empty group is created (newActiveGroup), then it is populated by several Participant objects.

46 Behavioural Models for Group Communications

Thus when the initiator invokes suggestDate on the group, this broadcasts a meeting request to all the
members. Then the members reply, which fills the futures contained in the group of futures answers.
The local method collateResults synchronises the returns from all these invocations. Validate or cancel
is broadcasted to all the group members depending on the result of the preceding step. To illustrate
more synchronization mechanisms, the initiator waits until all participants acknowledge the validation.
A possible implementation of the collateResults method is the following:

boolean c o l l a t e R e s u l t s (O b j e c t ans , i n t s i z e) {
boolean r e s u l t = t rue ;
f o r (i n t i =0 ; i < s i z e ; i ++) {

i f (! ProAc t i veGroup . wai tAndGetTheNth (ans , i)) r e s u l t = f a l s e ;
}
re turn r e s u l t ;
}

Fig. 1 illustrates the mechanism of group communication as implemented in ProActive. A method
call to a remote activity goes through a proxy, that locally creates “future” objects, while the request goes
to the remote request queues.

Active object Active object A

Remote node

Active object A

Remote node

Active object A

Remote node

futur 1 futur 2 futur 3

result group

Local node

proxy

Figure 1: Asynchronous and remote method call on group

3 Theoretical Model

In [8] we have proposed a formalism to represent the behavior of distributed applications. Behavior of
complex systems can be represented hierarchically by composition of classical LTSs [29]. Those LTSs
are composed using synchronisation Networks (Net) [4, 5] so that the synchronisation product generates
a LTS which can be used at the higher level of hierarchy. Finally the behavior of the system can be
expressed by a global LTS. We have also shown that this model can be used as an intermediate format to
check behavioral properties like temporal ones.

To encode both families of processes and data value passing communication LTSs and Nets are
enriched with parameters [14]. Parameters can be used as communication arguments, in state definitions,
and in synchronisation operators. This enables compact and generic description of parameterized and

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 47

dynamic topologies. In the following we recall definitions of the parameterized Networks of synchronised
automatas (pNets) as given in [8]. We start by giving the notion of parameterized actions.

Definition 1 Parameterized Actions. Let P be a set of names, LA,P a term algebra built over P, includ-
ing at least a distinguished sort A for actions, and a constant action τ. We call v ∈ P a parameter, and
a ∈ LA,P a parameterized action, BA,P is the set of boolean expressions (guards) over LA,P.

A describes the possible actions representing interactions between processes. Main actions of our sys-
tem are illustrated in bold fonts in Figure 2. The typical shape of an action is !Participant[i].Q Suggest(f,Date)
for a message Q Suggest sent to the member number i of the process family Participant. f and Date are
the message parameters, here f is the future for the request, and Date the request parameter. ! indicates an
emission, and ? a reception. In most cases the destination of the message can be inferred by the context,
and in the figure by the destination of the arrows, in that case, the actions look like ?Q Cancel().

Definition 2 pLTS. A parameterized LTS is a tuple 〈P,S,s0,L,→〉 where:

• P is a finite set of parameters, from which we construct the term algebra LA,P,

• S is a set of states; each state s ∈ S is associated to a finite indexed set of free variables fv(s) =
x̃Js ⊆ P,

• s0 ∈ S is the initial state,

• L is the set of labels,→ the transition relation→⊂ S×L×S

• Labels have the form l = 〈α, eb, x̃Js′:= ẽJs′ 〉 such that if s l−→ s′, then:

- α is a parameterized action, expressing a combination of inputs iv(α) ⊆ P (defining new
variables) and outputs oe(α) (using action expressions),

- eb ∈ BA,P is the optional guard,
- the variables x̃Js′ are assigned during the transition by the optional expressions ẽJs′

with the constraints: fv(oe(α))⊆ iv(α)∪ x̃Js and fv(eb)∪ fv(ẽJs′)⊆ iv(α)∪ x̃Js ∪ x̃Js′ .

We defined Networks of LTSs called Nets in a form inspired by the synchronisation vectors of Arnold
and Nivat [4], that we use to synchronise a (potentially infinite) number of processes. The Nets are
extended to pNets such that the holes can be indexed by a parameter, to represent (potentially unbounded)
families of similar arguments.

Definition 3 A pNet is a tuple 〈P, pAG,J, p̃J, ÕJ,
−→
V 〉 where: P is a set of parameters, pAG ⊂ LA,P is its

set of (parameterized) external actions, J is a finite set of holes, each hole j being associated with (at
most) a parameter p j ∈ P and with a sort O j ⊂ LA,P.

−→
V = {−→v } is a set of synchronisation vectors of the

form: −→v = 〈ag,{αti}i∈I,t∈Bi〉 such that: I ⊆ J∧Bi ⊆Dom(pi)∧αti ∈ Oi∧ fv(αti)⊆ P

Each hole in the pNet has a parameter p j, expressing that this “parameterized hole” corresponds
to as many actual processes as necessary in a given instantiation of its parameter. In other words, the
parameterized holes express parameterized topologies of processes synchronised by a given Net. Each
parameterized synchronisation vector in the pNet expresses a synchronisation between some instances
({t}t∈Bi) of some of the pNet holes (I ⊆ J). The hole parameters being part of the variables of the action
algebra, they can be used in communication and synchronisation between the processes.

Figure 2 gives an illustration of a graphical representation of a parametrized system in our interme-
diate language. It shows a meeting system with a single initiator and an arbitrary number of participants.

48 Behavioural Models for Group Communications

R_Validate(...)

Participant[i]

Meeting

!R_Suggest(c,i,val)?R_Suggest(i,val)

R_Suggest(val)

Initiator(G:int)

!Q_Validate()

?Q_Validate()

!Q_Cancel()
?Q_Cancel()

Q_Cancel()

!Participant[i].Q_Suggest(f,Date)
?Q_Suggest(f,Date)

!R_Validate(...)

?R_Validate(...)

Q_Suggest(Date)

Q_Validate()

i:[1..G]

Figure 2: Graphical representation of a parameterized network

The parameterized network is represented by a set of three boxes, INITIATOR and PARTICIPANT boxes
inside MEETING box (hierarchy). Each box is surrounded by labelled ports encoding a particular Sort
(sort constraint pAG) of the corresponding pNet. The box will be filled with a pLTS or another pNet (see
Fig. 4) satisfying the Sort inclusion condition (L⊆ pAG). The ports are interconnected through edges for
synchronization. Edges are translated to synchronisation vectors. In previous works we only had single
edges with simple arrows having one source and one destinations, which were translated into synchroni-
sation vectors of the form (R Validate(),!R Validate(),?R Validate()) expressing a rendez-vous
between actions !R Validate() and ?R Validate(), visible as a global action R Validate(). Next
section details synchronisation vectors for the multiple arrows we use in our example.

4 Behavioural Model for ProActive Groups

In [9] we presented a methodology for generating behavioural model for ProActive distributed applica-
tions, based on static analysis of the Java/ProActive code. This method is composed of two steps: first
the source code is analysed by classical compilation techniques, with a special attention to tracking refer-
ences to remote objects in the code, and identifying remote method calls. This analysis produces a graph
including the method call graph and some data-flow information. The second step consists in applying a
set of structured operational semantics (SOS) rules to the graph, computing the states and transitions of
the behavioural model.

The contribution of this paper is to extend our previous with support for group communication and
complex synchronizations related to group communication.

The behavioural model is given as a pNets, which we use as an intermediate language. We express

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 49

CO:
Q_Suggest (date) R_Suggest (val)

BC:

service

client

services(i)

i ∈ Di ∈ D

Figure 3: Graphical representation of broadcasting operator

here the semantics of group communication in this intermediate language and show how behaviour of
application including group communications with various synchronisation policies can be expressed.

4.1 Modeling complex synchronisations

In order to encode the simultaneity of several message reception/sending, we use a particular kind of
proxy and N-ary synchronisation vectors. In Fig. 3 we give a graphical notation for two operators, the
ellipse on the left shows a broadcasting operation, and the one on the right show a collection operation.

The first operator that is in charge of broadcasting requests to multiple processes. It is represented
by an ellipse with one link arriving from a process, and a set of link departing from the ellipse. The
incoming action is triggered as the same time as all the outgoing ones: in the example the output of the
client is triggered at the same time as the input in the service on the left, and the input in all the services
on the right (the dotted arrow denotes a multiple link). We extend parameterized vectors to support the
multicasting communication.

For broadcasting, we introduce the BC operator to encode a family of synchronized processes. The
vector <Q suggest, !Q suggest(date),BC i∈D.?services[i].Q suggest(date),?service.Q suggest(date)>
indicates the synchronisation between one instance of the network 1 (client), a given number of network
2 (services), and another service process. The synchronisation is an observable action labeled Q suggest.
The parameter i ranges in the domain D . For instance, if D = [0..1], then the vector is expanded to:
< Q suggest, !Q suggest(date),?services[0].Q suggest(date),?services[1].Q suggest(date),?service.Q suggest(date)>.

The operator on the right side collects communications: it synchronizes one of its input with its single
output. For encoding such a synchronisation, we introduce the CO operator to encode a set of synchroni-
sation vectors. The vector < R suggest(val),?R suggest(i,val),COi ∈ D. !services[i].R suggest(val) >
indicates the synchronisation between a R suggest action in the network 1 (client) and an output of one
of the network 2 (services). For instance, with D = [0..1], this vector is expanded to several vectors:
< R suggest(val),?R suggest(0,val), !services[0].R suggest(val),∗>
< R suggest(val),?R suggest(1,val),∗, !services[1].R suggest(val)>

Those two synchronisation mechanisms will be further illustrated in the encoding of the example.

4.2 Modeling the Example

We describe now the behavioural model for our example application, especially focusing on the modeling
of group proxies, and the communications involving groups. The full model for our example is shown in

50 Behavioural Models for Group Communications

Fig. 4. The model is split into two parts interconnected by parameterized synchronization vectors.

• The initiator encodes a client side behaviour. The Initiator contains a body encoding an abstraction
of the functional code, and the group proxies. For each remote method call in the Initiator code
there is a parameterized group proxy, representing an unbounded number of future proxy instances.
The body repeatedly suggest a date and either cancel or validate depending on the answers.

• The participants encodes the server side behaviour. They are modelled by an indexed family of
processes, each representing the behaviour of one element of the group, with its request queue, its
body serving requests one after the other in a FIFO order, and the code of its local methods.

A Proxy pNet (box) is created for each remote method invocation. The Proxy is indexed by the
program point (c) where the method is called. The Proxy pNet models the creating and the management
of the group of futures: Once the group of future is created, futures can be received one after the other,
and each already received future can be accessed. It is also possible to wait until N answers are received.

For each remote method call of the Initiator, a broadcast node, synchronizes the sending of the
method call by the initiator body, the initialisation of the corresponding future, and the reception of the
request message in the queues of each of the participants in the group.

Concerning the user code, the Body boxes in Fig. 4 represent the behaviour of the main method
of each active object, again on the form of a pLTS. The code for each method (e.g. Validate) is also
expressed by a pLTS, and triggered when serving the corresponding request, or by direct invocation like
collateResult. Each of them is either obtained by source code analysis, or provided by the user.

As it is the only object to act as a server, the participant has a Queue box. The corresponding pLTS
encodes a FIFO queue of request that is accessed by the participant’s body, and filled when the initiator
sends a request. The queue can be given a maximum length and raise an error if it is overflowed.

4.3 Variations on group synchronisations

ProActive provides various primitives (see Section 2.2) allowing the programmer to control explic-
itly the synchronization of asynchronous methods calls by waiting the incoming replies. The network
Proxy suggest in Fig. 4 specifies three kinds of these primitives: waitAll, waitN and waitAndGetTheNth.
Those three primitives show the different synchronisations that our group proxies can express: counting
the number of returned objects, or returning a specific result. They are encoded very naturally using a
table of received results, and the number N of results already returned. Those information are updated
when receiving messages from a collection (CO) of different results as explained in Section 4.1. Addi-
tionally to those primitives, one could also use a waitOne primitive waiting for one result, no matter of
which it is; this primitive could be encoded with a little more effort by our proxy, but we do not present
it because it is not used in our example and we believe it is less crucial than the others. waitOne is useful
in the case several workers perform the same task, and only one result is necessary.

5 Verification and Results

In principle, the steps for designing and validating a distributed application with our approach are:

1. Specify the structure and the behaviour of the application, in terms of active objects (or compo-
nents). We provide editors for distributed components in the Vercors platform; specific component
interfaces exist for group communication. Alternatively one could imagine tools for static analysis
of Java/ProActive code, that would provide a similar abstraction of the system.

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 51

R
_s

ug
ge

st
(i

,v
al

)
C

O
:

!R
_V

al
id

at
e(

c1
)

.
.
.

G
r
o
u
p
(
G
)

?S
ug

ge
st

N
:
=
0

P
r
o
x
y
_
s
u
g
g
e
s
t
[
c
]

!g
et

N
th

(i
,R

es
ul

ts
[i

])?R
_s

ug
ge

st
(i

,v
al

)

[
N
=
G
]

!g
et

(R
es

ul
ts

)

ge
t_

Su
gg

es
t(

c,
R

es
ul

ts
)

P
r
o
x
y
_
v
a
l
i
d
a
t
e
[
c
1
]

!w
ai

tN
_V

al
id

at
e(

c1
,G

)

w
ai

tN
_S

ug
ge

st
(c

,n
)

ge
tN

th
_S

ug
ge

st
(c

,i,
va

l)

I
n
i
t
i
a
t
o
r

!P
ar

ti
ci

pa
nt

[i
].

Q
_s

ug
ge

st
(c

,d
at

e)

?P
ro

xy
_s

ug
ge

st
[c

].
Su

gg
es

t

!S
ug

ge
st

(c
,d

at
e)

!V
al

id
at

e(
c1

)!C
an

ce
l(

)

w
ai

tN
_V

al
id

at
e(

c1
,n

)

R
e
s
u
l
t
s
[
i
]
:
=
v
a
l

N
+
+

!w
ai

tN
(n

)

!C
ol

la
te

R
es

ul
ts

(c
1)

?T
_C

ol
la

te
R

es
ul

ts
(O

k)

!S
ug

ge
st

(c
,d

at
e)

O
k

!V
al

id
at

e(
c1

)

!C
an

ce
l(

)

?C
ol

la
te

R
es

ul
ts

(c
)

O
k
:
=
t
r
u
e

i
:
=
0

C
o
l
l
a
t
e
R
e
s
u
l
t
s

!T
_C

ol
la

te
R

es
ul

ts
(O

k)

?g
et

N
th

_S
ug

ge
st

(c
,i,

x)

i
:
=
i
+
1

[
i
=
G
]

B
o
d
y

C
al

l_
su

gg
es

t(
c,

da
te

)

C
al

l_
va

lid
at

e(
c1

)

S
u
g
g
e
s
t

Q
u
e
u
e

p
u
s
h
(
r
e
q
,
q
u
e
u
e
)

?Q
_S

ug
ge

st
(c

,d
at

e)

?Q
_V

al
id

at
e(

c1
)

?Q
_C

an
ce

l

.
.
.

.
.
.

V
a
l
i
d
a
t
e

C
a
n
c
e
l

P
a
r
t
i
c
i
p
a
n
t
[
i
]

T
_v

al
id

at
e(

)

!C
al

l(
re

q)

?T
er

m
in

at
e(

re
q)

re
q

?S
er

ve
(r

eq
)

B
o
d
y

Se
rv

e(
re

q)

!S
er

ve
(r

eq
)

r
e
q
:
=
p
o
p
(
q
u
e
u
e
)

?Q
_*

!O
ut

O
fB

ou
nd

s(
er

r_
m

es
s)

C
al

l_
ca

nc
el

()
T

_c
an

ce
l(

)

T
_s

ug
ge

st
()

!T
_s

ug
ge

st
()

!R
_s

ug
ge

st
(c

,v
al

)

?C
al

l_
su

gg
es

t(
c,

da
te

)

C
O

:
R

_V
al

id
at

e(
i)

B
C

:

Q
_V

al
id

at
e(

c1
)

Q
_C

an
ce

l(
)

B
C

:

B
C

:

Q
_S

ug
ge

st
(c

,d
at

e)

i
∈
[1
..
G
]

i
∈
[1
..
G
]

R
e
s
u
l
t
s
:
=
[
⊥
,.
..
,⊥

]

[
R
e
s
u
l
t
s
[
i
]
6=

⊥
]i
∈
[1
..
G
]

[
n
≤

N
]

[
O
k
]

[
¬

O
k
]

O
k
:
=
O
k
∪x

Figure 4: Model of a communication by broadcasting

52 Behavioural Models for Group Communications

Abstract data domains: Group index: G ∈ [0..2], Q Suggest argument: data ∈ {D1,D2}, Q Suggest result: bool

Observed sorts:
Initiator sort: {Q Suggest(data),Q Validate(),Q Cancel(),R Suggest(index,bool),R Validate(index),
T CollateResults(bool)}
Participant sort: {Q Suggest(data),Q Validate(),Q Cancel(),R Suggest(bool),R Validate(),Error()}
ParticipantGroup sort: {Q Suggest(data),Q Validate(),Q Cancel(),R Suggest(index,bool),R Validate(index),
Error()}
System sort: {Q Suggest(data),Q Validate(),Q Cancel(),R Suggest(index,bool),Error(),
T CollateResults(bool)}

Subsystem brute force minimized gen. + min.
nb states nb transitions nb states nb transitions (seconds)

Single Participant 1 801 5 338 90 376 8.2
Initiator 3 163 152 081 54 1 489 11.3
Full system:
with 3 participants, queue[1] 85 213 839 188 178 489 17.9
with 3 participants, queue[2] 170 349 1 646 368 458 1 284 406.0
With Distributed generation generation Total Time States/Transitions States/Trans

algorithm (minimized)
Full system with 3 participants brute force 6’45” 170 349 / 1 646 368 458 / 1 284
(8x4 cores) tauconfluence 30’ 5591 / 14 236 458 / 1 284
Group of 2 participants brute force 11’32” 13 327 161 / 48 569 764 4 811 / 24 588
(15x8 cores) tauconfluence 1150’55” 392 961 / 1 354 948 4 811 / 24 588
Group of 3 participants tauconfluence - Out of memory -
(15x8 cores) estimate ≥ 1011 states

Figure 5: Size of the generated state spaces for different sub-systems of our example

2. Generate a pNet model, following the approach in the previous section. We plan to have tools
automatizing this step in a near future, integrated in the Vercors platform.

3. Write user requirements, in the form of logical formulas in some temporal logic dialect (most
action-based logics will be suitable).

4. Use a model-checker to check the validity of theses formulas on the generated model. Currently
only finite-state model-checkers are capable to analyse our models. This means that the param-
eterized pNets have to be instantiated first to a finite system, and that the formulas have to be
instantiated accordingly.

The reader acquainted with model-checkers will have guessed that such models are severely exposed
to state explosion. It is very important here to observe two facts: First we only work with an abstraction
of the system. We use finite abstractions of data-values in the description of data domains, and we only
expose (and observe) the events that are useful for the properties. Secondly, we make use as much as
possible of the congruence properties of our semantic model: we build the state-space in a hierarchical
manner, often minimizing partial models using branching bisimulation before building their products.
But this strategy has limits, and sometimes it is better to build the state-space of a subsystem under the
constraints of its environment, avoiding unnecessary complexity; this is illustrated in our case-study by
the “Participant group” that has by itself a very high state complexity, of which only a small part is used
by the “Initiator” client.

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 53

In Figure 5 we give figures obtained on our example. The systems in the first 4 lines of the table
have been computed on a Fedora 10 box, with 2 dual-core Intel processors at 2.40 GHz, with a total
of 3.8 Gbytes of RAM. The source specification was written in the intermediate format Fiacre [12, 11],
and the state space generated using CADP version 2008-h. The systems in the last part of the table have
been computed on a cluster with 15 nodes, each having 8 cores and 32 Gbytes of RAM. We have been
using the Distributor tool of CADP for distributed state-space generation, with or without on-the-fly
reduction by tauconfluence [21]; the distributed state space has to be merged into a single state space
before minimization and model-checking. The execution times in this part include the deployment of the
application, the distributed generation, the merging and the minimization of the resulting state-space. A
cell with a “-” means that the computation did not terminate.

The main lesson from this experiment is that intermediate systems will often cause the main bottle-
necks in the system construction. Here, an unconstrained model for a group of 3 participants is already
too big to be computed on a single desktop machine. By contrast, computing the behavior of such a
group in the context of a specific client is feasible (here the model of the full system with 3 participants
remains reasonably small). Generating the state-space in a distributed fashion gives us the capability of
handling significantly larger models. On-the-fly reduction strategies are useful too, but to a certain point
only, because it may involve local computations that require large local memory space themselves. In our
tests the generation of the model of a group with 3 participants failed: we estimated that the brute force
model has approximately 125 billiards of states (this would require some 12 Terabytes of distributed
RAM, 25 times more than our full cluster). But even using on-the-fly reduction by tauconflence, local
computations caused an out-of-memory failure.

Proving properties We give here examples of functional behavioural properties that we checked on
various scenarios. For this, we have built the global synchronisation product of the system, with 3
Participants in the group (the number of participants does not change the results), and with the size of
requests queues instantiated to 1 or 2 depending of the cases.

For expressing the properties, we could use any of the logical languages provided within the CADP
tool suite, including LTL, CTL, or specification patterns [17]. In general, we use the regular alternative-
free µ-calculus formalism, which is a powerful modal logic, nicely expressing action sequences as regular
expressions; it is the native logics of the model-checker. We have checked the following formulas:

1. < True∗ .Error > True : in the system with queue of length 1, the queues can signal an Error.

2. [True∗ .Error]False : in the system with queue of length 2, the queues never signal an Error.

3. < True∗ .R suggest(i,b)> True : some paths lead to a response to the suggest request.

4. < True ∗ .T CollateResult(f alse) > True : the collection of results by the Initiator can return
false.

5. A f ter !Q Suggest(id) Eventually !Q Cancel()∨!Q validate() : inevitable reachability of either
a validation or a cancellation after a date has been suggested. This formula is written in the
specification patterns formalism, and expresses correct progress of the system.

Properties 1. and 2. are checked on two different models, with different size of the queue. They prove
that a bounded queue of length 2 is required and sufficient to ensure the correct operation of the system.
The Error action in the queue of a participant signals that a request is received in a state where the Queue
is already full.

Properties 3. and 4. check the reachability of some possible events; technically, property 3 has to be
checked for each possible values of parameters i and b, because the µ-calculus logic is not parameterized.

54 Behavioural Models for Group Communications

Property 5. expresses the correction of the (first iteration of the) behaviour of the system: in response
to a suggest request, we guarantee that the initiator sends either a validation or a cancellation message.

It is interesting to discuss the tools available for exploring and debugging the generated systems. In
addition to the model-checking and minimization engines, we have used tools for:

• exploring interactively the generated behaviour at the level of its Lotos representation (OCIS)

• displaying graphically the generated LTS (BCG EDIT)

Consider formula 1 that checks reachability of action Error. In addition to a “True” result, the model-
checker produces a trace illustrating the reachability from the initial state, as shown in Figure 6. The
trace consists in a full cycle through the system behaviour, from the initial state to state 6 and action
“Q cancel()”. Then, because we do not wait for the return of the Cancel requests, one of the Participants
can still have a Cancel request pending in its queue when the Initiator sends the next Suggest request,
which leads to an Error. The BCG EDIT tool can display the sequence of Figure 6. A finer trace showing
internal interactions and allowing user-driven guidance of the system can be obtained with the OCIS tool.

Q_Suggest(date)
R_Suggest(1, false)

R_Suggest(2, true)
T_collateResults(false) Q_Suggest(date)

Q_Cancel()
Error

R_Suggest(0, true)

τ

Figure 6: Path containing the Error action

6 Conclusion

In this paper we have sketched models for specifying and verifying the correct behaviour of group-
based applications. Our parameterized models enable the finite representation of groups of arbitrary
size, and express the communication with such groups, together with the associated synchronizations.
For our modelling, we focused on the ProActive library; nevertheless these models can be applied to
other middlewares involving collective communications. Our parameterized models are supported by
model checking tool. Besides they are hierarchical labelled transition systems, therefore suitable for
analysis with verification tools based on bisimulation semantics.

Our main contribution is to provide a behavioural semantic model for group communication applica-
tions. It allows the application programmer to prove the correctness of his/her behavioral properties, and
for instance detect deadlocks [7]. We have illustrated our approach on an example application, generated
the corresponding model, and proved several properties ensuring the correct behaviour of the example.
The size of the generated system and the proven properties show that, if the system is entirely known at
instantiation time, we are able to prove non-trivial properties on examples of a reasonable size.

Towards dynamic groups A nice perspective of this work is the verification of groups with dynamic
membership. The ProActive middleware allow active objects to join and leave a group during execution.
This way the application can adapt dynamically in the case new group members are necessary to perform
a complex computation, or systematically when new machines join the network. The use of pNets will
facilitate the specification of dynamic groups thanks to the support for parameterized processes and
synchronisation vectors.

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 55

References

[1] JGroups - A Toolkit for Reliable Multicast Communication. Http://www.jgroups.org/index.html.

[2] ProActive - Programming, Composing, Deploying on the Grid. Http://proactive.inria.fr/.

[3] P. A. Abdulla, G. Delzanno, N. Ben Henda & A. Rezine (2007): Regular Model Checking Without Transduc-
ers (On Efficient Verification of Parameterized Systems). In: TACAS, pp. 721–736.

[4] A. Arnold (1994): Finite transition systems. Semantics of communicating sytems. Prentice-Hall. ISBN
0-13-092990-5.

[5] A. Arnold (2002): Nivat’s processes and their synchronization. Theor. Comput. Sci. 281(1-2), pp. 31–36.

[6] L. Baduel, F. Baude & D. Caromel (2007): Asynchronous Typed Object Groups for Grid Programming.
International Journal of Parallel Programming 35(6), pp. 573–614.

[7] B. Ban: A Simple Deadlock Resolution Scheme for Synchronous Reliable Group RPC (draft).
Http://www.jgroups.org/javagroupsnew/docs/papers.html.

[8] T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio & E. Madelaine (2009): Behavioural models for dis-
tributed Fractal components. Annals of Tlcommunications 64(1-2), pp. 25–43.

[9] T. Barros, R. Boulifa & E. Madelaine (2004): Parameterized Models for Distributed Java Objects. In:
International Conference on Formal Techniques for Networked and Distributed Systems FORTE’04. LNCS
3235.

[10] J.A. Bergstra, A. Ponse & S.A. Smolka (2001): Handbook of Process Algebra. North-Holland. ISBN 0-444-
82830-3.

[11] B. Berthomieu, J.P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet, F. Lang & F. Vernadat (2008):
Fiacre: an Intermediate Language for Model Verification in the Topcased Environment. In: ERTS 2008,
Toulouse France.

[12] B. Berthomieu, J.P. Bodeveix, M. Filali, H. Garavel, F. Lang, F. Peres, R. Saad, J. Stoecker & F. Vernadat
(Mai 2007): The syntax and semantics of Fiacre. In: Rapport LAAS N07264 Rapport de Contrat Projet
ANR05RNTL03101 OpenEmbeDD.

[13] A. Bouajjani, B. Jonsson, M. N. & T. Touili (2000): Regular Model Checking. In: CAV, pp. 403–418.

[14] A. Cansado & E. Madelaine (2008): Specification and Verification for Grid Component-Based Applications:
From Models to Tools. In: FMCO, pp. 180–203.

[15] E. M. Clarke, O. Grumberg & S. Jha (1997): Verifying parameterized networks. ACM Trans. Program. Lang.
Syst. 19(5), pp. 726–750.

[16] E. M. Clarke, M. Talupur & H. Veith (2006): Environment Abstraction for Parameterized Verification. In:
VMCAI, pp. 126–141.

[17] Matthew Dwyer, George S. Avrunin & James C. Corbett (1998): Property Specification Patterns for Finite-
State Verification. In: Proceedings of the Second Workshop on Formal Methods in Software Practice, ACM
Press, pp. 7–15.

[18] E. A. Emerson & K. S. Namjoshi (1995): Reasoning about rings. In: POPL ’95: Proceedings of the 22nd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 85–94.

[19] E. A. Emerson, R. J. Trefler & T. Wahl (2006): Reducing Model Checking of the Few to the One. In: 8th
international conference on formal engineering methods, ICFE, pp. 94–113.

[20] E.A. Emerson & K.S. Namjoshi (1996): Automatic verification of parameterized synchronous systems. In:
Information Processing Letters, 8th International Conference on Computer Aided Verification, CAV’96, Rut-
gers. 22(6):307-309.

[21] H. Garavel & G. Serwe (2006): State space reduction for process algebra specifications. Theorical Computer
Science 351(2).

56 Behavioural Models for Group Communications

[22] Alan J. Hu, Rui Li, Xizheng Shi & Son T. Vuong (1999): Model-Checking a Secure Gorup Communication
Protocol: A Case Study. In: FORTE, pp. 469–478.

[23] A. Kupšys, S. Pleisch, A. Schiper & M. Wiesmann (2004): Towards JMS compliant group communication
- a semantic mapping. In: Proceedings of the 3rd International Symposium on Network Computing and
Applications (IEEE NCA04), IEEE, Cambridge, MA, USA.

[24] M. Kwiatkowska & G. Norman (2002): Verifying Randomized Byzantine Agreement. In: FORTE (LNCS
2529), Springer Berlin / Heidelberg, pp. 194–209.

[25] M. Layouni, J. Hooman & S. Tahar (2003): On the Correctness of an Intrusion-Tolerant Group Communica-
tion Protocol. In: CHARME, pp. 231–246.

[26] D. Lesens & H. Saı̈di (1997): Abstraction of parameterized networks. Electr. Notes Theor. Comput. Sci. 9.
[27] M. Li & M. Baker (2005): The Grid: Core Technologies. Wiley. ISBN: 0-470-09417-6.
[28] M. Massink, J-P. Katoen & D. Latella (2004): Model Checking Dependability Attributes of Wireless Group

Communication. In: DSN ’04: Proceedings of the 2004 International Conference on Dependable Systems
and Networks (DSN’04), IEEE Computer Society, Washington, DC, USA, p. 711.

[29] Robin Milner (1989): Communication and Concurrency. Prentice Hall. ISBN 0-13-114984-9.
[30] A. Pnueli & E. Shahar (2000): Liveness and Acceleration in Parameterized Verification. In: CAV, pp. 328–

343.
[31] A. Schiper (2006): Dynamic group communication. Distributed Computing 18(5), pp. 359–374.
[32] A. Prasad Sistla & V. Gyuris (1999): Parameterized Verification of Linear Networks using Automata as

Invariants. Formal Asp. Comput. 11(4), pp. 402–425.

	1 Introduction
	2 The ProActive communication model
	2.1 ProActive Groups
	2.2 Synchronisation for ProActive Groups
	2.3 Example

	3 Theoretical Model
	4 Behavioural Model for ProActive Groups
	4.1 Modeling complex synchronisations
	4.2 Modeling the Example
	4.3 Variations on group synchronisations

	5 Verification and Results
	6 Conclusion

