
Model-Based Adaptation of
Behavioral Mismatching Components

Carlos Canal, Pascal Poizat, Member, IEEE Computer Society, and Gwen Salaün

Abstract—Component-Based Software Engineering focuses on the reuse of existing software components. In practice, most

components cannot be integrated directly into an application-to-be because they are incompatible. Software Adaptation aims at

generating, as automatically as possible, adaptors to compensate for a mismatch between component interfaces and is therefore a

promising solution for the development of a real market of components promoting software reuse. In this paper, we present our

approach for software adaptation, which relies on an abstract notation based on synchronous vectors and transition systems for

governing adaptation rules. Our proposal is supported by dedicated algorithms that automatically generate adaptor protocols. These

algorithms have been implemented in a tool, called Adaptor, which can be used through a user-friendly graphical interface.

Index Terms—Software components, interfaces, mismatch, composition, software adaptation, adaptation contracts, vectors,

transition systems, synchronous products, Petri nets, tools.

Ç

1 INTRODUCTION

COMPONENT-BASED Software Engineering (CBSE) aims at
building new systems by assembling existing software

components which would jointly realize the system desired
functionality. However, one of the main issues raised by
this paradigm is that, in practice, we cannot expect that any
given software component perfectly matches the needs of a
system where it is trying to be reused nor that the
components being assembled perfectly fit one another.
Reusing software often requires a certain degree of
adaptation [1], [2], especially in the presence of legacy
code. To deal with these problems, Software Adaptation [3],
[4] is emerging as a new discipline concerned with
providing techniques to arrange already developed pieces
of software in order to reuse them in new systems,
accommodating the potential mismatches arising from
their composition.

Software Adaptation promotes the use of adaptors,
specific computational entities developed for guaranteeing
that a set of mismatching components will interact
correctly. Software adaptation is different from software
evolution, component customization, or adaptive middle-
ware. Software evolution aims at modifying the code of the
components, for instance to take a new functionality into
account, whereas adaptation works in a nonintrusive way,
that is, without modifying the code of the components,

which is important due to their black-box nature. In the
case of customization, the user may adjust the component
behavior by tuning a fixed set of component parameters,
which have been considered and defined at design time by
the developer. Finally, dedicated adaptive middleware [5] can
be used to put the adaptation process into action once an
adaptor model has been obtained. In this sense, adaptive
middleware complements software adaptation, which
deals with adaptor modeling and synthesis, providing the
means for the actual implementation of the proposal.

CBSE postulates that a component must be reusable
from its interface [6], which in fact constitutes its full
technical specification. The characteristics and expressive-
ness of the language used for interface description
determines the degree of interoperability we can achieve
using it and the kind of problems that can be solved. We
distinguish several levels of interoperability and, accord-
ingly, of interface description [2], [4], [7]: technical level
(data encoding and framework-related issues), signature

level (operation names and types), behavioral level (interac-
tion protocols), quality of service level (nonfunctional proper-
ties such as security or efficiency), and semantic level,
sometimes referred as conceptual level (functional specifi-
cation of what the component actually does). At each one,
mismatch may occur and have to be corrected. Industrial
component models, by using Interface Description Lan-
guages (IDLs), are able to solve most of the technical
interaction problems, but they fail to address mismatch at
the higher levels. Numerous approaches have been pre-
sented for extending component interfaces with protocols
(see, for instance, [8], [9], [10], [11], [12], [13]), thus resulting
in what we call Behavioral IDLs (BIDLs). This interoper-
ability level is essential because, even if components match
from a signature point of view, their combination can lead
to erroneous behaviors or deadlock situations if the
designer is not aware of their execution flows and does
not take them into account while building the full system.

546 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

. C. Canal and G. Salaün are with LCC, Universidad de Málaga,
Departamento Lenguajes y Ciencias de la Computacı́on, ETSI Informática,
Campus de Teatinos, 29701 Málaga, Spain.
E-mail: {canal, salaun}@lcc.uma.es.

. P. Poizat is with IBISC FRE 3190 CNRS, Université d’ �Evry Val
d’Essonne, Tour Evry 2, 523 place des terrasses de l’Agora, 91000 Evry,
France, and ARLES Project-Team, INRIA, France.
E-mail: pascal.poizat@inria.fr.

Manuscript received 5 Mar. 2007; revised 1 Feb. 2008; accepted 15 Apr. 2008;
published online 15 May 2008.
Recommended for acceptance by H. Schmidt.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-03-0099.
Digital Object Identifier no. 10.1109/TSE.2008.31.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

In this paper, we propose a model-based adaptation
approach focusing on mismatch appearing at the behavior-
al level. Yet, since the component protocols are based on
message exchange relative to the component operations, we
also address name mismatch at the signature level. The
approach (see Fig. 1 for a graphical overview of it) takes as
input the behavioral interfaces of components to be
adapted and an adaptation contract [4], which is an abstract
description of the constraints which must be respected to
make the involved components work together. Given these
two elements, an adaptor protocol is generated in an
automatic way.

The adaptation process begins with two (or more)
components that are not able—as they are—to interact
successfully (i.e., ending in correct termination states). To
compensate such mismatch, we propose using synchronous
vectors as adaptation contract language to make explicit the
interactions between components, possibly on different
message names. Our notation also allows the specification
of ordering constraints on interactions, which enables one
to describe in an abstract way more complex adaptation
scenarios. In order to generate adaptor protocols for such
contracts, we present in this paper two algorithms that
automate the adaptation process. The first is based on
synchronous products and the second is based on Petri net
encodings. Compared to the former, the latter induces a
higher computational complexity, but is able to reorder
messages when necessary and then ensures a correct
interaction when several components have the messages
exchanged in their protocols which are not ordered
correspondingly. Reordering is worked out by desynchro-
nizing the message emission by one component and the
message reception in another one. When required, emitted
messages are temporarily memorized until they are used
for effective interaction. This is why a formalism capable of
representing memory, such as Petri nets, is required. The
adaptation techniques we present in this paper have been
implemented in a tool, called Adaptor, which has been
applied to many nontrivial examples, i.e., examples where
adaptor protocols could not have been obtained by hand.

A preliminary version of this work has been presented in
[14] and is extended here in several aspects:

1. introduction to the Petri nets concepts used in our
proposal,

2. detailed descriptions of the adaptation algorithms,
3. presentation of the Adaptor tool,
4. illustration on a more realistic and bigger case study

from the pervasive computing domain, and
5. an updated review and comparison with related

work.

The remainder of the paper is organized as follows:
Section 2 formally introduces our component interface
model and defines interface mismatch. Section 3 focuses on
the adaptation contract notation. Section 4 presents a first
approach to component adaptation based on synchronous
products. Section 5 presents a second solution which goes
further, considering reordering through the encoding of
contracts and behavioral interfaces into Petri nets. Section 6
gives an overview of the Adaptor tool. In Section 7, we

survey the more advanced proposals for behavioral soft-
ware adaptation and compare to them. Finally, Section 8
ends the paper with some concluding remarks. Proofs are
given in [15].

2 INTERFACES AND MISMATCH

In this section, we first present the model of interfaces
through which components are accessed and used. Then,

we define the notion of interface mismatch that our
approach addresses.

2.1 Component Interfaces

We assume that component interfaces are given using both
a signature and a behavioral interface. Signature interfaces
usually correspond in component-based frameworks (e.g.,
CCM, .NET, or J2EE) to operation profiles described using
an IDL, i.e., operation names associated with argument and

return types relative to the data being exchanged when the
operation is called. Since we focus on the behavioral level in
this paper, we omit the elements relative to data exchange
in the signature interfaces. This means that a signature is
taken as a disjoint set of provided and required operation
names. Such abstractions from data exchange are often
used in software engineering, e.g., to check interface
compatibility [11] or to perform component verification
[10], [12]. Additionally, we propose that behavioral inter-

faces are represented by means of Labeled Transition
Systems (LTSs). Message-based communication between
components is therefore represented using events relative to
the emission (denoted using !) and reception (denoted
using ?) of messages corresponding to operation calls.

However, taking data exchange into account is impor-
tant to ensure full compatibility. So far, this can be
supported in our approach using additional messages as
follows: The emission by a component of a message login

with two data information, username and password, would

be encoded by the sequence of events login!.username!.

password! in the component LTS. Accordingly, the recep-
tion in a component of a message login with two data
information, username and password, would be encoded
by the sequence of events login?.username?.password? in
the component LTS. Provided this encoding is performed
as preprocessing and the adaptation contract takes the
additional messages into account, the protocols can be
adapted, as demonstrated in [16] where we have applied

our adaptation techniques to Windows Workflow Founda-
tion (WF) [17], which belongs to the .NET Framework 3.0
developed by Microsoft. Related perspectives are further
discussed in Section 8.

CANAL ET AL.: MODEL-BASED ADAPTATION OF BEHAVIORAL MISMATCHING COMPONENTS 547

Fig. 1. Overview of our approach.

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

Definition 1 (LTS). A Labeled Transition System is a tuple

ðA; S; I; F ; T Þ where A is an alphabet (set of events), S is a set

of states, I 2 S is the initial state, F � S are final states, and

T � S �A� S is the transition function.

Final states correspond to correct service terminations in

components. To support the correctness of the adaptation

process, we further assume that the initial state is also final

ðI 2 F Þ. The alphabet of the LTS is built on the component

signature. This means that, for each provided operation p in

the signature, there is a message p and an event p? in the

alphabet and, for each required operation r, there is a

message r and an event r! in the alphabet. Complementary

events are denoted with the same name of message and

opposite directions. Consequently, the complementing

function on events is defined as: e? ¼ e!, and e! ¼ e?.
LTSs are adequate models as far as user-friendliness and

development of formal algorithms are concerned. How-
ever, higher-level languages such as process algebras [18]
can be used to define behavioral interfaces in a more
concise way. In a former version of this work [14], the
sequential subset of CCS [19] was used as BIDL. Moreover,
CCS descriptions of component behavioral interfaces can
be easily translated into LTS models using the operational
rules defining the semantics of the formalism. In this paper,
since we focus on the adaptor model generation, we only
present and work using LTS models. In [16], the reader will
find more details of how LTSs can be extracted from
component languages (namely, in this work, the Windows
WF language) and how an adaptor model can be
transformed into a component language program.

Example 1. eMuseum is an added-value application whose
objective is to augment the visitors’ experience in
museums by displaying, on their portable devices,
information about seen pieces of art. We will use this
example throughout the paper. Let us first begin with a
simplified version of it. eMuseum is built using two
separately designed components: a room server (ROOM)
and a Personal Digital Assistant application (PDA). On
the one hand, ROOM can be asked (query message) to
send a list of artifacts present in the room (list message)
and is then informed about one being selected (choice

message). ROOM may afterward be requested to send
information about this artifact either in textual (pdf) or
video (mpeg) format using, respectively, the textrequest

and videorequest messages. The files themselves are sent
with the text or the video message. On the other hand,
PDA first issues a resource discovery query, then may be
used to select a given item from a list of available
resources, and the resource is eventually displayed
(mpeg or pdf). PDA can also be turned off using the
shutdown message. The LTSs of the components are
given in Fig. 2, with initial and final states, respectively,
marked using bullet arrows (e.g., state 0 in PDA) and
hollow states (e.g., states 0 and 4 in PDA). Transitions
sharing the same source and target states are repre-
sented using a single transition and the list of the
possible labels.

2.2 Behavioral Mismatch

Mismatch situations between component interfaces may be
caused by message names that do not correspond, by an
ordering of messages which is not compatible in two or
more components, or by some messages in one component
that have no counterpart or match with several messages in
another component (one-to-zero, one-to-many, or many-to-
one correspondences). All of these cases of behavioral
mismatch can be worked out using the contract notation
(Section 3) and the adaptation algorithms (Sections 4 and 5)
that we propose in this paper. We will give examples of
such mismatch in the case study we present in the sequel.

There exist numerous definitions of compatibility and,
as a consequence, of mismatch between protocols [4], [20],
but deadlock is the most commonly accepted notion. To
automate deadlock mismatch detection, the first step is to
define the semantics of a system composed of several
components. This semantics can be given by means of the
synchronous product [21] of LTSs. The synchronous
product of several component LTSs results in a new LTS
which contains all of the possible interactions between the
involved components, assuming they synchronize on
complementary events ða; aÞ.
Definition 2 (Synchronous Product). The synchronous

product of n LTSs Ci ¼ ðAi; Si; Ii; Fi; TiÞ, i 2 f1; . . . ; ng,
is the LTS C1k . . . kCn ¼ ðA; S; I; F ; T Þ such that

. A ¼ A1 [f g � . . .� An [f g, S ¼ S1 � . . .� Sn,
I ¼ ðI1; . . . ; InÞ, F ¼ F1 � . . .� Fn and

. T is defined using the following rule:
8ðs1; . . . ; snÞ 2 S, 8i; j 2 f1; . . . ; ng, i < j, such that
9ðsi; a; s0iÞ 2 Ti, 9ðsj; a; s0jÞ 2 Tj: ðx1; . . . ; xnÞ 2 S
andððs1; . . . ; snÞ; ðl1; . . . ; lnÞ; ðx1; . . . ; xnÞÞ 2 T ,where
8k 2 f1; . . . ; ng:

lk ¼ a; xk ¼ s0i if k ¼ i;
lk ¼ a; xk ¼ s0j if k ¼ j;
lk ¼ ; xk ¼ sk otherwise;

8<
:

where the � operator stands for the Cartesian product.

The states in the product correspond to sets of states of
the components (called substates in the context of a product
state). For example, a state ðs1; . . . ; snÞ denotes that each
component Ci is its state si. Initially, all components are in
their initial state (i.e., Ii for each Ci), which means that the
initial state of the product is ðI1; . . . ; InÞ. The computation of
the transitions expresses that, given some composite state
ðs1; . . . ; snÞ in the product, there is some transition outgoing
from this state iff there are two components, i and j, that
may perform at the same time—from states si and sj in

548 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Fig. 2. eMuseum, version 1. (a) ROOM LTS. (b) PDA LTS.

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

their LTS—complementary events (i.e., one sending a

message and the other one receiving it), while other

components do not perform any action (denoted _). The

resulting target state of the product transition corresponds

to the source state of it, but for the substates corresponding

to components i and j. Transitions in the product are

labeled with a set of labels, one from each component

(including _). An example of synchronous product is given

in Example 2.
We are now able to characterize mismatch by means of

an adequate definition of deadlock that differentiates

deadlock states and correct final states. A system is blocked

when it cannot evolve and when at least one of the

components is not in one of its final states.

Definition 3 (Deadlock State). Let C ¼ ðA; S; I; F ; T Þ be an

LTS. A state s is a deadlock state for C, noted deadðsÞ,
iff it is in S, not in F , and has no outgoing transitions:

s 2 S ^ s 62 F^ 6 9l 2 A, s0 2 S : ðs; l; s0Þ 2 T .

Definition 4 (Deadlock Mismatch). An LTS C ¼
ðA; S; I; F ; T Þ presents a deadlock mismatch if there is a

state s in S such that deadðsÞ.

To check if a system composed of several components

presents mismatch, its synchronous product is computed

and then Definition 4 is used. Synchronous products and

deadlock detection are common in the Formal Methods

community and, hence, are supported by tools such as

CADP [22], a toolbox dedicated to the validation and

verification of concurrent systems. However, our deadlock

definition is slightly different from the one used in these

tools since it has to distinguish between success (deadlock

in a final state) and failure (deadlock in a nonfinal state).

Yet, behavioral mismatch detection can be automatically

checked, e.g., by CADP, up to the adding within component

interfaces of loop transitions over final states labeled with a

specific label (we use accept).

Example 2. In the synchronous product of the ROOM and

the PDA components (Fig. 3), a deadlock state, (3, 3), is

reached after three successful interactions as this state

1) has no output transitions and 2) is not final. The latter

is caused by the fact that the corresponding states in the

ROOM (state 3) and PDA (state 3) components are not

final, while both should be for (3, 3) to be final. The

former is caused by the name mismatch between,

respectively, the PDA messages mpeg and pdf and the

ROOM messages textrequest and videorequest. One

would also note that the shutdown message in PDA

has no counterpart in ROOM. Hence, there is no possible

sequence of transitions leading to the other potential

final state in the product, i.e., state (0, 4), corresponding

to state 0 of ROOM and state 4 of PDA.

3 ADAPTATION CONTRACTS

In this section, we present the adaptation contract notation
that enables one to specify how to work out mismatch
situations. We rely on synchronous vectors [21], which denote
communication between several components, where each
event appearing in one vector is executed by one
component and the overall result corresponds to a
synchronization between all of the involved components.
A vector may involve any number of components and does
not require interactions to occur on the same names of
events. Vectors can describe expressive communication
patterns, which is especially useful to express n-ary
interactions.

Definition 5 (Vector). A synchronous vector (or vector for
short) for a set of components Ci ¼ ðAi; Si; Ii; Fi; TiÞ,
i 2 f1; . . . ; ng, is a tuple he1; . . . ; eni with ei 2 Ai [f g, _
meaning that a component does not participate in a
synchronization.

In order to unambiguously identify every communica-
tion in the adaptor, prior to the adaptation process,
component event names are prefixed by the component
name, e.g., PDA:query! or ROOM:query?. Yet, to favor
readability, prefixes are not given in component LTS when
they are clear from the context.

Example 3. Let us get back to the eMuseum example. We
first define vectors for messages that match:

vquery ¼ hROOM : query?;PDA : query!i;
vlist ¼ hROOM : list!;PDA : list?i; and

vchoice ¼ hROOM : choice?;PDA : choice!i:

Further, we have seen that mismatch came first from the
unanticipated shutdown reception. This would be solved
by a specific vector, vend ¼ hROOM : ;PDA : shutdown!i,
to specify that the adaptor should not transmit the
shutdown message to the ROOM server. Moreover,
mismatch also came from the text/video choice (using
textrequest or videorequest) which is not done by
PDA, which waits for one resource to be sent, either
with the pdf or the mpeg message. A possible solution
would require to express that the video (respectively,
text) choice is performed by the adaptation itself
using vectors vvmode ¼ hROOM : videorequest?;PDA : i
and vtmode ¼ hROOM : textrequest?;PDA : i. Moreover,
we would like to specify a correspondence between the
video sending (video in ROOM) and the mpeg file
reception (mpeg in PDA) and a correspondence between
the text sending (text in ROOM) and the pdf file
reception (pdf in PDA). The corresponding vectors
would be vvget ¼ hROOM : video!;PDA : mpeg?i and
vtget ¼ hROOM : text!;PDA : pdf?i.
Vectors express correspondences between messages, like

bindings between ports or connectors in architectural
descriptions [23]. Yet, vectors alone are not sufficient to
perform adaptation as one must also take into account the
context in which messages are exchanged, i.e., the
component protocols. Suppose we have a vector
hc1 : a!; c2 : b?i. Directly sending, in an adaptor, message b

CANAL ET AL.: MODEL-BASED ADAPTATION OF BEHAVIORAL MISMATCHING COMPONENTS 549

Fig. 3. Synchronous product for Example 1 LTSs.

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

to c2 when message a is received from c1 may lead the
system to a deadlock state if this interaction is incorrect.
This is why more complex adaptation algorithms such as
the ones we define in this paper are required. Moreover,
vectors are not sufficient to support more advanced
adaptation scenarios such as contextual rules, choice
between vectors, or, more generally, ordering (e.g., when
one message in some component corresponds to several in
another component, which requires applying several
vectors). The ordering in which vectors have to be applied
can be specified using different notations such as regular
expressions, LTSs, or (Hierarchical) Message Sequence
Charts. Due to their readability and user-friendliness, we
chose to specify adaptation contracts using vector LTSs, that
is, LTSs whose labels are vectors. In addition, vector LTSs
facilitate the development of adaptation algorithms since
they provide an explicit description of the contract
behaviors set of states, which makes their traversal easier.
Other notations, such as the ones mentioned above, can be
used to specify the adaptation contract provided that they
can be translated into vector LTSs. To this purpose, one can
rely on existing behavioral model synthesis techniques
such as those presented in [24] for regular expressions or in
[25] for Message Sequence Charts.

Definition 6 (Vector LTS). A vector LTS for a set of vectors V
is an LTS ðV ; S; I; F ; T Þ, where labels are vectors.

Definition 7 (Adaptation Contract). An adaptation contract
for a set of components Ci ¼ ðAi; Si; Ii; Fi; TiÞ, i 2 f1; . . . ; ng,
is a couple ðV ; LÞ, where V is a set of vectors for components
Ci and L is a vector LTS for V .

If only message name correspondences are necessary to
solve mismatch between components, the vector LTS may
leave the vector application order unconstrained, using a
single state and all vector transitions looping on it. In
particular, this pattern may be used on specific parts of the
contract for which the designer does not want to impose
any ordering.

The design of the adaptation contracts is the only step of
adaptation which is not handled automatically by our
approach. Yet, this step is essential because an inadequate
contract could induce the generation of an adaptor that
would ensure deadlock freedom at the cost of too many
interaction removals, including ones expected by the
designer. Solutions and on-going work relative to contract
design are discussed in Section 8.

Example 4. Using the vectors given in Example 3, one could
express different adaptation contracts (Fig. 4). A simple
example is contract 1. This contract is limited to video
exchange as it does not use vectors for text exchange
(vtmode and vtget). Except for this, the contract is very
permissive. It enables any application ordering of name
mismatch resolution using the vectors, including when
no video is ever exchanged (i.e., vectors vvmode and vvget

may never be applied). One could have either text or
video be exchanged with contract 2. Here, at each PDA
request, the adaptor willy be able to choose nondeter-
ministicall between text and video. One could also
enforce a very strict adaptation contract with contract 3,

where textual and video information are alternatively

used. Note that the use of such highly constrained

contracts, applied to adaptation without reordering, is

not very interesting as giving such a contract is often

close to giving the solution, while using more permissive

contracts and adaptation with reordering demonstrates

the full power of our automated adaptation process.

Other contracts will be presented in the sequel, together

with the different algorithms that operate on them to

produce the corresponding adaptor protocols.

An adaptor is given by an LTS which, put into a

nondeadlock-free system, yields a deadlock-free one. All of

the exchanged messages will pass through the adaptor,

which can be seen as a coordinator for the components to

be adapted. This can be formalized as follows:

Definition 8 (Adaptation Algorithm Correctness). Given

n components Ci, i 2 f1; . . . ; ng, and a contract, the

adaptation algorithm builds an adaptor Ad such that there

is no deadlock state in the system AdkðC1k . . . kCnÞ.

In the sequel, we present two different correct algo-

rithms for the generation of adaptor protocols.

4 ADAPTATION WITHOUT REORDERING

In this section, we present a first adaptation algorithm,

based on synchronous products. More precisely, we rely on

an extension of the synchronous product, Definition 2, that

takes into account not only the correspondences of events

described in the vectors but also their ordering in the vector

LTS. Consequently, the vector LTS is used as a guide to

build the resulting product.

Definition 9 (Synchronous Vector Product). The synchro-

nous vector product (with vector LTS) of n LTS

Ci ¼ ðAi; Si; Ii; Fi; TiÞ, i 2 f1; . . . ; ng, with a vector LTS

L ¼ ðAL; SL; IL; FL; TLÞ, is the LTS �LððC1; . . . ; CnÞ; LÞ ¼
ðA; S; I; F ; T Þ such that

. A ¼ AL � A1 [f g � . . .� An [f g, S ¼ SL � S1

� . . .� Sn, I ¼ ðIL; I1; . . . ; InÞ, F ¼ FL � F1 �
. . .� Fn and

. T contains a transition ððsL; s1; . . . ; snÞ,
haL; a1; . . . ; ani, ðs0L; s01; . . . ; s0nÞÞ iff there is a state
ðsL; s1; . . . ; snÞ in S, there i s a t rans i t i on

550 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Fig. 4. Adaptation contracts for eMuseum, version 1. (a) Contract 1.

(b) Contract 2. (c) Contract 3.

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

ðsL; hl1; . . . ; lni; s0LÞ in TL, and, for every i in
f1; . . . ; ng:

– if li ¼ , then s0i ¼ si and ai ¼ ;
– otherwise, there is a transition ðsi; ai; s0iÞ with

ai ¼ li in Ti.

As with Definition 2, states in the product correspond to
sets of states of the components, but also take into account the
vector LTS. For example, a state ðs0; s1; . . . ; snÞ denotes that
each componentCi is in its state si and that the vector LTS is in
s0. Initially, all components and the vector LTS are in their
initial state (i.e., Ii for each Ci and IL for the vector LTS),
which means that the initial state of the product is
ðIL; I1; . . . ; InÞ. The computation of the transitions is also
slightly different from Definition 2. There is an outgoing
transition from a state ðsL; s1; . . . ; snÞ iff there is a transition
labeled by a vector hl1; . . . ; lni outgoing from state sL in the
vector LTS and, as a consequence, if, for every component Ci,
there is a transition outgoing from si and labeled with li in
the Ci LTS. A commented example of synchronous vector
product computation is given in Example 5 (Fig. 7).

To generate an adaptor protocol from a synchronous
vector product, we have to discard the first element of the
product components to keep only the elements correspond-
ing to the component exchanges. More formally, it means
that, from an LTS PL ¼ �LððC1; . . . ; CnÞ; LÞ ¼ ðA; S; I; F ; T Þ,
we compute the LTS P ¼ projðPLÞ ¼ ðA0; S0; I 0; F 0; T 0Þ such
that 8X 2 fA; S; I; Fg,

X0 ¼ fcdrðxÞ j x 2 Xg

and

T 0 ¼ fðcdrðsÞ; cdrðlÞ; cdrðs0ÞÞ j ðs; l; s0Þ 2 Tg

with cdrððx0; x1; . . . ; xnÞÞ ¼ ðx1; . . . ; xnÞ.
Our algorithm (Algorithm 1) takes as input a set of

component LTSs Ci and an adaptation contract ðV ; LÞ. This
algorithm is based on three main steps: 1) computation of
the synchronous vector product taking the vector LTS L
into account and discarding in the result the vector LTS
elements (Algorithm 1:1-2), 2) removal of interaction
sequences (paths) leading to deadlock (function remove_-
deadlocks, Algorithm 1:3), and 3) for each transition
(Algorithm 1:5-14), reversal of the directions for all events
appearing in the vector on the transition, called mirroring
(Algorithm 1:6-7), and computation of all possible inter-
leavings (function compute_permutations) starting with
receptions (Algorithm 1:8-13).

Algorithm 1 build_adaptor_noreordo

constructs an adaptor without reordering for a set of components

given an adaptation contract

inputs components C1; . . . ; Cn with each
Ci ¼ hAi; Si; Ii; Fi; Tii, and an adaptation contract ðV ; LÞ
output adaptor Ad ¼ hA; S; I; F ; T i

1: PL :¼ �LððC1; . . . ; CnÞ; LÞ
2: P ¼ projðPLÞ
3: Prestr :¼ remove deadlocksðP Þ
4: Sadd :¼ ;; TAd :¼ ;
5: for all t ¼ ðs ¼ ðs1; . . . ; snÞ; ðl1; . . . ; lnÞ; s0 ¼ ðs01; . . . ; s0nÞÞ

in TPrestr
do

6: Lrec ¼ fl? j l! 2 ðl1; . . . ; lnÞg
7: Lem ¼ fl! j l? 2 ðl1; . . . ; lnÞg
8: Seqrec ¼ compute permutationsðLrecÞ
9: Seqem ¼ compute permutationsðLemÞ

10: for all ðR ¼ ðr1; . . . ; riÞ; E ¼ ðe1; . . . ; epÞÞ 2 Seqrec �
Seqem do

11: TAd :¼ TAd [fs!
r1
q1; . . . ; qi�1 !

ri
qi; . . . ; qiþ1 !

e1

qiþ2; . . . ; qn�1 !
ep
s0g

12: Sadd :¼ Sadd [fq1; . . . ; qn�1g
13: end for

14: end for

15: return Ad ¼ ðAPrestr
; SPrestr

[Sadd; IPrestr
; FPrestr

; TAdÞ
Removing deadlock paths [26] is required to suppress

spurious interactions that would not leave the system in a
stable (final) state, as shown in Example 5. This is achieved
by recursively removing transitions and states yielding
deadlocks: Find a state s such that deadðsÞ, remove s and
any transition t with target s, and do this until there is no
more such s in the LTS. Mirroring ensures that the adaptor
and the components can perfectly communicate using the
same event message names with opposite directions (!/? or
?/!). Moreover, event interleaving is essential when vectors
involve more than two events in a communication (e.g., in
case of broadcast or multicast communication). Interleav-
ings make the adaptor support nondeterminism wrt the
orderings in which events will occur, hence accepting any
possible one.

Note that Algorithm 1 builds an adaptor protocol by
applying one vector after the other, that is, all interactions
involved in one vector occur before starting the interactions
of another vector. Consequently, events belonging to two
vectors appearing as labels in the synchronous product are
never interleaved. Such an interleaving is mandatory when
events need to be reordered. This additional feature will be
supported by the algorithm presented in Section 5. The
complexity of Algorithm 1 lies in the synchronous vector
product computation and is OðjSjnþ1Þ, where S is the
largest set of states for all component (and vector) LTS and
nþ 1 stands for the n components plus the vector LTS.

Example 5. Let us now present a second version of
eMuseum. A new version of the ROOM component
supports an additional feature: Once a video has been
sent, it can be resent (upon reception of the again
message) to be played again. The quit message is then
used to tell ROOM one is done with the selected video.
The ROOM designer has also refactored this component.
The names of some operations (namely, query and
choice) and, as a consequence, of the corresponding
messages, have been changed. A new version of the PDA
component is also used. It now supports being inte-
grated in contexts where rights can be different
depending on two modes: a guest mode (with fewer
rights) and a user mode (with more rights). PDA can
send login (respectively, logout) messages to go from
guest to user mode (respectively, from user to guest
mode). The new interfaces of the two components are
given in Fig. 5 (changes are in bold).

As far as the adaptation contract is concerned, one
does not start from scratch. The vectors we had before

CANAL ET AL.: MODEL-BASED ADAPTATION OF BEHAVIORAL MISMATCHING COMPONENTS 551

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

are reused, replacing old messages by new ones where
we have now name mismatch (in bold font):

vend ¼ hROOM : ;PDA : shutdown!i;
vvmode ¼ hROOM : videorequest?;PDA : i;
vvget ¼ hROOM : video!;PDA : mpeg?i;
vtmode ¼ hROOM : textrequest?;PDA : i;
vtget ¼ hROOM : text!;PDA : pdf?i;
vquery ¼ hROOM : access?;PDA : query!i;
vlist ¼ hROOM : list!;PDA : list?i; and

vchoice ¼ hROOM : selection?;PDA : choice!i:

We also add vectors for unspecified recep-
tions of messages sent by the PDA for
changing mode as ROOM has not been built
wrt such modes: vuser ¼ hROOM : ;PDA : login!i
and vguest ¼ hROOM : ;PDA : logout!i. The support
for changing mode and, more generally, contexts will be
achieved using the vector LTS, below. Finally, we add
vectors corresponding to the new feature of ROOM
(resending videos): vagain ¼ hROOM : again?;PDA : i
and vquit ¼ hROOM : quit?;PDA : i. The adaptor will
be in charge of sending them when required, as for the
video and text requests. Note that if we had used a
single vector hROOM : quit?;PDA : shutdown!i in place
of vend and vagain, we would have enforced that ROOM
and PDA exchange information exactly once (forbidding
the PDA to shut down directly and to ask several times
for information).

By using a vector LTS (Fig. 6), we will enforce the
following constraints:

. There are two modes, GUEST and USER. In the
eMuseum application, we take the benefit of
these two modes as follows: In GUEST mode, the
sent information is text. In USER mode, the sent
information is video. This demonstrates how an
adaptation contract can be used to enforce
constraints which are defined system-wide, not
at the level of individual components.

. The two modes alternate (starting in GUEST
mode), going from one to another using the login
and logout messages.

. We know that communication is based on two
phases, selection and getting information, yet we
keep an abstract description level for these.
Nondeterminism may be kept in the contract,
e.g., in USER mode, between different possible
application orderings of vquery, vlist, vchoice, vvmode,
vvget, vagain, and vvquit to let the adaptation process
decide which one—if any—is correct (see the

corresponding adaptor, Fig. 8). For this, the
adaptation process uses the orderings which are
defined in the component interfaces.

In order to generate the adaptor protocol, we first
compute the synchronous vector product (Fig. 7) of the
ROOM LTS (Fig. 5a) and the PDA LTS (Fig. 5b) with the
vector LTS (Fig. 6). To understand how this works, let us
take, for example, the computation of the transitions
outgoing from the product initial state. This initial state,
(0, 0, GUEST), corresponds to the composition of the
components’ and vector’s LTS initial states. Different
sets of transitions are possible in the three LTSs used in
the product:

. access? in ROOM;

. shutdown!, login!, logout!, and query! in PDA; and

. vectors

vendðhROOM : ;PDA : shutdown!iÞ;
vuserðhROOM : ;PDA : login!iÞ;
vqueryðhROOM : access?;PDA : query!iÞ;
vlistðhROOM : list!;PDA : list?iÞ;
vchoiceðhROOM : selection?;PDA : choice!iÞ;
vtmodeðhROOM : textrequest?;PDA : iÞ; and

vtgetðhROOM : text!;PDA : pdf?iÞ

in the vector LTS.

Therefore, there are only three possible transitions
outgoing from the product initial state (corresponding
to the first three vectors above):

.

hhROOM : ;PDA : shutdown!i;ROOM : ;

PDA : shutdown!i;

going to state (0, 4,0);
.

hhROOM : ;PDA : login!i;ROOM : ;PDA : login!i;

going to state (0,0,USER); and
.

hhROOM : access?;PDA : query!i;ROOM : access?;

PDA : query!i;

going to state (1,1,GUEST).

The other possibilities are forbidden, either because one
component corresponding to a message in a possible
vector is not ready for it (e.g., ROOM cannot receive
textrequest in its initial state, 0) or because components
may be ready for some message but the contract forbids
it (e.g., PDA may send logout but vector vguest is not
enabled in the initial state of the vector LTS,
(0, 0, GUEST)). We may proceed similarly, step by step,

552 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Fig. 5. eMuseum, version 2. (a) ROOM LTS. (b) PDA LTS.

Fig. 6. Adaptation contract for eMuseum, version 2.

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

now computing, for example, the transitions outgoing
from the (0, 4, 0), (0, 0, USER), and (1, 1, GUEST) states.
The result is given in Fig. 7, where the parts of the labels
corresponding to the vectors are discarded due to place
matters (i.e., wrt Algorithm 1, we give P in place of PL).

One may note a path leading to a deadlock state in
this example. After ROOM and PDA have successfully
exchanged a first video, the adaptor may have ROOM
send it again using the again message. However, ROOM
would then send the video message, which would block
the system as PDA is not ready to receive the
corresponding mpeg message. Indeed, this could have
been prevented by removing vector vagain from the
adaptation contract. Yet, as one cannot ensure that the
perfect contract is always given, it shows the need for the
suppression of spurious interactions after the product is
computed.

We finally compute the adaptor by mirroring the
labels and computing permutations of inputs and then
outputs for it (see Fig. 8). In this adaptor protocol, we see
that behavioral mismatch (one-to-zero, i.e., unantici-
pated reception, such as shutdown, one-to-one such as
query versus access, many-to-one such as videorequest
and video versus mpeg) have been worked out. The
adaptor follows a coordination protocol which is
restricted to the contract and modes we specified (e.g.,
text is sent to guests and video to users). Finally, the
adaptor has also removed all possible interaction
sequences leading to deadlocks (as demonstrated above
with video resending).

5 ADAPTATION WITH REORDERING

Let us now extend the domain of mismatch problems we
deal with. Our goal is now to also address behavioral
mismatch which requires reordering. This occurs when
exchanged messages present noncompatible orderings in
the components’ protocols. To support this kind of
mismatch, the adaptation process may try to accommodate
protocols by reordering events in between the components.
The behavioral adaptation proposal presented in Section 4
may yield an empty adaptor in the presence of such a
mismatch because it induces application of one vector after
the other and, therefore, prevents the application of several
vectors at the same time, which is necessary to make
reordering effective.

To this purpose, we present a second approach which
complements the one presented in Section 4. Messages
received by the adaptor are seen as resources which are
memorized until they need to be sent (i.e., until they may be
received by some component to make it evolve). This can be

achieved first due to an encoding of the component
protocols and of the adaptation contract into a formalism
that supports a memory and a resource-based vision of
adaptation, as follows: 1) reception of messages (by the
adaptor) corresponds to a resource creation, 2) emission of
messages (by the adaptor) is possible provided some
resource is available and corresponds to resource con-
sumption, and, finally, 3) vectors correspond to resource
transfer. Petri nets [27] are such a formalism, which further
benefits from good tool support. Moreover, the marking
graph of such a Petri net encoding represents all possible
resource-based evolutions of the adaptor (message recep-
tion, emission, and transfer).

Before presenting our algorithm for adaptation with
reordering in more details, let us first introduce the basics
of Petri nets. A Petri net consists of places, transitions, and
directed arcs between places and transitions. A transition is
connected by input arcs to a set of input places and by
output arcs to a set of output places. Places may contain
any number of tokens that model resources. Transitions act
on tokens by a process known as firing. A transition can be
fired if there are enough tokens in each of its input places.
When a transition fires, it consumes one token from each of
its input places, and adds a token into each of its output
places. The presentation of Petri nets is simplified here for
conciseness purposes as, e.g., generalized Petri nets support
arcs labeled with natural numbers to denote the need of
more than one token in an input place and the production
of more than one token in an output place. A distribution of
tokens over the places of a net is called a marking. A marking
graph describes all of the markings that can be reached from
an initial marking by firing transitions.

Algorithm 2 takes as input a set of component LTSs Ci
and an adaptation contract and generates the correspond-
ing Petri net encoding.

Algorithm 2 build_PetriNet

constructs a Petri net encoding from component interfaces and an

adaptation contract

i n p u t s c o m p o n e n t s C1; . . . ; Cn w i t h e a c h Ci ¼
hAi; Si; Ii; Fi; Tii, and an adaptation contract ðV ; L ¼
ðAL; SL; IL; FL; TLÞÞ
output Petri net N

1: N :¼ empty PetriNetðÞ== the following operates on N
2: for all Ci ¼ hAi; Si; Ii; Fi; Tii, i 2 f1; . . . ; ng do

3: for all sj 2 Si do add a place Ci :sj endfor

4: put a token in place Ci :Ii // Ii: initial state of Ci
5: for all a! 2 Ai do add a place ??Ci :a endfor

6: for all a? 2 Ai do add a place !!Ci :a endfor

7: for all ðs; e; s0Þ 2 Ti with l ¼ e do

CANAL ET AL.: MODEL-BASED ADAPTATION OF BEHAVIORAL MISMATCHING COMPONENTS 553

Fig. 8. Adaptor protocol for eMuseum, version 2.Fig. 7. Product LTS for eMuseum, version 1.

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

8: add a transition with label l, an arc from place
Ci :s to the transition and an arc from the

transition to place Ci :s
0

9: if l has the form a! then add an arc from the
transition to place ??Ci :a endif

10: if l has the form a? then add an arc from place

!!Ci :a to the transition endif

11: end for

12: end for

13: for all sL 2 SL do add a place CL :sL endfor

14: put a token in place CL :IL // IL: initial state of L

15: for all tL ¼ ðsL; he1; . . . ; eni; s0LÞ 2 TL with 8i 2
f1; . . . ; ngli ¼ ei do

16: add a transition with label tau, an arc from place

CL :sL to the transition and an arc from the

transition to place CL :s0L
17: for all li do

18: if li has the form a! then add an arc from place

??Ci :a to the transition endif

19: if li has the form a? then add an arc from the

transition to place !!Ci :a endif

20: end for

21: end for

22: for all ðfr; f1; . . . ; fnÞ 2 FL � F1 � . . .� Fn do

23: add a (loop) accept transition with arcs from and
to each of the tuple elements

24: end for

25: return N
With regard to component interface encoding (Fig. 9,

Algorithm 2:2-12), every event emission or reception in a
component is translated into a Petri net transition holding the
same name as the event but the reversed direction. This
transition is connected to specific places that are used to store,
using tokens, messages corresponding to the events. For each
event emission c :a! in a component c interface (Fig. 9a), there
is a transition for reception in the Petri net ðc :a?Þ and this
transition has an output arc to the place where the
corresponding message is stored ð??c :aÞ. Conversely, for
each event reception c :a? in a component c interface
(Fig. 9b), there is a transition for emission in the Petri net
ðc :a!Þ and this transition has an input arc from the place
where the corresponding message has been stored ð!!c :aÞ.
The control flow between events in component interfaces is
expressed in the Petri net by control places and related arcs
connecting the different Petri net transitions. Moreover,
tokens are placed in the control places encoding the initial
states of the LTS interfaces (Algorithm 2:4) and their
evolution will simulate the execution of the entire system.

As far as the contract encoding is concerned (Algorithm 2:
13-24), every synchronous vector is encoded using a tau

[19] transition (Fig. 10, Algorithm 2:16-20) as it represents
an internal action of the adaptor. Arcs are added (Algo-
rithm 2:16) to connect these tau transitions in order to
enforce their application ordering in the vector LTS.
Message transfer is enabled using input/output arcs that
connect a tau transition to the places related to the
component events involved in the corresponding vector
(Algorithm 2:17-20).

We will illustrate further, in this section (Example 6), this
encoding into Petri nets on the eMuseum application.

Algorithm 3 generates an adaptor protocol from a set of
component LTSs Ci and an adaptation contract. This
algorithm, respectively, 1) builds a Petri net encoding for
both component LTSs and the contract (Algorithm 3:1),
2) generates the marking graph for this Petri net which
contains all of the possible evolutions of the adaptor wrt the
component LTSs it is in charge of (Algorithm 3:2), and
3) removes remaining deadlocks (remove_deadlocks) which
correspond to spurious interactions and tau transitions
(reduction) introduced during the Petri net generation
(Algorithm 3:3).

Algorithm 3 build_adaptor_reordo

constructs an adaptor with reordering for a set of components

given an adaptation contract

i n p u t s c o m p o n e n t s C1; . . . ; Cn w i t h e a c h Ci ¼
hAi; Si; Ii; Fi; Tii and an adaptation contract ðV ; LÞ
output adaptor Ad ¼ hA; S; I; F ; T i

1: N :¼ build PetriNetðfC1; . . . ; Cng; ðV ; LÞÞ // see Alg. 2

2: M :¼ get marking graphðN Þ
3: Ad :¼ reductionðremove deadlocksðMÞÞ
4: return Ad

The reduction function is used to simplify the adaptor
protocols. At this level, several behavioral reductions
modulo an equivalence relation can be applied (e.g.,
tau�:a, observational, branching). In our experiments, we
used, in particular, a combination of branching and weak
trace reductions that enable 1) elimination of tau transitions
introduced for message transfer in the encoding of vectors
into Petri nets (which are meaningless at the level of the
adaptor) while preserving the deadlock freedom property,
2) cutting of similar paths (traces), and 3) determination of
the adaptor protocols using a classical automata theory
algorithm.

The theoretical complexity of this algorithm mainly lies
in the marking graph construction, which is exponential
[28]. In practice, it is less expensive as parts of the net are
1-bounded (there is only one token in only one of the places
corresponding to the component interface states). We
emphasize that the adaptation techniques presented in this
section also work for adaptation without reordering.
However, since the computational complexity of these

554 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Fig. 9. Encoding patterns for component protocols (and related marking

evolution semantics). (a) Message emission in components/reception in

adaptor. (b) Message reception in components/emission in adaptor.

Fig. 10. Encoding pattern for adaptation contracts (and related marking

evolution semantics).

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

techniques is greater than those presented in the previous
section, they are privileged only if reordering is needed.

Example 6. Let us now describe the last version of the
eMuseum application. A third component, a generic pay-
per-view subscription server, SUB, is used to manage
subscription modes (guest mode for free access and user
mode for paying access) and related access identifiers.
Upon reception of a registration message (guestmode or
usermode), it returns an access identifier (userid message).
In case of user registration, reception of the payment
information (payinfo message) is required before sending
the identifier. Moreover, using debit, the user shopping
cart can be updated (with an access authorization sent
back each time) before a bill is finally sent (the user account
being debited at the same time). There are also changes in
new versions of the other two components which are
reused. ROOM needs an identifier (id) to be given before
information sending in order to update a log file. The
access to ROOM is controlled by a signal detecting the
entry (enter) and the leaving (leave) of the room. PDA
sends payment information (credentials) before logging in
and waiting for an acknowledgment (ticket). Finally, after
logging out, PDA waits for an invoice of the services it
acceded to.

The new corresponding LTSs are given in Fig. 11
(changes are in bold). One may note that

. PDA does not deal with identifiers when doing
requests, while ROOM needs them (id?);

. ROOM knows nothing about guest and user
modes; and

. reordering is required, first because PDA and
ROOM do not support requests in the same way:
PDA sends a query before waiting a list of items
and selecting one, while ROOM presents its list of
items and waits for one to be selected before
waiting for either a text or a video request.
Moreover, PDA and SUB do not treat the logging
in protocol in the same way, the order of the
payment information and login request being
different in both components.

To work this out, vectors are first defined (differences
with the previous example are in bold font). There are
two new vectors for the entering and leaving of the

system (triggered by the adaptor), while the one for PDA
shutdown is reused. In the first case, entering also
triggers the guest mode (initial mode):

venter ¼ hROOM : enter?;PDA : ;SUB : guestmode?i;
vleave ¼ hROOM : leave?;PDA : ;SUB : i; and

vend ¼ hROOM : ;PDA : shutdown!; SUB : i:

Vectors for lists and choices are also reused:

vlist ¼ hROOM : list!;PDA : list?; SUB : i and

vchoice ¼ hROOM : selection?;PDA : choice!; SUB : i:

Vectors for entering text (respectively, video) mode and
for text (respectively, video) exchange are reused but for
two differences: 1) query in PDA now corresponds to
requests in ROOM and 2) SUB should be informed about
each video being sent:

vtmode ¼ hROOM : textrequest?;PDA : query!; SUB : i;
vtget ¼ hROOM : text!;PDA : pdf?; SUB : i;
vvmode ¼ hROOM : videorequest?;PDA : query!;

SUB : debit?i;
vvget ¼ hROOM : video!;PDA : mpeg?;SUB : auth!i; and

vquit ¼ hROOM : quit?;PDA : ; SUB : i:

Vectors for changing mode are reused and modified to
support SUB:

vuser ¼ hROOM : ;PDA : login!;SUB : usermode?i and

vguest ¼ hROOM : ;PDA : logout!;SUB : guestmode?i:

Vectors that support the additional payment relations
between PDA and SUB are added:

vinfo ¼ hROOM : ;PDA : credentials!;SUB : payinfo?i;
vbill ¼ hROOM : ;PDA : invoice?;SUB : bill!i; and

vexit ¼ hROOM : ;PDA : ;SUB : exit?i:

Identifier exchange is finally specified with three vectors
(one for guest mode, one for user mode, and one for
resending):

vgid ¼ hROOM : id?;PDA : ;SUB : userid!i;
vuid ¼ hROOM : id?;PDA : ticket?;SUB : userid!i; and

vreid ¼ hROOM : id?;PDA : ;SUB : i:

Vector vagain is left over, suppressing the possibility of
video resending.

As for the previous example, we may now use a
vector LTS to specify their possible orderings. We
propose two different contracts: one supporting only
the GUEST mode (Fig. 12a) and one supporting both
modes (Fig. 12b).

The contract for the GUEST mode (Fig. 12a) focuses
on what happens between when one enters and when
one leaves the room. Moreover, it specifies that, once the
identifier has been first exchanged, the identifier is
resent by the adapter (vector vreid) only if a new query
happens (vector vtmode). But for these two constraints,
the contract is not restrictive and does not specify any

CANAL ET AL.: MODEL-BASED ADAPTATION OF BEHAVIORAL MISMATCHING COMPONENTS 555

Fig. 11. eMuseum, version 3. (a) ROOM LTS. (b) PDA LTS. (c) SUB

LTS.

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

particular ordering of vectors. The adaptation process
will, therefore, find all possible ones such that the
adapted system does not deadlock. The contract for the
full mode (Fig. 12b) adds a part relative to the USER
mode. One may note that it is symmetric to the GUEST
mode contract but with some differences. We must first
take into account the quit message emission by the
adaptor (vector vquit) to avoid blocking once a video has
been exchanged. This is put into practice, e.g., by adding
this vector in the vector LTS at the end of the vtmode

loops (twice). Moreover, while passing from GUEST to
USER mode is quite simple (vector vuser), leaving USER
mode should also take into account the final payment
using vectors vbill and vexit. This is representative of one-
to-many correspondence, here between logout in PDA
and both exit and guestmode in SUB. The obtaining of
the full mode contract (and the difference between the
USER and the GUEST modes) has been achieved in
several steps, using postgeneration adaptor assessment
(see support for contract design in Section 8). In the
sequel, we will present our approach on the first contract
due to the complexity of the adaptor for the full mode.

The Petri net generated for this example is given in
Fig. 13. To help the reader, we present the parts of the
Petri net which are generated for ROOM, PDA, SUB, and
the contract separately. The nets are glued on dashed
places, accept transitions, and, for the contract, on vector
transitions.

The adaptor for the GUEST mode has 204 states and
404 transitions (494 states and 1,101 transitions before
pruning paths to deadlocks). After reduction, the
resulting final adaptor has 52 states and 104 transitions
(Fig. 14, where the initial state is in light gray and the
final states are in black). We emphasize that it is much
simpler to give an adaptation contract and use our
automatic adaptor protocol generation techniques than
to directly write the protocol by hand.

One may note different things (see Fig. 14 zoom):

. name mismatch is solved, e.g., choice in PDA
versus selection in ROOM;

. messages are reordered when required, e.g., PDA
sending query and then waiting for the list of
possible information to be displayed, while
ROOM sending first the list and waiting for a
selection before waiting for either a textrequest or
videorequest which correspond to query;

. id is resent to ROOM when required;

. the contract is permissive—e.g., wrt in which
order to apply vectors vlist, vchoice, vtmode, vtget, and
vvend—and the adaptor contains all possible
orderings not leading to deadlocks (yet we have
only represented one possible ordering on the
zoom).

The adaptor for the full mode has 1,477 states and
3,326 transitions (2,719 states and 6,464 transitions before
pruning paths to deadlocks). After reduction, the
resulting final adaptor has 307 states and 627 transitions.
Due to its size, it is not given here. Performing
verification on the adapted system (made up of the
components and the adaptor), we have been able to
check with CADP that important system-level properties
are enforced through adaptation: 1) No video is sent
before the PDA logs on and 2) a debit is performed for
each video being sent.

6 THE ADAPTOR TOOL

The approach for software adaptation that we presented in
the previous sections of this paper was implemented in a
tool called Adaptor [29]. The kernel of Adaptor corresponds
to the implementation of the algorithms that generate
adaptor protocols being given behavioral interfaces of
components and an adaptation contract. In addition,
Adaptor presents graphical interfaces to load and visualize
the different inputs, to apply the different adaptation steps,
and to visualize the intermediate encodings and final
results. The tool was initially developed in Python (about
9,000 lines of code)1 and uses GTK+ technology for the
development of the user interface. More recently, to simplify
the access and use of the tool, a Web service version of
Adaptor (WS-Adaptor) was implemented in Java. It enables
one to adapt component protocols without installing more
than a GUI client (the engine and the required dependencies
running in the distant Web service host).

Different input and output formats are used to describe,
respectively, interfaces of components, contracts, and
resulting adaptors. With regard to inputs, LTS interfaces
may be described using XML or the Aldebaran textual
format [22] (file extension .aut). Vectors and vector LTSs
involved in contracts are specified using XML.

Once the inputs are loaded, Adaptor uses dot [30]
(graphviz) to visualize interfaces of components, inter-
mediate results for contracts, Petri nets, and adaptors.
Textual formats are also possible for visualization or storing
and analysis purposes, namely, .aut for LTSs and .net for
Petri nets. Adaptor interacts with two other external tools,
namely, TINA and CADP. TINA [31] is a tool to design and
validate Petri nets. It allows the application of structural

556 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Fig. 12. Adaptation contracts for eMuseum, version 3. (a) GUEST

mode. (b) Full mode.

1. Approximately 5,000 lines of code correspond to the encoding of the
adaptation techniques, and approximately 4,000 lines to the user interface.

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

and reachability analysis on Petri nets. TINA is used in

Adaptor to compute marking graphs from Petri nets

encodings. CADP [22] is a toolbox to verify concurrent

systems. It is used to compute the mismatch test using its

EXP.OPEN tool and to perform reductions of the adaptor

LTSs using BCG_MIN and Reductor.
The current version of Adaptor fully supports transac-

tional components. For nontransactional ones, avoiding

state explosion when computing marking graphs requires

that messages cannot be infinitely generated. This means,

first, that a component should not send some message

infinitely and independently (i.e., without having this

action triggered by a message reception or requiring an

acknowledgment). In the same way, the adaptor should not

infinitely and independently generate messages using

vectors such as h ; . . . ; c : m?; ; . . .i.
Adaptor has been used to generate the adaptor protocols

presented in this paper, but it has been validated and

applied to many other examples as well (approximately

70 examples which correspond to 25,000 lines of XML

specification) such as a Video-On-Demand service, a

pervasive music player, a library lending system, and

CANAL ET AL.: MODEL-BASED ADAPTATION OF BEHAVIORAL MISMATCHING COMPONENTS 557

Fig. 13. Petri net encoding for eMuseum, version 3 (GUEST mode). (a) ROOM encoding. (b) PDA encoding. (c) SUB encoding. (d) Contract

encoding (vectors). (e) Contract encoding (vector LTS).

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

several simpler client-server systems. More details are
available on the Adaptor Web page [29].

We show in Fig. 15 three screenshots of Adaptor to give a
flavor of what the tool looks like, here applied to eMuseum.
The Adaptor GUI is made up of three different windows:
The left-hand side window contains the already-loaded
component interfaces and contracts, the right-hand side
window is used to visualize all the elements involved in the
adaptation process (interfaces, contracts, Petri nets, adap-
tors) under different formats (graphical, textual, XML), and
the bottom window is the console window. The first
screenshot (Fig. 15a) shows the SUB component LTS. The
second one (Fig. 15b) is a textual description of the contract
we have presented in Example 6. Finally, the last one
(Fig. 15c) shows a piece of the adaptor during the
adaptation process.

7 RELATED WORK

Software composition and adaptation is currently a hot
topic in software engineering research. A quick look over
the Web will easily produce a great number of works—
ranging from deep theoretical works (e.g., [32], which uses

category theory for signature adaptation via superposition,
or name morphisms) to more practical proposals (e.g., [33]
for Web Services). Furthermore, an increasing number of
events are specifically focused on adaptation or have it as
one of their main topics (e.g., the WCAT series of work-
shops [34], starting in 2004).

The issues related to software component integration
have been a classical field of study in software engineering
and component mismatch has been described at all the
levels of interoperability. A taxonomy of interface mis-
matches appears in [2], classifying them into technical
mismatch, coming from the use of different operating
systems, platforms, and frameworks; signature mismatch,
related to different names of methods and services,
parameter and exception types, and parameter ordering;
protocol or behavioral mismatch, caused by different message
ordering and the absence or surplus of messages; quality of
service mismatch, linked to different assumptions on
properties like security, persistency, reliability, or effi-
ciency; and, finally, conceptual or semantic mismatch,
coming from the use of homonyms, synonyms for describ-
ing the services provided, or the existence of sub and
superordination relations between services.

Although some practical issues related to technical
interoperability between different platforms still remain,
we consider that these do not demand a significant research
effort. Accordingly, the research in the field has recently
begun to explore the rest of the sources of mismatch
mentioned above. In particular, in this work, the focus on
both the signature and behavioral levels, where the use of
formal notations based on logic formulas, Petri nets,
process algebras, state machines, and many others has
been promoted for enhancing software interfaces with a
behavioral description (see [35] for an early instance). One
of the first proposals for defining behavioral mismatch
from a formal point of view can be found in [8], where
process algebra is used for specifying and reasoning about
software composition. The work is continued in [36], where
a means of characterizing connector wrappers as protocol
transformations and reasoning about their properties is
presented. A similar approach is presented in [13], where

558 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Fig. 14. Adaptor protocol for eMuseum, version 3 (GUEST mode).

Fig. 15. Screenshots of the Adaptor tool—eMuseum, version 3. (a) SUB component LTS. (b) Contract (textual). (c) Adaptor before reduction (part of).

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

compatibility and substitutability are defined in the context
of CORBA as a first attempt to put these ideas into
industrial practice.

However, once behavioral mismatch is detected, the
issue of how to adapt component protocols in order to solve
it arises. Many of the approaches found in the literature
work at the implementation level, some of them [37], [38],
[39] related to existing programming languages and plat-
forms, such as BPEL or SCA components, and suggesting
manual or at most semiautomated techniques for solving
behavioral mismatch. For instance, [37] describes a model-
based approach for verifying Web service compositions,
including the verification of properties created from design
specifications and implementation models to confirm
expected results. However, once a violation of the proper-
ties is detected, it should be manually corrected, either in
the implementation of the components or in the specifica-
tion models, as part of an iterative development process.
Also in the context of Web services and BPEL, [38] outlines
a methodology for the generation of adaptors capable of
solving behavioral mismatches between BPEL processes. In
their adaptation methodology, the authors use an inter-
mediate workflow language for describing component
behavioral interfaces and they use lock analysis techniques
to detect behavioral mismatch. Similarly, [39] provides
automated support for the identification of protocol-level
mismatches, but is able to generate an adaptor only in the
absence of deadlock. If deadlock may arise from the
combination of the components, the authors propose a
way to handle the situation by generating a tree for all
mismatches that result in a deadlock and suggesting some
hints for assisting the designer in the manual implementa-
tion of the actual adaptor.

Current approaches aiming to provide a fully automated
solution to this problem are comparatively fewer and can
be divided into restrictive, generative, and ad hoc [4].
Restrictive approaches [26], [40], [41], [42], [43] simply try
to solve the problem by cutting off the behavior that may
lead to mismatch, thus restricting the functionality of the
components involved. On the contrary, generative ap-
proaches like [9], [44], [45] try to accommodate the
protocols without restricting the behavior of the compo-
nents, by generating adaptors that act as mediators,
remembering and reordering events and data when
necessary. Finally, ad hoc approaches (see, for instance,
[46], [47], [48]) do not address the adaptation from a
general, automatable point of view, but propose specific
practical solutions for particular situations instead.

The foundation for automatic behavioral adaptation was
set by Yellin and Strom (YS). In their seminal article [9],
they introduced formally the notion of adaptor as a software
entity capable of enabling the interoperation of two
components with mismatching behavior. They used finite
state machines to specify component interaction, to define a
relation of compatibility, and to address the task of
(semi)automatic adaptor construction following the gen-
erative approach mentioned above.

More recently, Schmidt and Reussner (SR) presented a
particular adaptation approach as a solution to synchroni-
zation problems between concurrent components [46]. The

proposal addresses, for instance, situations where one
component is accessed simultaneously by two other
components. The approach is based on algorithms close
to the synchronous products we use in this paper. More-
over, they can solve protocol incompatibilities, enabling
one of the involved components to perform several
communication actions before or after synchronizing with
its partners. These ideas are implemented in the CoConut/J
tool suite [49], where the authors introduce the concept of
parameterized contracts and a model for component
interfaces. This paper also presents algorithms and tools
for specifying and analyzing component interfaces in order
to check interoperability and to generate adapted compo-
nent interfaces automatically. In comparison, our proposal
is more general and based on a rich notation to deal with
possibly complex adaptation scenarios, whereas the SR
approach works out only precise situations in which
mismatch may happen, without using any contract lan-
guage for adaptor specification.

In their paper Adapt or Perish [50], Dumas et al. presented
an approach to behavioral interface adaptation based on the
definition of a set of adaptation operations for establishing
the basic relation patterns between the message names used
in the components being adapted and they defined a trace-
based algebra for describing the transformations required
to solve the adaptation problem. They also present a visual
notation for describing a mapping between the behavioral
interfaces of the components. Their approach is similar to
ours in the sense that these basic operations correspond to
the different relations (one-to-one, one-to-many, many-to-
one, one-to-zero, etc.) between message names that can be
defined by means of our synchronous vectors. However,
their proposal does not present a solution for deriving an
adaptor from the visual mappings, but just contains a
preliminary (i.e., nonsufficient) condition for detecting
deadlock scenarios in the behavioral interfaces. Moreover,
their mappings require relating the messages at the
behavioral level (i.e., matching messages directly from the
component protocol specifications), while our adaptation
contracts are more abstract since the mapping is performed
at the signature level (i.e., between the messages declared
in the component interfaces) from which we automatically
obtain an adaptor solving the mismatch at the behavioral
level. Finally, their approach is not able to perform message
reordering when it is required for solving the problem.

Taking the YS proposal as a starting point, the work of
Brogi et al. (BBCP) [44], [45] presents a methodology for
generative behavioral adaptation. In their proposal, com-
ponent behavior is specified using a process algebra—a
subset of the �-calculus—where service offering/invocation
is represented by input/output events in the calculus,
respectively. The starting point of their adaptation process
is a mapping, an adaptation contract that states correspon-
dences between the services of the components being
adapted. Then, an adaptor generation algorithm refines the
specification given by the mapping into a concrete adaptor
implementation, taking into account the behavioral inter-
faces of the components, which ensures correct interaction
between them according to the mapping. The adaptor is
able to accommodate not only signature mismatch between

CANAL ET AL.: MODEL-BASED ADAPTATION OF BEHAVIORAL MISMATCHING COMPONENTS 559

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

service names but also behavioral mismatch (i.e., the
interaction protocols that the components follow or the
partial ordering in which services are offered/invoked).

Another interesting proposal in this field is that of
Inverardi and Tivoli (IT) [26]. Certain aspects of their work
go beyond BBCP by addressing how to enforce certain
behavioral properties (namely, liveliness and safety proper-
ties expressed as specific processes) out of a set of already
implemented behaviors. Starting from the specification
with MSCs of the components to be assembled and of the
properties that the resulting system should verify, they
automatically derive the adaptor glue code for the set of
components in order to obtain a property-satisfying system.
In order to do that, they follow the so-called restrictive
approach. The IT proposal was extended in [40] with the
use of temporal logic; coordination policies are expressed
as LTL properties and then translated into Büchi automata.
Recent outcomes of this research line allow a distributed
implementation of the adaptors [41] and take into account
time and other QoS issues [42].

Another example of the restrictive approach is the work
of de Alfaro et al. [11], [43], who use game theory to achieve
behavioral adaptation. One of the relevant features of the
proposal is that time information can be taken into account
within the component interfaces.

Our approach to behavioral adaptation can be consid-
ered as both generative and restrictive since we address
behavioral adaptation by enabling event reordering (as in
BBCP), while we also remove incorrect behavior (as in IT).
Similarly to both of them, our main goal is to ensure
deadlock freedom. However, more complex adaptation
policies and properties can be specified by means of our
vector LTSs. A deeper comparison with the aforementioned
approaches yields that our proposal addresses system-wide
adaptation (i.e., differently from BBCP, it may involve more
than two components) and that it is based on LTS
descriptions of component behavior instead of using
process algebra as in BBCP. However, we may also describe
behavior by means of a simple process algebra and use its
operational semantics to derive LTSs from it [14]. Differ-
ently from IT, which requires name matching, we use
synchronous vectors in our adaptation contracts, playing a
similar function as the mapping rules in BBCP. With that,
we are able to perform adaptation of incompatible events.
Finally, our approach is fully tool equipped, while BBCP
have only presented a sketch of the implementation of their
adaptation algorithm.

Nevertheless, the most relevant achievement of our
current proposal is the use of vector LTSs for imposing
additional properties over adaptation contracts. In fact, the
semantics of BBCP mappings can be expressed by combin-
ing their different rules in a vector LTS with a single state
and all vector transitions looping on it. On the contrary, our
vector LTSs are much more expressive, solving the problem
of BBCP underspecified mappings [44] and allowing us to
take into account a new class of adaptation problems.

A different characterization of behavioral adaptation
techniques may classify them into immutable and contextual.
Immutable approaches are those that define a static set of
rules for describing the adaptation required and these rules

are applied uniformly during the whole adaptation process.
On the contrary, contextual adaptation pays attention to
context information in order to decide on-the-fly the
adaptation strategy to apply. Our present approach allows
contextual adaptation by the use of vector LTSs which
govern when the adaptation rules are applied (as shown in
Figs. 6 and 12), while the rest of the approaches mentioned
above are static. Some recent works based on the BBCP
proposal try to address more flexible ways of contextual
adaptation [51].

Finally, most of the current adaptation proposals—and
our present work among them—may be considered as global
since they proceed by computing global adaptors for closed
systems made up of a predefined and fixed set of compo-
nents. However, this is not satisfactory when the system may
evolve, with components entering or leaving it at any time,
e.g., for pervasive computing. To enable adaptation on such
systems, an incremental approach should be considered by
which the adaptation is dynamically reconfigured depend-
ing on the components present in the system. One of the first
attempts in this direction is [52], whose proposal for
incremental software construction by means of refinement
allows for simple signature adaptation. However, to our
knowledge, the only proposal addressing incremental
adaptation at the behavioral level is [53].

8 CONCLUDING REMARKS

Software Adaptation is widely accepted as a promising
solution to favor the reuse of black-box components that
require nonintrusive adjustments to make them fit with the
specificities of the system-to-be. In this paper, we have
presented a proposal for software adaptation at the
signature and behavioral levels based on a simple adapta-
tion contract notation. These contracts can be used to
express correspondences (possibly involving mismatching
messages) not only between an arbitrary number of
components but also complex adaptation scenarios. Our
proposal is equipped with two algorithms, depending on
whether reordering is necessary or not in the adaptation
process. The first one is based on synchronous product
computation and the second one on encodings into Petri
nets. Our proposal is completely supported by a tool which
was applied to many examples.

In this paper, we follow a regular model-based ap-
proach, focusing on abstract (platform-independent) beha-
vioral interface models, LTSs. It has been demonstrated,
usually for verification purposes, that such abstract models
could be derived from existing implementation platforms’
languages, e.g., [54], [55], [56] for Web services. With regard
to adaptation, model-based behavioral adaptation has been
applied to COM/DCOM components in [26] and to Web
services in [38], [39]. In a recent paper [16], we have
addressed WF components. We have shown how LTS
descriptions could be extracted automatically from
WF workflows and how a new WF component could be
obtained from an adaptor protocol generated with the
techniques we have presented here. Therefore, we think the
proposed adaptation techniques are of great interest for
real-world software components or Web services.

560 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

There are still some open issues in our proposal
deserving future work. In this part of the conclusion, we
will particularly emphasize three perspectives, namely,
data adaptation, contract design support, and application
to pervasive systems.

Data adaptation. Taking data exchange into account in
protocols is important to ensure full compatibility. So far, this
can be supported in the approach at hand using additional
messages for data exchange in the abstract component
protocols (LTSs), as presented in Section 2.1. Provided this
encoding is performed as a preprocessing and the adaptation
contract takes the additional messages into account, the
protocols can be adapted, as demonstrated in [16].

Directly supporting data types would be more efficient
but would first require more expressive models than LTSs.
In particular, we consider Symbolic Transition Systems
(STSs) [57] or Extended State Diagrams [58] as good
candidates since they allow the description of the data
involved in the operations within the protocol without
suffering from the state explosion problem. Then, data
types should also be taken into account in the contract
specification as well as for the additional message encoding
technique, above. As far as the adaptation process itself is
concerned, we are studying two possible techniques. The
first one is compatible with the approach at hand, e.g., for
the reordering approach, it consists of taking the data types
into account in the Petri net encoding patterns (data type
resources being generated for component emissions, data
type resources being consumed for components receptions,
and data types being transferred for data vectors). We are
currently looking for an efficient Petri net encoding, using
Petri net extensions, in order to avoid state explosion
problems. The second technique specifically addresses
these efficiency issues. It consists of implementing data
adaptation separately from the message-based one through
a data adaptation engine that would be embedded in the
adaptor implementation and that would store received
values and redistribute them wrt the correspondences
expressed in the data contract.

Support for contract design. The design of an adapta-
tion contract may be a nontrivial and error-prone task,
leading to too many interactions being removed in the
adaptation process to ensure deadlock-freedom. To address
this issue, recent work has focused on postgeneration
adaptor assessment, either by reusing existing model
checkers [59] or by developing new tools such as Clint
[60], which is able to graphically represent deadlocks in
components and interactions that are removed in the
adaptation process. The former approach is more powerful,
yet it requires temporal logic formulas. This is the approach
we have used in this paper to obtain our mappings. The
latter is less expressive (as far as the kind of properties
which are assessed over the adapted system are concerned),
yet it benefits from being fully automatic.

Approaches dedicated to the automatic generation of
compositions are indeed the current goal of research
groups working at the semantic interoperability level, e.g.,
adding semantic annotation to (Web) services [61]. Yet,
enforcing a semantic description for all components
(including legacy ones) is a strong assumption.

We are convinced that an assisted design approach is a

good trade-off between complete automation and manual

writing of the composition and adaptation contracts.

Further, it enables a user composition vision [62], [63]. As

a perspective, we plan to propose techniques to support the

contract design task. A partial specification of the contract

could be given for which the remaining composition issues

(such as deadlocks in components and interactions that

would be removed by the adaptation process) would be

emphasized using Clint. In addition, incremental contract

construction, where, at each step, possible message

correspondences to complete the contract would be

proposed, would foster the user-friendliness of the contract

design process.
Self-adaptive pervasive systems. A perspective in the

context of funded research projects is to apply our

adaptation techniques to pervasive systems. In this field,

self-adaptation is a mandatory feature because fewer

assumptions can be done on the system at hand, e.g., new

components or services can show up or disappear at

runtime, while the overall adaptation mechanism should

support these evolutions and keep on making the system

work in a reliable way. We are currently exploring

Dynamic Aspect Oriented Programming to put into

practice adaptation techniques in this highly dynamic

context.

ACKNOWLEDGMENTS

The authors thank Sandrine Beauche and Juan David G.

Urbano for their participation in the implementation of

Adaptor, as well as Bernard Berthomieu, Frédéric Lang,

Massimo Tivoli, and François Vernadat for their help on

external tool support, interesting comments, and fruitful

discussions. The authors are also grateful to the anonymous

referees, whose comments helped a lot to improve this

paper. This work is partially supported by the projects

“PERvasive Service cOmposition” (PERSO), funded by the

French National Agency for Research (ANR-07-JCJC-0155-

01), TIN2004-07943-C04-01, funded by the Spanish Ministry

of Education and Science (MEC), and P06-TIC-02250,

funded by the Andalusian Local Government.

REFERENCES

[1] O. Nierstrasz and T.D. Meijler, “Research Directions in Software
Composition,” ACM Computing Surveys, vol. 27, no. 2, pp. 262-264,
1995.

[2] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and
M. Tivoli, “Towards an Engineering Approach to Component
Adaptation,” Architecting Systems with Trustworthy Components.
pp. 193-215, Springer, 2006.

[3] C. Canal, J.M. Murillo, and P. Poizat, “Coordination and
Adaptation Techniques for Software Entities,” Proc. European
Conf. Object-Oriented Programming ’04 Workshop Reader, pp. 133-
147, 2004.

[4] C. Canal, J.M. Murillo, and P. Poizat, “Software Adaptation,”
L’Objet, special issue on coordination and adaptation techniques,
vol. 12, no. 1, pp. 9-31, 2006.

[5] G. Agha, “Introduction to Special Issue on Adaptive Middle-
ware,” Comm. ACM, vol. 45, no. 6, pp. 30-64, June 2002.

[6] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, 1998.

CANAL ET AL.: MODEL-BASED ADAPTATION OF BEHAVIORAL MISMATCHING COMPONENTS 561

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

[7] A. Beugnard, J.-M. Jézéquel, and N. Plouzeau, “Making Compo-
nents Contract Aware,” Computer, vol. 32, no. 7, pp. 38-45, July
1999.

[8] R. Allen and D. Garlan, “A Formal Basis for Architectural
Connection,” ACM Trans. Software Eng. and Methodology, vol. 6,
no. 3, pp. 213-249, 1997.

[9] D.M. Yellin and R.E. Strom, “Protocol Specifications and
Components Adaptors,” ACM Trans. Programming Languages and
Systems, vol. 19, no. 2, pp. 292-333, 1997.

[10] J. Magee, J. Kramer, and D. Giannakopoulou, “Behaviour
Analysis of Software Architectures,” Proc. First Working IFIP Conf.
Software Architecture, pp. 35-49, 1999.

[11] L. de Alfaro and T.A. Henzinger, “Interface Automata,” Proc. Joint
Eighth European Software Eng. Conf. and Ninth ACM SIGSOFT Int’l
Symp. Foundations of Software Eng., pp. 109-120, 2001.

[12] F. Plasil and S. Visnovsky, “Behavior Protocols for Software
Components,” IEEE Trans. Software Eng., vol. 28, no. 11, pp. 1056-
1076, Nov. 2002.

[13] C. Canal, L. Fuentes, E. Pimentel, J.M. Troya, and A. Vallecillo,
“Adding Roles to CORBA Objects,” IEEE Trans. Software Eng.,
vol. 29, no. 3, pp. 242-260, Mar. 2003.

[14] C. Canal, P. Poizat, and G. Salaün, “Synchronizing Behavioural
Mismatch in Software Composition,” Proc. Eighth IFIP Int’l Conf.
Formal Methods for Open Object-Based Distributed Systems, pp. 63-77,
2006.

[15] C. Canal, P. Poizat, and G. Salaün, “Model-Based Adaptation of
Behavioural Mismatching Components (Long Version),” http://
www.ibisc.univ-evry.fr/~poizat, 2008.

[16] J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat, “A Model-
Based Approach to the Verification and Adaptation of WF/.NET
Components,” Proc. Fourth Int’l Workshop Formal Aspects of
Component Software (FACS ’07), pp. 39-55, 2008.

[17] K. Scribner, Microsoft Windows Workflow Foundation: Step by Step.
Microsoft Press, 2007.

[18] Handbook of Process Algebra, J.A. Bergstra, A. Ponse, and S.A.
Smolka, eds. Elsevier, 2001.

[19] R. Milner, Communication and Concurrency. Prentice Hall, 1994.
[20] Formal Methods for Software Architectures, M. Bernardo and P.

Inverardi, eds. Springer, 2003.
[21] A. Arnold, Finite Transition Systems. Prentice Hall, 1994.
[22] H. Garavel, R. Mateescu, F. Lang, and W. Serwe, “CADP 2006: A

Toolbox for the Construction and Analysis of Distributed
Processes,” Proc. 19th Int’l Conf. Computer Aided Verification,
pp. 158-163, 2007.

[23] S. Haddad and P. Poizat, “Transactional Reduction of Component
Compositions,” Proc. 27th IFIP Int’l Conf. Formal Methods for
Networked and Distributed Systems, pp. 341-357, 2007.

[24] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 1979.

[25] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of Behavioural
Models from Scenarios,” IEEE Trans. Software Eng., vol. 29, no. 2,
pp. 99-115, Feb. 2003.

[26] P. Inverardi and M. Tivoli, “Deadlock Free Software Architectures
for COM/DCOM Applications,” J. Systems and Software, vol. 65,
no. 3, pp. 173-183, 2003.

[27] T. Murata, “Petri Nets: Properties, Analysis and Applications,”
Proc. IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[28] C. Rackoff, “The Covering and Boundedness Problems for Vector
Addition Systems,” Theoretical Computer Science, vol. 6, pp. 223-
231, 1978.

[29] “Adaptor, December 2007 Distribution (LGPL Licence),” http://
www.ibisc.univ-evry.fr/~poizat, 2008.

[30] E. Gansner, E. Koutsofios, and S. North, DOT User’s Manual, Jan.
2006.

[31] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The Tool TINA—
Construction of Abstract State Spaces for Petri Nets and Time
Petri Nets,” Int’l J. Production Research, vol. 42, no. 14, pp. 2741-
2756, 2004.

[32] M. Wermelinger, A. Lopes, and J.L. Fiadeiro, “A Graph Based
Architectural (Re)Configuration Language,” Proc. Joint Eighth
European Software Eng. Conf. and Ninth ACM SIGSOFT Int’l Symp.
Foundations of Software Eng., pp. 20-32, 2001.

[33] S. Dustdar and W. Schreiner, “A Survey on Web Services
Composition,” Int’l J. Web and Grid Services, vol. 1, no. 1, pp. 1-
30, 2005.

[34] Proc. Int’l Workshop Series on Coordination and Adaptation Techni-
ques, http://wcat.unex.es, 2008.

[35] D. Lea and J. Marlowe, “Interface-Based Protocol Specification of
Open Systems Using PSL,” Proc. Ninth European Conf. Object-
Oriented Programming, pp. 374-398, 1995.

[36] B. Spitznagel and D. Garlan, “A Compositional Formalization of
Connector Wrappers,” Proc. 25th Int’l Conf. Software Eng., pp. 374-
384, 2003.

[37] H. Foster, S. Uchitel, J. Maggee, and J. Kramer, “Model-Based
Verification of Web Service Compositions,” Proc. 18th IEEE Int’l
Conf. Automated Software Eng., pp. 152-163, 2003.

[38] A. Brogi and R. Popescu, “Automated Generation of BPEL
Adapters,” Proc. Fourth Int’l Conf. Service Oriented Computing,
pp. 27-39, 2006.

[39] H.R. Motahari-Nezhad, B. Benatallah, A. Martens, F. Curbera, and
F. Casati, “Semi-Automated Adaptation of Service Interactions,”
Proc. 16th Int’l World-Wide Web Conf., pp. 993-1002, 2007.

[40] P. Inverardi and M. Tivoli, “Software Architecture for Correct
Components Assembly,” Formal Methods for Software Architectures
pp. 92-121, Springer, 2003.

[41] M. Autili, P. Inverardi, A. Navarra, and M. Tivoli, “SYNTHESIS:
A Tool for Automatically Assembling Correct and Distributed
Component-Based Systems,” Proc. 29th Int’l Conf. Software Eng.,
pp. 784-787, 2007.

[42] M. Tivoli, P. Fradet, A. Girault, and G. Goessler, “Adaptor
Synthesis for Real-Rime Components,” Proc. 13th Int’l Conf. Tools
and Algorithms for the Construction and Analysis of Systems, pp. 185-
200, 2007.

[43] L. de Alfaro and M. Stoelinga, “Interfaces: A Game-Theoretic
Framework to Reason about Open-Systems,” Proc. Second Int’l
Workshop Foundations of Coordination Languages and Software
Architectures, pp. 3-23, 2004.

[44] A. Bracciali, A. Brogi, and C. Canal, “A Formal Approach to
Component Adaptation,” J. Systems and Software, vol. 74, no. 1,
pp. 45-54, 2005.

[45] A. Brogi, C. Canal, and E. Pimentel, “Component Adaptation
through Flexible Subservicing,” Science of Computer Programming,
vol. 63, no. 1, pp. 39-56, 2006.

[46] H.W. Schmidt and R.H. Reussner, “Generating Adapters for
Concurrent Component Protocol Synchronization,” Proc. Fifth Int’l
Conf. Formal Methods for Open Object-Based Distributed Systems,
pp. 213-229, 2002.

[47] H. Min, S. Choi, and S. Kim, “Using Smart Connectors to Resolve
Partial Matching Problems in COTS Component Acquisition,”
Proc. Seventh Int’l Symp. Component-Based Software Eng., pp. 40-47,
2004.

[48] B. Benatallah, F. Casati, D. Grigori, H.R. Motahari-Nezhad, and F.
Toumani, “Developing Adapters for Web Services Integration,”
Proc. 17th Conf. Advanced Information Systems Eng., pp. 415-429,
2005.

[49] R.H. Reussner, “Automatic Component Protocol Adaptation with
the CoConut/J Tool Suite,” Future Generation Computer Systems,
vol. 19, no. 5, pp. 627-639, 2003.

[50] M. Dumas, K.W.S. Wang, and M.L. Spork, “Adapt or Perish:
Algebra and Visual Notation for Service Interface Adaptation,”
Proc. Fourth Int’l Conf. Business Process Management, pp. 65-80,
2006.

[51] J. Cubo, G. Salaün, J. Cámara, C. Canal, and E. Pimentel,
“Context-Based Adaptation of Component Behavioural Inter-
faces,” Proc. Ninth Conf. Coordination Models and Languages,
pp. 305-323, 2007.

[52] R.J. Back, “Incremental Software Construction with Refinement
Diagrams,” Technical Report 660, Turku Center for Computer
Science, 2005.

[53] P. Poizat and G. Salaün, “Adaptation of Open Component-Based
Systems,” Proc. Ninth IFIP Int’l Conf. Formal Methods for Open
Object-Based Distributed Systems, pp. 141-156, 2007.

[54] X. Fu, T. Bultan, and J. Su, “Analysis of Interacting BPEL Web
Services,” Proc. 13th Int’l Conf. World Wide Web, pp. 621-630, 2004.

[55] H. Foster, S. Uchitel, and J. Kramer, “LTSA-WS: A Tool for Model-
Based Verification of Web Service Compositions and Choreogra-
phy,” Proc. 28th Int’l Conf. Software Eng., pp. 771-774, 2006.

[56] G. Salaün, L. Bordeaux, and M. Schaerf, “Describing and
Reasoning on Web Services Using Process Algebra,” Int’l J.
Business Process Integration and Management, vol. 1, no. 2, pp. 116-
128, 2006.

562 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

[57] O. Maréchal, P. Poizat, and J.-C. Royer, “Checking Asynchro-
nously Communicating Components Using Symbolic Transition
Systems,” Proc. Int’l Symp. Distributed Objects and Applications,
pp. 1502-1519, 2004.

[58] C. Attiogbé, P. Poizat, and G. Salaün, “A Formal and Tool-
Equipped Approach for the Integration of State Diagrams and
Formal Datatypes,” IEEE Trans. Software Eng., vol. 33, no. 3,
pp. 157-170, Mar. 2007.

[59] P. Poizat, G. Salaün, and M. Tivoli, “An Adaptation-Based
Approach to Incrementally Build Component Systems,” Proc.
Third Int’l Workshop Formal Aspects of Component Software (FACS
’06), pp. 155-170, 2007.

[60] J. Cámara, G. Salaün, and C. Canal, “Clint: A Composition
Language Interpreter,” Proc. 11th Int’l Conf. Fundamental Ap-
proaches to Software Eng., pp. 423-427, 2008.

[61] S. Ben Mokhtar, N. Georgantas, and V. Issarny, “COCOA:
COnversation-Based Service Composition in PervAsive Comput-
ing Environments with QoS Support,” J. Systems and Software,
special issue on ICPS ’06, vol. 80, no. 12, pp. 1941-1955, 2007.

[62] M. Burnett, C. Cook, and G. Rothermel, “End-User Software
Engineering,” Comm. ACM, vol. 47, no. 9, pp. 53-58, Sept. 2004.

[63] X. Liu, G. Huang, and H. Mei, “Towards End User Service
Composition,” Proc. 31st Ann. Int’l Computer Software and Applica-
tions Conf., pp. 676-678, 2007.

Carlos Canal received the PhD degree in
computer science from the University of Málaga,
Spain, in 2001, where he is currently an
associate professor of software engineering.
His current research interests include compo-
nent-based software development and software
adaptation, in particular with the application of
formal methods to the specification, safe com-
position, and adaptation of interacting software
components.

Pascal Poizat received the PhD degree in
computer science from the University of Nantes,
France, in 2000. He is currently an associate
professor at the University of �Evry, France, and
an invited researcher on the ARLES project-
team at INRIA, France. His current research
interests include formal models and verification
techniques for component and service-based
systems, more specifically issues related to
coordination and adaptation. He is a member

of the IEEE Computer Society.

Gwen Salaün received the PhD degree in
computer science from the University of Nantes,
France, in 2003. He is currently an associate
researcher at the University of Málaga, Spain.
His current research interests include issues
related to formal methods, specification and
verification, and composition and adaptation of
components and services.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CANAL ET AL.: MODEL-BASED ADAPTATION OF BEHAVIORAL MISMATCHING COMPONENTS 563

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 15, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

