
Specification and Verification for Grid
Component-Based Applications: From Models to Tools

Antonio Cansado and Eric Madelaine

INRIA – CNRS – I3S – Université de Nice Sophia-Antipolis
2004 Route des Lucioles, Sophia Antipolis - France
{acansado,madelain}@sophia.inria.fr

Abstract. Computer Grids offer large-scale infrastructures for computer inten-
sive applications, as well as for new service-oriented paradigms. Programming
such applications brings a number of difficulties due to asynchrony and dynam-
icity, and require specific verification methods. We define a behavioural model
called pNets for describing the semantics of distributed component systems.
pNets (for parameterized networks of synchronised automatas) are hierarchical
assemblies of labelled transition systems, with data parameters expressing both
value-passing and parameterized topology. We use pNets for building models for
Fractal (hierarchical) and GCM (distributed) components. We present the Ver-
Cors platform, that implements these model generation procedures, but also ab-
straction mechanisms and connections with the model-checking engines of the
CADP toolset.

1 Introduction

Software components [1] are the de facto standard in many information technology
industries. Component-based frameworks and languages are seen as the natural succes-
sors of object-oriented languages for obtaining applications which are more modular,
composable and reusable. Many solutions have been proposed during the past 10 years,
with EJB being certainly the most well-known and used one. However, these promises
are often considered from a software engineering perspective and are at best only em-
pirically verified. We want to build development methods and environments that allow
application designers to specify the external behaviour of software components in a
black-box fashion, assemble them to build bigger components while guaranteeing that
the parts will behave smoothly together, and check that such an assembly implements
the overall behaviour expected by the user requirements. Beyond interoperability be-
tween components constituting large modern systems, e.g. in grid computing appli-
cations, or in large scale distributed software services, raise additional problems. In
particular distributed and asynchronous components require more complex behaviour
models, and the complexity of the analysis is higher. The analysis of properties related
with reconfiguration and dynamicity brings new aspects to check, e.g. defining evolving
systems, or checking substitutability.

Among the existing component models, Fractal [2] provides the following crucial
features: the explicit definition of provided/required interfaces for expressing depen-
dencies between components; a hierarchical structure allowing to build components

F.S. de Boer et al. (Eds.): FMCO 2008, LNCS 5751, pp. 180–203, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Specification and Verification for Grid Component-Based Applications 181

by composition of smaller components; and the definition of non-functional features
through specific interfaces, providing a clear separation of concerns between functional
and non-functional aspects. The Grid Component Model (GCM) [3], extends Fractal by
addressing large scale distributed aspects of components, providing structures for asyn-
chronous method calls with implicit futures1, and NxM communication mechanisms.
Both Fractal and GCM models provide means to specify and implement management
and reconfiguration operations.

The objective of our work is to provide tools to the programmer of distributed com-
ponents systems in order to verify the correct behaviour of programs. We require those
tools to be intuitive and user-friendly to be usable by non-experts of formal methods.
To this end we build an analysis toolset, including graphical editors for defining the ar-
chitecture and the behaviour of components, and state-of-the-art model-checking tools.
At the heart of this platform lie the behaviour semantics of our component systems, and
the model generation tools that are the subject of this article. In this context the choice
of the behavioural model is crucial: it has to be compact, expressive enough to represent
the behavioural semantics, but not too much, that could prevent us to map the models
to the input formats of automatic verification tools. Some recent approches, for exam-
ple π-ADL [4], are using formalisms based on the π-calculus, others, like μ-CRL [5]
or STS [6] use algebraic descriptions of data domains. In both cases, such foundations
give them powerful primitives for describing dynamic or mobile architectures, but also
strong limitations for using automatic verification.

Most established approaches, on the other side, are using intermediate formats with
data, that can be unfolded to finite-state structures. This is the case e.g. for the CADP
toolbox [7], or for the SPIN model-checker and its specification language PROMELA,
whose data values are instantiated (on bound domains) by the state exploration
engines.

Our choice is to use an intermediate approach with a compositional semantic model
including data called pNets [8]. It is different from previous approaches in the sense that
we want a low-level model able to express various mechanisms for distributed systems,
and that we do not limit ourselves to finite systems: we shall be able to define map-
pings to various classes of systems, finite or not. At the same time, the structure of our
parameterized model is closer to the programming language or the specification lan-
guage structure. Consequently, parameterized models are more compact, and easier to
produce, than classical internal models. Typically, our pNets model is lower level than
Lotos and Promela, but more flexible for expressing different synchronisation mecha-
nisms. On the other hand, it has no recursive constructs, in order to better control the
finiteness of encodings.

The second half of this work is a set of software tools called VerCors [9] for speci-
fying and verifying GCM component systems. In the middle term, it will include both
a textual and a graphical specification languages, unifying the architectural and the be-
havioural description of components [10]. It provides tools for defining abstractions
of the system, and for computing their behaviour model in term of pNets. Finally it

1 This is in contrast with languages like MultiLisp or Creol, where futures are explicit in the
code. Having implicit futures in GCM/ProActive allows us to automatically provide optimal
asynchrony.

182 A. Cansado and E. Madelaine

has bridges with the CADP verification toolset, allowing efficient (explicit) state-space
construction, and model-checking.

In the next section we describe the context of this work, namely the formalisms and
models that we use for hierarchical distributed components: Fractal and GCM, and the
communication mechanisms of the GCM implementation ProActive. In section 3 we
recall the definitions of the parameterized networks of synchronised automatas (pNets),
and we give the definition of the behavioural semantics of distributed components, start-
ing with active objects, then modelling hierarchical components, Fractal components,
and finishing with the specific features of GCM components, including multicast and
gathercast interfaces, and first-class futures. In section 4, we describe the VerCors spec-
ification and verification platform, with a glimpse at its architecture, a description of
the graphical editors, of the model generation tool, and some results obtained with the
platform.

2 Context: Asynchronous Component Model, Active Objects,
Grids

2.1 ASP and Active Objects

The ASP calculus [11] is a distributed object calculus with futures featuring:

– asynchronous communications: by a request-reply mechanism,
– futures, that are promised replies of remote method invocations,
– sequential execution within each process: each object is manipulated by a single

thread of control,
– imperative objects: each object has a state.

An essential design decision is the absence of sharing: objects live in disjoint activ-
ities. An activity is a set of objects managed by a unique process and a unique active
object. Active objects are accessible through global/distant references. They commu-
nicate through asynchronous method calls with futures. A future is a global reference
representing a result not yet computed. The main result consists in a confluence property
and its application to the identification of a set of programs behaving deterministically.
This property can be summarized as follows: future updates can occur at any time; ex-
ecution is only characterized by the order of requests; programs communicating over
trees are deterministic.

From the proposed framework, we have shown a path that can lead to a component
calculus [12]. It demonstrates how we can go from asynchronous distributed objects to
asynchronous distributed components, including collective remote method invocations
(group communications), while retaining determinism.

The impact of this work on the development of the ProActive library on one hand,
and on the building of the behavioural semantics on the other hand, is probably one of
our strongest achievements.

2.2 Fractal and GCM

Fractal [2] is a flexible and extensible component model. Its main features are: a hier-
archical structure, in which everything can be built from components (including bind-
ings and membranes), a generic description of non-functional concerns (e.g. life-cycle,

Specification and Verification for Grid Component-Based Applications 183

binding, attribute management) through specific control interfaces, a strong separation
of concerns between functional and non-functional aspects, a well-defined architecture
description language (ADL), and several implementations [13, 14].

The Grid Component Model (GCM) [3] is a novel component model that has been
defined by the European Network of Excellence CoreGrid and implemented by the EU
project GridCOMP. The GCM is based on Fractal, and extends it to address Grid concerns.

Grids consider thousands of computers all over the world; programming Grids
involve dealing with latency in communications between computing nodes, and opti-
mizing whenever possible the parallelism of the computation. For that, GCM extends
Fractal using asynchronous method calls. Grid applications usually have numerous sim-
ilar components, so the GCM defines collective interfaces which ease design and im-
plementation of such parallel components by providing synchronisation and distribution
capacities. There are two kinds of collective interfaces in the GCM: multicast (client)
and gathercast (server).

(a) Content of a composite component (b) Membrane of a component

Fig. 1. GCM components

One to N and N to one interfaces. Typically a multicast interface (such as the interface
Multi in Fig. 1(a)) is bound to the service interfaces of a number of parallel compo-
nents, and a method call toward this interface is distributed, as well as its parameters,
to several or all of them. GCM provides various policies for the request parameters,
that can be broadcast, or scattered, or distributed in a round-robin fashion; additional
policies can be specified by the user. The computation on the remote components will
eventually terminate and send back, asynchronously, their results; Then the results of
the invocations have to be assembled back with different possible policies (gather the
results in a list, return the sum of the results, compute the maximum, or just pick the
first that arrives and discard others...).

Symmetrically, gathercast interfaces (e.g. Gather in Figure 1(a)) are bound to a num-
ber of client components, and various synchronisation policies are provided. This corre-
sponds to synchronisation barriers in message-based parallel programming, though here
you may also have to specify how you redistribute the result on the client interfaces.

This treatment of collective communications provides a clear separation of concern
between the programming of each component, and the management of the application
topology: within a component code, method calls are addressed simply to the compo-
nent local interfaces. The management of bindings of clients (on a gathercast interface)
or services (on a multicast interface) is separated from the functional code.

184 A. Cansado and E. Madelaine

Membranes and Non-functional interfaces. The component’s non-functional (NF) as-
pects are handled by the component’s membrane. The membrane is structured as a
component system defining so-called NF components. Moreover, the GCM specifies in-
terfaces for the autonomic management and adaptation of components. The membrane
is also in charge of controlling the interaction between the component’s content and the
environment: the membrane decides how requests entering or leaving the component
are to be treated.

The simplest binding one can define in a membrane is a binding from an external
interface to an internal interface (e.g server interface I to internal interface Multi in
Figure 1(b)): requests will simply be forwarded to a subcomponent server interface. But
a NF component called Interceptor can be inserted between an external and an internal
functional interface that will perform some non-functional processing (e.g. encrypting,
logging, etc); an example is the Interceptor component between interfaces IR1 and
IR2 in Fig. 1(b)).

More complex NF components can be used for introspection, reconfiguration, or
autonomic management. Those will typically lie between the external and internal NF
interfaces of the composite component.

Architecture. The Architecture Description Language (ADL) of both Fractal and
the GCM is an XML-based format, that contains both the structural definition of the
system components (subcomponents, interfaces and bindings), and some deployment
concerns. Deployment relies on virtual nodes that are an abstraction of the physical
infrastructure on which the application will be deployed. The ADL only refers to an
abstract architecture, and the mapping between the abstract architecture and a real one
is given separately as a deployment descriptor.

The Fractal/GCM ADL descriptions are static. Dynamicity of component applica-
tions, and the ability to reconfigure them, is gained through specific operations of their
APIs. Several aspects of GCM, including its ADL, API, deployment description, appli-
cation resources description, are now standardized by the European Telecommunication
Standards Institute ETSI [15].

2.3 A GCM Reference Implementation: GCM/ProActive

The GCM reference implementation is based on ProActive [16], an Open Source mid-
dleware implementing the ASP calculus. In this implementation, an active object is
used to implement each primitive component and each composite membrane. Although
composite components do not have functional code themselves, they have a membrane
that encapsulates controllers, and dispatches functional calls to inner subcomponents.
As a consequence, this implementation also inherits some constraints and properties
w.r.t. the programming model:

– components communicate through asynchronous method calls with transparent fu-
tures (place-holders for promised replies): a method call on a server interface adds
a request in the server’s request queue;

– communication semantics use a “rendez-vous” ensuring the causal ordering of
communications;

Specification and Verification for Grid Component-Based Applications 185

Subcomponents C

runActivity()

C.sEI
QueueC

C.cEI

ILF

ELF EBC

ELF EBC

C.sIEC.cIE

SubCk.sEI SubCk.cEI

SubCk

Fig. 2. ProActive composite component

– synchronisation between components is ensured with a data-flow synchronisation
called wait-by-necessity: futures are first order objects that can be forwarded to any
component in a non-blocking manner, execution is only blocked if the concrete
value of the result is needed (accessed), while the result is still unavailable;

– there is no shared memory between components, and a single thread is available
for each component.

Each primitive component is associated with an active object written by the program-
mer. Some methods of this active object are exported as the methods of the compo-
nent’s interfaces. The active object managing a composite is generic and provided by
the GCM/ProActive platform; it forwards the functional requests it receives to its sub-
components. Primitive component functionalities are addressed by the encapsulated ac-
tive object. For primitive components, it is possible to define the order in which requests
are served by writing a specific method called runActivity(); we call this the service
policy. If no runActivity() is given, a default one implements a FIFO policy (excepted
for non-functional requests, see below). Composite components always use a FIFO pol-
icy. Note that futures create some kinds of implicit return channels, which are only used
to return one value to a component that might need it.

Life-Cycle of GCM/ProActive Components. GCM/ProActive implements the mem-
brane of a composite as an active object, thus it contains a unique request queue and
a single service thread. The requests to its external server interfaces (including con-
trol requests) and from its internal client interfaces are dropped to its request queue. A
graphical view of a composite is shown in Fig. 2.

Like in Fractal, when a component is stopped, only control requests are served. A
component is started by invoking the non-functional request: start(). Because threads
are non-interruptible in Java, a component necessarily finishes the request it is treating
before being stopped. If a runActivity() method is specified by the programmer, the
stop signal must be taken into account in this method.

Note that a stopped component will not emit functional calls on its required inter-
faces, even if its subcomponents are active and send requests to its internal interfaces.

186 A. Cansado and E. Madelaine

2.4 Example

We will use the example in Fig. 3 to illustrate the various aspects of this paper. It is
formed from one composite component B and three primitive components A, C, D.
Component B has a number of subcomponents, and requests on its server interface S are
dispatched to them through the multicast interface MC. Component D has two server
interfaces W and R, and is supposed to host some shared resource (e.g. a database);
its role in the example is to show the possible race-conditions or deadlocks that could
arise, e.g, if a request on interface W has a side effect on the shared resource. Com-
ponent A plays the client role, and will send requests to B, creating futures containing
their promised responses, and transmitting these futures as parameters to requests to C.
Component B also has two non-functional interfaces NF1 and NF2 that may be used
e.g. to reconfigure its content.

Fig. 3. Running example

3 Semantic Model

In this section, we recall the main definitions of the parameterized Networks of synchro-
nised automatas (pNets, [8]). We use pNets as a general low level behaviour model for
encoding different variants of our languages or component models. We start with the
formal definitions of the model. Then we use pNets to define the behavioural seman-
tics of two basic and important formalisms in the domain of distributed components: the
ProActive “Active Objects” on one hand, and Fractal hierarchical components on the
other hand (both examples are excerpts from [8]). Finally, we give an encoding for GCM
components, including the management of request queues in primitives and composite
components, and the encoding of future proxies, in presence of first class futures.

3.1 Parameterized Networks of Synchronised Automata (pNets)

The following definitions are taken from [8]. We start with classical labelled transi-
tion systems and structure them using synchronisation networks. Then we extend these
definitions to include parameters, both as arguments in communication and in state defi-
nitions (à la “value-passing CCS”), and in synchronisation operators, obtaining a model
powerful enough to describe parameterized and dynamic topologies.

Specification and Verification for Grid Component-Based Applications 187

We model the behaviour of a process as a Labelled Transition System (LTS) in a
classical way [17]. The LTS transitions encode the actions that a process can perform
in a given state.

Definition 1. LTS. A labelled transition system is a tuple 〈S , s0, L,→〉 where S (possi-
bly infinite) is the set of states, s0 ∈ S is the initial state, L is the set of labels,→ is the

set of transitions :→⊆ S xLxS . We write s
α−→ s′ for (s, α, s′) ∈→.

We define Nets in a form inspired by the synchronisation vectors of Arnold and Nivat
[18], that we use to synchronise a (potentially infinite) number of processes.

In the following definitions, we frequently use indexed vectors: we note x̃I the vector
〈..., xi, ...〉 with i ∈ I, where I is a countable set.

Definition 2. Network of LTSs.2 Let Act be an action set. A Net is a tuple 〈AG, J, ÕJ,
−→
V 〉

where AG ⊆ Act is a set of global actions, J is a countable set of argument indexes, each

index j ∈ J is called a hole and is associated with a sort O j ⊂ Act.
−→
V = {−→v } is a set of

synchronisation vectors of the form: −→v = 〈ag.α̃I〉 where ag ∈ AG, I ⊆ J∧∀i ∈ I, αi ∈ Oi

Fig. 4 gives a naive representation of the Net representing component B, with four sub-
components. Here the semantics has been configured so that call requests are going
through a MC policy component, and are made visible (to the next level) as
“?call(m,args)” for requests received by B, and “B[i].call(m,args)” for the requests
dispatched to the respective B[i]. As an example, the second synchronisation vector in−→
V reads as: action “!call(m,x1)” of the first hole (here MC) can occur synchronised with
action “?call(m,x1)” of B1, and the corresponding global action is “B[1].call(m,x1)”.
There should be one such vector for each possible value of x1.

Note that the specific syntax (and meaning) of the actions is not important here: it
depends on the specific formalism that has been translated into Nets. The synchronisa-
tion vectors are the only means that we use to express the synchronisation mechanisms.
This way we can express traditional message passing (matching emission/reception),
as well as other mechanisms like one to N synchronisation. In this first non parameter-
ized version, we may need a infinite number of vectors to express the synchronisations
occuring in a Net.

Definition 3. A System is a tree-like structure whose nodes are Nets, and leaves are
LTSs. At each node a partial function maps holes to corresponding subsystems. A
system is closed if all holes are mapped, and open otherwise.

Definition 4. The Sort of a system is the set of actions that can be observed from
outside the system. It is determined by its top-level node, with:

Sort(〈S , s0, L,→〉) = L Sort(〈AG, J, ÕJ,
−→
V 〉) = AG

2 This definition is simpler than the one we gave in [8], from which we have removed the trans-
ducer element in the pNet structure. It is possible to obtain an expressiveness similar to pNets
with transducers by adding an extra argument to each pNet, and specifying this “Controller”
as an argument pLTS.

188 A. Cansado and E. Madelaine

B2

B3

B1
B

MC

{call(m,x1),
resp(y1)}

{call(m, args)
resp(val)}

{call(foo())
resp(z)}

where B-3-Net = 〈AG, J, ÕJ ,
−→
V 〉 with:

AG = {?call(m,args), !resp(val), B1.call(m,x), ...}
J = {MC, B1, B2, B3}
OMC = {?call(m,args), !resp(val), !call(m,x1), ...}
OB1 = OB2 = OB3 = {?call(m,x), !resp(val),
!call(foo()), ?resp(z)}
−→
V ={
〈 ?call(m,args), ?MC.call(m,args), -, -, -〉
〈 B[1].call(m,x1), !B1.call(m,x1), ?call(m,x1), -, -〉
〈 B[2].call(m,x2), !B2.call(m,x2), -, ?call(m,x2), -〉
... }

Fig. 4. Example of Net

Next we enrich the above definitions with parameters in the spirit of Symbolic Tran-
sition Graphs [19]. We start by giving the notion of parameterized actions. We leave
unspecified here the constructors and operators of the action algebra, they will be
defined together with the encoding of some specific formalism.

Definition 5. Parameterized Actions. Let P be a set of names, LA,P a term algebra
built over P, including at least a distinguished sort Action, and a constant action τ. We
call v ∈ P a parameter, and a ∈ LA,P a parameterized action, BA,P the set of boolean
expressions (guards) over LA,P.

Definition 6. pLTS. A parameterized LTS is a tuple 〈P, S , s0, L,→〉 where:

• P is a finite set of parameters, from which we construct the term algebra LA,P,
• S is a set of states; each state s ∈ S is associated to a finite indexed set of free

variables fv(s) = x̃Js ⊆ P,
• s0 ∈ S is the initial state,
• L is the set of labels,→ the transition relation→⊂ S × L × S

• Labels have the form l = 〈α, eb, x̃Js′:= ẽJs′ 〉 such that if s
l−→ s′, then:

• α is a parameterized action, expressing a combination of inputs iv(α) ⊆ P
(defining new variables) and outputs oe(α) (using action expressions),
• eb ∈ BA,P is the optional guard,
• the variables x̃Js′ are assigned during the transition by the optional expressions

ẽJs′

with the constraints: fv(oe(α)) ⊆ iv(α)∪ x̃Js and fv(eb)∪ fv(ẽJs′) ⊆ iv(α)∪ x̃Js ∪ x̃Js′ .

Example: Fig. 5 represents a possible behaviour of the body of component A from
our example. The action alphabet used here reflects the active object communication
schema: each remote request sent by the body has the form “!call(f ,M(˜arg))”, where
M is the method name, eventually with parameters ˜arg, and f is the identifier of the fu-
ture proxy instance. Thus in this example, the action expressions are built from variables
f and val, from the constants M1 and M2, and from the binary action constructors call
and getValue. These actions allow the component to perform a remote method call, and

Specification and Verification for Grid Component-Based Applications 189

(f,val)
?getValue

?stop

!call

!call
(f,M2)

(f,M1)

?getValue
(f,val)

?start

A-LTS = 〈P, S , s0, L,→〉
with:

P = { f , val}
S = {si}, i ∈ [0:3]
L= { ?start,?stop,!call(f ,M1),!call(f ,M2),?getValue(f ,val)

}
→ such that:

s0 : ?start → s1,

s1 : ?stop → s0,

s1 : !call(f ,M1) → s2,

s2 : ?getValue(f ,val) → s1

s3 : !call(f ,M2) → s3

s4 : ?getValue(f ,val) → s1

Fig. 5. Behavioural model of component A

access the return value resp.; more details on how the component communicates with
its environment are given later in Fig. 7.

Now, we define pNets as Nets where the holes can be indexed by a parameter, to
represent (potentially unbounded) families of similar arguments.

Definition 7. A pNet is a tuple 〈P, pAG, J, p̃J, ÕJ,
−→
V 〉 where: P is a set of parameters,

pAG ⊂ LA,P is its set of (parameterized) external actions, J is a finite set of holes, each
hole j being associated with (at most) a parameter p j ∈ P and with a sort O j ⊂ LA,P.−→
V = {−→v } is a set of synchronisation vectors of the form: −→v = 〈ag, {αt}i∈I,t∈Bi〉 such that:
I ⊆ J ∧ Bi ⊆ Dom(pi) ∧ αi ∈ Oi ∧ fv(αi) ⊆ P

Explanations: Each hole in the pNet has a parameter p j, expressing that this “parame-
terized hole” corresponds to as many actual arguments as necessary in a given instan-
tiation of its parameter (we could have, without changing the expressiveness, several
parameters per hole). In other words, the parameterized holes express parameterized
topologies of processes synchronised by a given Net. Each parameterized synchroni-
sation vector in the pNet expresses a synchronisation between some instances ({t}t∈Bi)
of some of the pNet holes (I ⊆ J). The hole parameters being part of the variables of
the action algebra, they can be used in communication and synchronisation between the
processes.

Fig. 6 is the parameterized version of the pNets for component B, in which the second
hole (B) has a parameter n. The second synchronisation vector in the examples synchro-
nises one (parameterized) action of the first hole MC, with an action (?call(m,x)) of the
nth instance of B. The comparison with the instantiated version in Fig. 4 shows clearly
the benefits of parameterization, in term of compactness, and of generality. Note that
this is still a very simplified and naive version of the pNet for B, the full semantics of
GCM composite components will be given later.

A pNet by itself is stateless, but it has state variables that encode some notion of
internal memory that can influence the synchronisation. pNets have the nice property
that they can be easily represented graphically, e.g. using the Autograph editor [20].

190 A. Cansado and E. Madelaine

B[n]

B

MC
resp(y)}

{call(m,x),

{call(foo()),
resp(z)}

!resp(val)}
{?call(m, args)

where B-param-Net = 〈P, pAG, J, p̃J , ÕJ ,
−→
V 〉 with:

P = {n, args, val, x}
pAG = {?call(m,args), !resp(val), B[n].call(m,x), ...}
J = {MC, B}
pMC = {}, pB = {n}
OMC = {?call(m,args), !resp(val), !call(m,x), ?resp(y)}
OB = {?call(m,x), !resp(val), !call(foo()), !resp(z)}
−→
V ={
〈 ?call(m,args), ?call(m,args), - 〉
〈 B[n].call(m,x), !B(n).call(m,x), n&?call(m,x)〉

... }

Fig. 6. Example of a pNet

Building hierarchical pNets. Once a pNet hierarchical system is built, you need
operations to transform it, and, at least:

– a product operation for reducing a pNets hierarchy to a flat pLTS,
– a way of instantiating a parameterized pNet system with respect to a given domain

for one or several of its parameters.

In [8], we gave the definition of pNets instantiation, and we defined the product opera-
tion only for fully instantiated systems. This is enough for instantiating a pNet system
for some finite abstraction of the parameter domains, and building the global state-space
of the system.

3.2 Model Generation for Active Objects

The first application of pNets that we have published was for defining the behavioural
semantics of active objects of the ProActive library. In [21, 22] we presented a method-
ology for generating behavioural models for active objects (AOs), based on static anal-
ysis of the Java/ProActive code. The pNets model fits well in this context, and allows
us to build compact models, with a natural relation to the code structure: we associate
a hierarchical pNet to each active object of the application, and build a synchronisation
network to represent the communication between them.

Fig. 7 illustrates the structure of the pNets expressing an asynchronous communi-
cation between two active objects. A method call to a remote activity goes through a
proxy, that encodes the creation of the local future object, while the request goes to the
remote request queue. Note that for each program point pp corresponding to a remote
method call in the source code, a series of futures, indexed by a counter c, can be cre-
ated. The request arguments include the references to the caller and callee objects, but
also to the future. Later, the request may eventually be served, and its result value will
be sent back and used to update the future value.

This method is composed of two steps: first the source code is analysed by classical
compilation techniques, with a special attention to tracking references to remote objects
in the code, and identifying remote method calls. This analysis produces a graph includ-
ing the method call graph and some data-flow information. The second step consists in

Specification and Verification for Grid Component-Based Applications 191

Proxy

Queue

Body

Body

Proxy

Counter

Client Role Server Role

Proxy[pp].

?response
(val)

getValue(val)

!getValue(val)
serve

response(c, val)

?Counter[c].call

!Counter[c].

?Proxy[pp].
[c]

(〈pp, c〉,M(˜arg))

Proxy[pp].

[pp]

getValue(c, val)

request(c)

?Counter[c].
response(val)

?request

?caller.request(f,M(˜arg))

(caller, f,M(˜arg))

!caller.response(f, val)

!o.request(〈pp, c〉,M(˜arg))

!o.request

Fig. 7. Communication between two Active Objects

applying a set of structured operational semantics (SOS) rules to the graph, computing
the states and transitions of the behavioural model.

The construction of the extended graphs by static analysis is technically difficult,
and fundamentally imprecise. Imprecision comes from classical reasons (having only
static information about variables, types, etc), but also from specific sources: it may
not be decidable statically whether a variable references a local or a remote object.
Furthermore, the middleware libraries include a lot of dynamic code generation, and
the analysis would not be possible for Java code relying on introspection, classically
used to manage some types of “dynamic topologies” in ProActive.

3.3 Model Generation for Hierarchical Components

Going from active objects to distributed and hierarchical components allows us to gain
precision in the generated models. The most significant difference is that required inter-
faces are explicitly declared, and active objects are statically identified by components,
so we always know whether a method call is local or remote. Moreover, the pNets’s
formalism expresses naturally the hierarchical structure of components, and will allow
to scale up better, using compositional verification methods,

The pNet construction here may apply to any kind of hierarchical component model
that features:

– Components with a set of interfaces and a content.
– Interfaces typed by a set of methods with their signature.
– Bindings between sibling subcomponents, or between a component and one of its

subcomponent.
– Composite content composed of subcomponents, internal interfaces, and bindings.
– Empty content for primitive components.

We leave here undefined the code of a primitive component. It will depend on the
framework, and will be used to generate a pLTS representing the primitive behaviour.
We also leave undefined the data domains used for specifying indexes within the
parameterized structure, and for building the arguments of the method calls.

From the information in a Component structure, it is straightforward to generate a
pNet representing the communication between the interfaces and the subcomponents,
from the following elements:

192 A. Cansado and E. Madelaine

• the pNet has one hole for each (parametric) subcomponent;
• the global actions pAG and hole sorts ÕJ of the pNets are sets of actions of the form

[!|?]Ci.Itf.M(−−→arg) for invoking/serving a methodM on the interface Itf.
• for each binding, and for each method in the signature of the source interface of

the binding, it has two parameterized synchronisation vectors, one for sending the
request, and one for receiving the response.

3.4 Hierarchical Components +Management Interfaces = Fractal

In the Fractal model, and in Fractal implementations, the ADL describes a static view
of the architecture (used to build the initial component system through a component
factory), and non-functional (NF) interfaces are used to control dynamically the evolu-
tion of the system. In this section we consider the core of the Fractal model, containing
the hierarchical structure from the previous section, plus the basic non-functional inter-
faces and controllers, namely the Life-Cycle Controller (LF) and the Binding Controller
(BC). We defined the behavioural semantics of Fractal applications in terms of pNets,
giving the overall structure of the pNets encoding primitive and composite components,
and the pLTS defining the LF and BC controllers.

A life controller pLTS (see Fig. 8) is attached to each component. Control actions
(start/stop) are synchronised with the parent component and with all of its subcom-
ponents. Status actions (started/stopped) are synchronised with the component’s func-
tional behaviour and with the BC, because the BC may only allow rebinding of interfaces
when stopped.

LF

?start ?stop

!stopped
?start !started

!stopped !started

?stop

BC

?bind(Ci.Itf) ?unbind(Ci.Itf)

?bind(Ci.Itf)

!unbound

?unbind(Ci.Itf)

!bound(Ci.Itf)

Ci.Itf

?bind(Ci.Itf)
→ Ci.Itf

?unbind(Ci.Itf)

!bound(Ci.Itf)

?M(˜arg)

!unbound

!Ci.Itf.M(˜arg)

!E

Fig. 8. pLTS of Fractal Life Cycle and Binding Controllers

A binding controller pLTS (see Fig. 8) is attached to each interface. Control actions
(bind/unbind) are synchronised up to the higher level (Fractal defines a white-box defi-
nition for NF actions) and with the affected interface; status actions (bound/unbound) are
used to allow method callsM(˜arg), to forward the call to the appropriate bound inter-
face and to signal errors. The latter is a distinguished action E(unbound,C, It f), visible
to the higher level of hierarchy, and triggered whenever a method call is performed over
an unbound interface.

Fig. 9 sketches the structure of the synchronisation of a component with its subcom-
ponents. In this drawing, the behaviour of subcomponents is represented by the box

Specification and Verification for Grid Component-Based Applications 193

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

errors & visibles

Interceptor
!start/stop

methods M(˜arg)
(visible ∨ τ)

methods M(˜arg)
(visible ∨ τ)

SubCk

E1

M(˜arg)

(1)

(3)

(2)

sEIscnp

cIInp

M(˜arg) M(˜arg)

sIInr

sEInp

cEInr

E2

M(˜arg)
M(˜arg)

cEIscnr

B

M(˜arg)

?bind/unbind(self.cIInp, SubCk.sEIscnp)

(1)!bind/unbind(self.cIInp, SubCk.sEIscnp)

(3)!bind/unbind(SubCk.cEIscnr, self.sIInr)

(2)!bind/unbind(SubCk.cEIscnr, SubCj.sEIscnr), k �= j

!bind/unbind(cEInr, Cj.Itf)

?bind/unbind(self.cEInr, Cj.Itf) ∨
?start/stop

Fig. 9. Synchronisation pNet for a Fractal Composite Component

named SubCk. For each interface defined in the component’s ADL description, a box
encoding the behaviour of its internal (cII and sII) and external (cEI and sEI) views is
incorporated. The dotted lines inside the boxes indicate a causality relation induced by
the data flow through the box. Primitive components have a similar automaton without
subcomponents and internal interfaces.

3.5 Model Generation for GCM

In Figure 10, we show the behavioural model of a GCM primitive component. There is
a pLTS for dealing with the component’s life-cycle (LF), and a pLTS for serving func-
tional and non-functional requests (Service). The behavioural model for a composite
component is an instance of the model of Figure 9, in which the interceptor itself is a
primitive component.

Service implements the treatment of control requests. It interacts with the LF con-
troller through the !start and !stop actions. The action !start fires the process rep-
resenting the runActivity() method in the Body, and at the same time changes the LF
state to “started”. The !stop action is more complicated: it is sent by Service to the
Body, but a running body may not be able to stop immediately upon reception of a stop
request (because Java is non-interruptible). If the service policy of the component is
the default FIFO, this stop request will be executed when all previous requests will be
served. If the developer has specified his own runActivity() method, she/he has the re-
sponsibility for testing the presence of a stop request, and terminate the runActivity()
method. At this point the !stop action will be transmitted to the LF controller, while
the Body will be back in its initial state, ready for receiving a !start action.

The Queue pNet encodes an unbounded Fifo queue, containing requests composed
by a method name and its arguments, and a selection mode (typically oldest or younguest
request matching a predicate). It is always ready to perform any of the three actions
numbered (1) to (3) in Fig. 10:

194 A. Cansado and E. Madelaine

– (1) serve the first functional method obeying the selection mode;
– (2) serve a control method only at the head of the queue;
– (3) serve only control methods in FIFO order, bypassing the functional ones.

Depending on the state of the life-cycle controller, these actions may or may not
synchronise with the Body and the Service pNets. This is encoded through the emission
of the !started or !stopped actions by the LF pNet.

LF

Service

Body
Proxy

Queue

?serve

!stop

!start

!bind/unbind (˜arg)

(bind/unbind (˜arg))

!started

!stopped

?serve
(start/stop)

!start/stop

started

(1) !serve∗
(f,M(˜arg))

(NF(˜arg))
(2) !serveFirst

(3) !serveFirstNF
(NF(˜arg))

?call(f,M(˜arg)) !bind/unbind (˜arg)

!stop

!cItf.call(f2,m,args)

?resp(f2, x)
getValue(f2, x)

!f.resp(x)

?call(f,NF(˜arg))

Fig. 10. Behavioural model of a primitive component

Modelling Collective Interfaces. Collective interfaces are responsible of distributing
and gathering request calls and responses. Therefore, we provide a particular kind of
proxy pLTS and N-ary synchronisation vectors encoding the control and data flow of
these interfaces.

In Fig. 3, the multicast interface MC broadcasts request calls to all B’s subcomponents
and gathers the results. We gave incomplete views of its pNet model, in Figures 4 and 6,
and we show now its complete model in Figure 11. The proxy Multicast(f) pLTS is in
charge of distributing the requests to all bound interfaces (in this case the server inter-
faces of B’s subcomponents). We use N-ary synchronisation vectors for broadcasting the
call (!call(args)). This ensures that the call will be enqueued in every subcomponent
at the same time. On the contrary, the response values of each component (?resp(val))
are sent back to the proxy individually and in any order. The proxy is in charge of gath-
ering the result values in a vector. Later, when all results have arrived (guaranteed by
the guard [rep==N]), it allows the component to access the result (!getValue(f,x)).

Modelling First-Call Futures. In Fig. 7 we depicted a simple proxy structure for
ProActive futures. In GCM, futures can be transmitted in the parameters of a method
call, or in the return value of a method call. In a naive approach, this requires know-
ing statically the flow of futures for each component because a future may have been
created locally or by a third-party. This requires the analysis of the complete system.
Instead, a better approach is to assign locally in each component an identifier fid for

Specification and Verification for Grid Component-Based Applications 195

B1

B2

B3

Multicast(f)

!call
(m,x)

!getValue

?resp(2, y)

!call

?call
(m,args)

[rep==N]

(f,�x)

(m,x)

?resp(i,y)
→ x[i] = y; rep++

?resp(1, y)
!resp(y)

?resp(3, y)

Fig. 11. Behavioural model of a multicast interface

each future, which permits the construction of behavioural models independently from
the environment. Later, when the environment is known, the data-flow between com-
ponents will determine which identifiers represent the same future object. At this point,
these identifiers will be put in correspondence, and will be matched in the corresponding
synchronisation vectors. This approach yields a compositional model.

In [23] we have shown the technical details of how to address different scenarios
depending whether (i) a component transmits a locally created future; (ii) a component
receives a future; and (iii) a component receives a future and retransmits it to a third-
party. Here we define a new generic proxy that is able to deal with any combination
of the 3 scenarios above. The proxy model has additional transitions w.r.t. the model
presented in Figure 7 to allow futures to be transmitted. Figure 12 depicts this proxy3.

When the local component is the creator of the future, the proxy starts by a transition
?call. This allows the component to perform the remote remote call. In this case the
proxy will wait for the ?response transition to synchronise on the response value. Then
there is a transition !forward for transmitting the future value to all components (if
any) that may receive the future reference. Finally, the component body may access the
content of the future through a !getValue transition.

Complementarily, if the local component did not create the future, the first transition
of the proxy is a ?forward which receives the value of the future. Afterward, the proxy
behaves as in the previous case: it transmits the value to the remote components, and
allows the component to access the future value.

Example: Sending a future created locally as a method call parameter. In Figure 12,
the Client performs a method callM1 on Server-A, and creates a Proxy(f) for dealing
with the result. Then the Client sends the future to a third activity (Server-B) in the
parameter of the methodM2(f) (this call should eventually create another future f2, but
we have omitted it for simplicity).

3 In this modelisation, we have an unbounded number of proxy instances, that live forever,
and don’t need to be terminated/destroyed. In the implementation, we may want to be more
efficient: based on static analysis, the implementation can decide that some futures have a
limited life-time, and that they can be destroyed or recycled at some point. Then we may want
to prove correctness of such an optimisation.

196 A. Cansado and E. Madelaine

Client

Server−B

Server−A

Body
!forward
(val)

?forward
(val)

!getValue
(val)

Queue Body

(f,val)
!forward

(x, v)
?forward

!call(f,M1)

Proxy(f)

?response
(val)

!call(M2(f))

(f,val)
getValue

call

?call

Proxy(x)
getValue(x, v)

(M2(f))

response(f,val)

call(f,M1)

serve(M2(x))

Fig. 12. Model for sending a future created locally as a method call parameter

From Server-B’s point of view, there is no way of knowing if a parameter is (or
contains) a future, so every parameter in a method call must be considered as a potential
future. Server-B includes, therefore, a proxy for dealing with the parameter x of the
method callM2.

This example concludes the construction of pNets models for GCM components, in-
corporating non-functional controllers, request queues, future proxies, and NxM com-
munication. In the current implementation, described in the next sections, the NxM
communication and the proxies for first class futures are not yet supported.

4 VerCors: A Toolset for Specification and Verification

In this section, we report on the tool developments ongoing within our VerCors plat-
form, implementing the behaviour model generation explained in the first half of this
paper. We start with a description of the current and middle term functionalities of the
platform, and we explain briefly the software tools used for the construction of the plat-
form. Then we give more details on the graphical editors, on the model generation tool,
and the model instantiation tools. Finally, we discuss some pragmatic aspects of various
verification strategies for using the tools, and give some figures on typical case-studies.

4.1 Vercors Architecture

Fig. 13 sketches the architecture of VerCors. This toolset is available as free software,
from our web site [9]. The platform has two goals: the verification of designs, and the
generation of safe-by-construction code. In the following description of the VerCors
modules, we shall indicate which functionalities are already available in the distribution
(V0.2, spring 2009), and which are still under construction.

Front-End. VCE (for Vercors Component Editor) is our graphical component editor
for designing components. It provides diagrams for defining the component architecture
(see Section 4.3), and diagrams for defining the component behaviour (see Section 4.4).
The latter is not yet available in V0.2. The Java Distributed Components specification
language (JDC) is a textual language more expressive than our graphical diagrams, but
is not yet implemented. It has been described in [10, 24].

Specification and Verification for Grid Component-Based Applications 197

Fig. 13. The VerCors toolset

Model Generator. The model generator is the kernel of the platform. It is fed with
specifications given by VCE diagrams or JDC specifications. It includes tools for data
abstraction (from user-defined classes in JDC to Simple Types in pNets), tools for build-
ing the parameterized models from the specifications, and tools for manipulating and
instantiating pNets (see section 4.5).

Code Generator. Another central part of the platform will be the code generator that
is not (yet) currently developed. We will generate code capable of running under the
standard GCM specification. It has an architecture definition based on the GCM ADL
and Java code based on GCM / ProActive framework. The latter must be refined by the
user by filling-in the business code.

External Tools. Externally to the platform, we interact with model-checking engines
and with the GCM runtime. For now, VerCors uses the CADP toolset [25] for dis-
tributed state-space generation, hierarchical minimization, on-the-fly verification, and
equivalence checking (strong/weak bisimulation). The connection with CADP is done
through various textual input formats, that we generate from (fully instantiated) pNet
models. A better approach would be to use a more generic and standardized intermedi-
ate format, like the FIACRE format [26], that would allow us to represent directly many
(parameterized) constructs from the pNet model.

Verification is done by verifying regular μ-calculus formula encoding the user re-
quirements. In the future, we would like to specify these properties within JDC, which
would be subject to the same abstractions, and finally be translated into regularμ-calculus
formula. We also plan to use other state-of-the-art provers, and in particular apply so-
called “infinite system” provers to deal directly with certain types of parameterized
systems.

4.2 Building Tools Using Eclipse Meta-modelling Framework

From a practical point of view, VCE consists of graphical editors for specifying the
architecture and the behaviour of distributed components. It is built as an Eclipse plug-in
based on EMF and GEF.

198 A. Cansado and E. Madelaine

We use two similar meta-modelling frameworks, namely Topcased [27] and GMF.
EMF plays the role of the domain model whereas Topcased and GMF provide graphical
editors on top of the domain model. Unfortunately, Topcased is slowing down the devel-
opment of their meta-modelling framework and future support is uncertain. Therefore,
our early work on the architectural editor is generated by Topcased, but our more recent
work on the behavioural editor is generated by GMF.

Model validation is based on OCL (Object Constraint Language) [28] rules that val-
idate instances of the meta-model, and Java code that checks interface compatibility.
There are a minimum set of invariants that every model must hold. Complementary, an
additional set of rules cope with particular GCM implementations. All errors in the user
models are reported in the Eclipse environment.

There is also compatibility with GCM ADL files. VCE is able to import and ex-
port GCM ADL files, though this is limited to functional components since there is no
standard definition of NF components in the GCM ADL.

Fig. 14. Vercors Component Editor

4.3 Graphical Diagrams for Component Architecture

The kernel of the graphical language is a meta-model that reflects the GCM compo-
nent structure. As these graphical constructions have already been used throughout this
paper, we will only comment here on the main design choices that we have made.

At the top-level, the designer defines the root component that sets the services to be
provided and required by the application to the environment. A component has a content
that implements the business code, and a membrane that contains the non-functional
code.

Components in the content are called functional components and those in the mem-
brane are called non-functional (NF) components. The content is represented as a white

Specification and Verification for Grid Component-Based Applications 199

rectangle inside the component, and the membrane is the grey area that surrounds the
content. Nevertheless, the content of primitive components is not depicted; therefore,
primitive components are distinguished as grey rectangles. We colour blue the “usual”
functional interfaces, and green the NF interfaces.

Interface icons are inspired by the ones used in UML component diagrams. Server
interfaces are drawn as filled circles (e.g. interfaces I, IA, ... in Figure 14), and client
interfaces as semi-circles (e.g. interfaces IC, IR, ...). GCM’s collective interfaces are not
defined in UML and hence we adopted our own icons. Figure 14 also shows the icons we
provide for multicast and gathercast interfaces, labelled Multi and Gather respectively.
In the example, the interface Multi broadcasts incoming requests to components A and
B, and the interface Gather gathers and synchronises requests coming from interfaces
IC of components A and B towards the component C.

4.4 Diagrams for Behaviour Specification

The diagrams for behaviour specification have been defined in [29], but the diagram
editors are not yet available in the toolset. They are based on a variant of UML 2 State
Machine diagrams, with a number of State Machines used to specify respectively: the
component service policy, each service method and each local method, the interface
policies, etc.

4.5 Model Generation

The role of the ADL2N tool is to:

– build an abstract version of the component system, in which the user-defined Java
classes used for the parameter domains are abstracted by some Simple Types from
the pNets library.

– use the behaviour semantics defined in sections 3.3 to 3.5 to build the pNet model
for each piece of the system.

The first step of the model generation deals with data abstraction: data types in a JDC
specification are standard, user-defined Java classes, but they must be mapped to Simple
Types before generating the behavioural models and running the verification tools. The
result is an abstract specification with the same structure than the initial ADL.

In practice the user of ADL2N uses a GUI to specify at the same time the methods
that will be visible, the arguments that are significant for the proofs, and finite domains
for these arguments. This is shown in Fig. 15. Here some tool guidance would be very
helpful to reduce the amount of user input required, and to guarantee the coherency of
the abstraction with the dataflow within the system. This kind of guidance is not yet
available in the toolset.

Such an Abstract Specification will then be given as input to the model generator.
This tool builds a model in terms of pNets, including all necessary controllers for non-
functional and asynchronous capabilities of the components. The only missing part
is the functional behaviour (Body) of primitive components for which ADL2N only
defines their sorts.

The second usage of the abstraction module of ADL2N is to specify a finite abstrac-
tion of the parameters domains (from Simple Types to finite Simple Types), so that the

200 A. Cansado and E. Madelaine

Fig. 15. Screenshot of ADL2N

final pNet system is finite, and suitable for analysis with finite-state model-checkers. In
practice ADL2N produces two files, one file with the parameterized system, the other
file with the definitions of the finite instantiations for the parameter domains.

pNets instantiations and export formats. The textual notation we use currently in the
platform to encode pNets is called FC2 [30]. We provide two tools, FC2Instantiate and
FC2Exp [31], that create finite instantiations of the models and transform the files into
the input formats of CADP, namely BCG for transition systems, and Exp for synchro-
nisation vectors [32].

4.6 Model-Checking: Engineering, Pragmatic Complexity

Having produced our models in a structured and hierarchical format allows us to use
many pragmatic strategies to master as much as possible the state-space complexity of
model-checking. The main tool is compositionality: as we use a bisimulation-based ver-
ification toolset, it is essential that each intermediate subsystem is reduced (by branch-
ing or weak minimization) before being synchronized with others. If we are careful to
reduce as much as possible the visibility of actions, then state-space explosion can be
contained (to some extent) within the model of composite components. Additionally, a
number of advanced features of the CADP toolset can help us to fight state-explosion,
and to scale up. Typically, we can build the state-space at each level of the hierarchy
using the distributed state-space generation of CADP, including on-the-fly hiding and
tau-reduction, but also behaviour generation constrained by the environment. Then the
minimization has to take place on a single machine, because the bisimulation engine is
not implemented in a distributed way. And the next cycle of construction can be dis-
tributed again... This way your state-space construction can scale up to any system in
which the largest intermediate structure will be in the range of 108 states. The model-
checker engine itself has an experimental version working in a distributed fashion.

Using this kind of strategy, we have done some middle-size case studies, including
for example the Common Component Modeling Example (CoCoME, [33]). This is a
system of 17 components structured in 5 levels of hierarchy, with more than 10 data
parameters, and some broadcast communication. We have treated this case using the

Specification and Verification for Grid Component-Based Applications 201

Fractal model generation (3.4), with very small abstract domains for the variables (typ-
ically 2 or 3 values). The brute force state space for this would be approximately 2.108,
while the biggest intermediate structure that we generate is lower than 10000 states. We
have shown in [33] a number of properties and problems verified on this model.

Such models can be used to check the satisfiability of safety or liveness formulas in
branching time logics, or to check the bisimulation equivalence with respect to an ab-
stract specification. In practice, we want to provide non-expert users with simple “press
button” verification functions. This is easy for some families of reachability properties,
like correct termination of deployment, or occurrence of some predefined sets of error
actions. Deadlock detection is also a popular “push button” function, but explaining to
the user the reasons of a deadlock can be challenging; it often involves some “missed
synchronisation”, that may be difficult to show, especially in presence of abstraction
and instantiation.

The type of properties we can check on our models are more versatile than in most
approaches, because we do not only encode the usual functional interactions between
the components, but also their reconfiguration operations. So we can prove properties
of applications in which one would change bindings, or remove and update subcom-
ponents, while the rest of the system keeps running. This kind of properties typically
depends on the behaviour of the system parts, and is not a general property of the
middleware.

5 Conclusion and Perspectives

In this paper we have presented the models and tools we have been implementing to
assist the development of Grid component-based applications. The approach is based
on the modelling of the component behaviour using parameterized networks of au-
tomata. In addition, we have presented tools that generate these models, and tools for the
specification of the component system.

This paper makes a step forward towards the verification of Grid applications. It
provides novel models for multicast interfaces and generic proxies for transmitting fu-
tures. Moreover, one of the strong original aspects of this work is the focus put on
non-functional properties, and the results we provide on the interleaving between func-
tional and non-functional concerns. Thus, the programmer should be able to prove the
correct behaviour of his distributed component system in presence of evolution (or
reconfiguration) of the system.

We are currently developing additional tools in the VerCors platform to support our
methodology. This includes the front-ends for textual and graphical specification lan-
guages, a tool for helping the user to build correct abstractions, and tools for providing
readable explanations of the provers diagnostics.

Finally, we have presented techniques to master state-space explosion. The key
aspect is the use of compositionality to reduce the system at each level of hierar-
chy. Nevertheless, in some cases, particularly when queues are unbounded, state-space
explosion is inevitable when using explicit-state model-checkers. Therefore, our lat-
est work focuses on the development of an infinite-state model-checker that verifies
automata endowed with unbounded FIFO queues.

202 A. Cansado and E. Madelaine

References

[1] Szyperski, C.: Component Software, 2nd edn. Addison-Wesley, Reading (2002)
[2] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: An open component

model and its support in java. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K.
(eds.) CBSE 2004. LNCS, vol. 3054, pp. 7–22. Springer, Heidelberg (2004)

[3] CoreGRID, Programming Model Institute: Basic features of the grid component model
(assessed). Technical report, CoreGRID, Programming Model Virtual Institute, Deliverable
D.PM.04 (2006),
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf

[4] Oquendo, F.: π-ADL: An Architecture Description Language based on the Higher Or-
der Typed π-Calculus for Specifying Dynamic and Mobile Software Architectures. ACM
Software Engineering Notes 26(3) (2004)

[5] Groote, J., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.: The For-
mal Specification Language mCRL2. In: Proc. Methods for Modelling Software Systems
(2007)

[6] Poizat, P., Royer, J.-C., Salaün, G.: Bounded Analysis and Decomposition for Behavioural
Descriptions of Components. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 33–47. Springer, Heidelberg (2006)

[7] Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. European Association
for Software Science and Technology (EASST) Newsletter 4, 13–24 (2002)

[8] Barros, T., Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural models for
distributed Fractal components. Annals of Telecommunications 64(1-2) (January 2009);
also Research Report INRIA RR-6491.

[9] OASIS team: VerCors: a Specification and Verification Platform for Distributed Applica-
tions (2007-2009), http://www-sop.inria.fr/oasis/index.php?page=vercors

[10] Cansado, A., Henrio, L., Madelaine, E., Valenzuela, P.: Unifying architectural and be-
havioural specifications of distributed components. In: International Workshop on Formal
Aspects of Component Software (FACS 2008), Malaga, Electronic Notes in Theoretical
Computer Science (ENTCS) (September 2008)

[11] Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer, Heidelberg (2005)
[12] Caromel, D., Henrio, L.: Asynchonous distributed components: Concurrency and determi-

nacy. In: Proceedings of the IFIP International Conference on Theoretical Computer Sci-
ence 2006 (IFIP TCS 2006), Santiago, Chile, August 2006. Springer Science (2006); 19th
IFIP World Computer Congress

[13] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: An open component
model and its support in java. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K.
(eds.) CBSE 2004. LNCS, vol. 3054, pp. 7–22. Springer, Heidelberg (2004)

[14] Seinturier, L., Pessemier, N., Coupaye, T.: AOKell: an Aspect-Oriented Implementation of
the Fractal Specifications (2005),
http://www.lifl.fr/˜seinturi/aokell/javadoc/overview.html

[15] European Telecommunication Standards Institute, http://portal.etsi.org
[16] Caromel, D., Delbé, C., di Costanzo, A., Leyton, M.: ProActive: an integrated platform for

programming and running applications on grids and P2P systems. Computational Methods
in Science and Technology 12(1), 69–77 (2006)

[17] Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
[18] Arnold, A.: Finite transition systems. Semantics of communicating sytems. Prentice-Hall,

Englewood Cliffs (1994)
[19] Lin, H.: Symbolic transition graph with assignment. In: Sassone, V., Montanari, U. (eds.)

CONCUR 1996. LNCS, vol. 1119. Springer, Heidelberg (1996)

http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf
http://www-sop.inria.fr/oasis/index.php?page=vercors
http://www.lifl.fr/~seinturi/aokell/javadoc/overview.html
http://portal.etsi.org

Specification and Verification for Grid Component-Based Applications 203

[20] Madelaine, E.: Verification tools from the CONCUR project. EATCS Bull. 47 (1992)
[21] Barros, T., Boulifa, R., Madelaine, E.: Parameterized models for distributed java objects.

In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004, Madrid. LNCS, vol. 3235, pp.
43–60. Springer, Heidelberg (2004)

[22] Boulifa, R.: Génération de modèles comportementaux des applications réparties. PhD the-
sis, University of Nice - Sophia Antipolis – UFR Sciences (December 2004)

[23] Cansado, A., Henrio, L., Madelaine, E.: Transparent first-class futures and distributed com-
ponent. In: International Workshop on Formal Aspects of Component Software (FACS
2008), Malaga, Electronic Notes in Theoretical Computer Science, ENTCS (September
2008)

[24] Cansado, A.: Formal Specification and Verification of Distributed Component Systems.
PhD thesis, Université de Nice - Sophia Antipolis – UFR Sciences (December 2008)

[25] Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A Toolbox for the Construc-
tion and Analysis of Distributed Processes. In: CAV (2007)

[26] Berthomieu, B., Bodeveix, J.P., Filali, M., Garavel, H., Lang, F., Peres, F., Saad, R.,
Stoecker, J., Fran, C.V.: The Syntax and Semantics of FIACRE V2.0. Technical report
(Feburary 2009)

[27] Pontisso, N., Chemouil, D.: Topcased combining formal methods with model-driven engi-
neering. In: ASE, pp. 359–360. IEEE Computer Society, Los Alamitos (2006)

[28] Object Management Group: UML 2.0 Object Constraint Language (OCL) Specification.
formal/03-10-14 edn, version 2.0 (2003)

[29] Ahumada, S., Apvrille, L., Barros, T., Cansado, A., Madelaine, E., Salageanu, E.: Specify-
ing Fractal and GCM Components With UML. In: Proc. of the XXVI International Con-
ference of the Chilean Computer Science Society (SCCC 2007), Iquique, Chile, Nov 2007,
IEEE, Los Alamitos (2007)

[30] Ressouche, A., de Simone, R., Bouali, A., Roy, V.: The FC2Tool user manuel (1994),
http://www-sop.inria.fr/meije/verification/

[31] Barros, T.: Formal specification and verification of distributed component systems. PhD
thesis, University of Nice - Sophia Antipolis (November 2005)

[32] Lang, F.: Exp.Open 2.0: A flexible tool integrating partial order, compositional, and on-the-
fly verification methods. In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.) IFM 2005.
LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

[33] Rausch, A., Reussner, R., Mirandola, R., Plášil, F.: The Common Component Modeling
Example. LNCS, vol. 5153. Springer, Heidelberg (2008)

http://www-sop.inria.fr/meije/verification/

	Specification and Verification for Grid Component-Based Applications: From Models to Tools
	Introduction
	Context: Asynchronous Component Model, Active Objects, Grids
	ASP and Active Objects
	Fractal and GCM
	A GCM Reference Implementation: GCM/ProActive
	Example

	Semantic Model
	Parameterized Networks of Synchronised Automata (pNets)
	Model Generation for Active Objects
	Model Generation for Hierarchical Components
	Hierarchical Components + Management Interfaces = Fractal
	Model Generation for GCM

	VerCors: A Toolset for Specification and Verification
	Vercors Architecture
	Building Tools Using Eclipse Meta-modelling Framework
	Graphical Diagrams for Component Architecture
	Diagrams for Behaviour Specification
	Model Generation
	Model-Checking: Engineering, Pragmatic Complexity

	Conclusion and Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

