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1 Introduction

Interaction is the main and inherent characteristic of multi-agent systems (MAS) [37].

The flexible and organizational interactions among agents make MAS different from other

kind of systems, even single agent systems. Indeed, the overall capacity of a MAS can

exceed the sum of individual agent capacities [28]. This is why multi-agent technologies

are widely expected to cope with difficulties in developing heterogeneous and distributed

open systems [20]. However, A MAS is complex to design and construct, due to the

undeterministic and autonomous behaviors of agents. Especially, agents can interact in

flexible and sophisticated ways to achieve system goals. To let agents successfully work

together, there should be some constraints and rules to guide the cooperative, coordinative

or even competitive behaviors of agents. In correspondence, agent interaction protocols

(AIP) are used to define these constraints and rules [25, 23].

AIP impose particular constraints on agent messages to manage agent communication

and negotiation. The constraints specify the set of allowed message types, message con-

tents and the correct order of messages during the conversations between agents. AIP

can enforce agents to act correctly in predictable ways. Thus, the properties of a MAS

can be preserved. For example, an auction protocol ensures that auctioneers are fair, i.e.

give equal opportunities for all buyers to win an item. In addition, AIP can be viewed as

reusable software components to design agent interaction in applications [10], because AIP

represent abstract and formal patterns of agent interaction. Since AIP play an important

and essential role in MAS development [37], formal specification and verification of AIP

are needed [24].

The protocol engineering issue remains a challenge for MAS research [24]. On the

first hand, interaction systems are complex to verify, validate and reuse [17]. Especially,

the concurrency, reactivity, autonomy, openness, and extensibility of MAS bring new

challenges. On the other hand, there is a wide gap between theory and practice. Indeed,

the advances in theories and software architecture must be complemented by the advances

in engineering techniques and methodologies [29]. In the field of multi-agent systems,

there are few tools supporting the design of interaction protocols [22]. In fact, even

though several theories and methodologies have already been proposed for developing

AIP. However, existing methodologies of AIP suffer from some limitations, such as poor

capacity for designing complex protocols, being limited when facing the concurrency of

interactions [24], lack of suitable tools. One solution is to resort to the well-established

and well-proved formal technologies for concurrent and distributed systems [24, 38].
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This paper aims to provide a generic formal computational framework to develop AIP,

and to verify their “correct behaviors” using model checking. This formal framework

is based on the formal specification language Lotos [5], which has been widely applied

in distributed and concurrent systems. In addition, several rigorous tools and sound

methodologies have already been developed for Lotos. Based on Lotos technologies, the

proposed reusable framework brings several advantages, including:

• Taking charge of concurrency and synchronization naturally because Lotos was orig-

inally designed for concurrent systems.

• Defining the generic architecture of AIP, i.e. the basic components and their con-

nectors in interactions. This architecture, which expresses many fundamental and

essential characteristics of agent interaction, can be reused to develop different pro-

tocols.

• Providing a suitable structure for formalizing agent interaction, which is important

for building correct IP specifications [31, 17].

• Providing the important correctness properties(safety, liveness and fairness) of AIP,

that any AIP application should satisfy.

• Using several tools to formally analyze, animate and verify IP specifications ex-

pressed in Lotos. Therefore, the correctness of AIP can be proved.

item Improving the understanding of dynamic behaviors of AIP through simulation.

An stepwise approach is also proposed to incrementally develop interaction protocols

using the methodology developed in [6]. Following this methodology, the overall com-

plexities are broken into serial sub-steps. Each step evaluates and takes a small amount

of decisions in isolation, and a more refined version of the design is elaborated [27]. The

specifications can be refined stepwise toward implementation in this way.

This paper is organized as follows: In Section 2, we analyze the architecture and

characteristics of multi-agent interaction. In Section 3, we provide a generic framework

for specifying agent protocols. In Section 5, we study what are the most important

properties to be verified on AIP. The generic framework is also proved correct. In Section

5, we demonstrate how to develop an English auction protocol hat is correct from the

generic framework.
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1.1 Agent Interaction Protocols

A multi-agent system can be viewed as an artificial virtual society, in which agents can

cooperate or coordinate to perform tasks. The agent interaction requires a set of agreed

messages, rules for actions based upon reception of various messages, and assumptions of

the communication channels [35]. These constraints ,rules and patterns can be abstracted

and formalized as AIP, which are basis for agent negotiation and cooperation. Using the

protocols, the autonomous behaviors of agents can be somehow predictable, even though

agents are anonymous, because agents are obligated to obey some interactive rules. The

interaction protocols range from negotiation schemas to a simple request for a task.

AIP are patterns representing both message communication and the corresponding

constraints on the content of such messages. They describe an allowed sequence of mes-

sages and message content among agents [26]. AIP can also be considered as reusable

software design patterns describing problems frequently occurring in multi-agent systems

[3]. The roles and message details in an AIP can be modified to adapt to different sce-

narios to solve the problems [10]. Protocol definition consists of a set of attributes given

below [36, 10]:

• Purpose. It is the goal that an interaction is supposed to achieve.

• Messages. A message consists of a sender, a set of receivers, type of messages

and message content. The involved agents are expected to understand the message

elements defined in the protocol.

• Ontology. It gives meaning to the symbols in the content expression.

• Rules. Those rules define the dependencies and relationships between messages as

well as the constraints on the message structure, such as the types of messages

agents can receive and send in a particular situation.

• Input and output. They define the message types that can be sent and received by

a participant.

• States and transitions. An AIP is usually modelled as a Finite Transition Systems.

The state of the system changes according to the actions performed by participants.

• Participants. They include the initiator and responder roles in the conversation.

• Reasons. For example, a participant should give reasons to other agents why it

accepts or rejects a request.

5



• Views. AIP can be examined by different views from different participants, i.e. from

a local role’s view or from an external observer’s view.

The messages are expressed in agent communication languages, such as FIPA ACL [13]

and KQML [1]. Messages express the intention of an agent expecting what other agents

are expected to perform. Agent languages are based on the speech acts theory, which is a

model for human communication [28]. Performative act is a key concept in the theory. It

is an action that a speaker performs (speaks) in order to convey part of its mental state

to the hearer that the act is directed to [19].

Role is a set of agents satisfying distinguished properties, interfaces, service description

and behaviors. An agent role is an abstract description of an entity with the specified

functions [8]. When we compare the role of agents to the interface of objects, we can find

many similarities. An interface can be implemented by different classes and a class can

provide multiple interfaces while a role can be played by different agents and an agent

can act in several roles. For example, an agent can be a seller and buyer in two different

auction conversations undertaking concurrently.

For example, the FIPA Request Interaction Protocol [13] has a purpose that allows

one agent to request another to perform some actions. There are only one initiator and

one responder. The output of the initiator contains two kinds of messages: Request and

Cancel, the output of responder has six types of messages: Not-Understood, Refuse, Agree,

Failure, Inform-Done and Inform-Result. The behaviors of the protocol can be described

as follows: when an agent receives a Request, it may agree or refuse the request, and it

can also issue a Not-Understood. If it agrees, it will tell the initiator the result of its

actions according to the request. The result may be failure, Inform-Done, and Inform-

Result. During the interaction, the initiator can cancel the interaction anytime after the

interaction starts.

Agent interaction is more complex than object interaction in distributed systems be-

cause agents are autonomous and interactive [37]. Unlike objects need outside control

to execute their methods, agents have control over whether and how they process exter-

nal requests, using their knowledge of the environment and the effect of their actions.

The challenge grows when the agent has to interact with different parties, using different

protocols.

Many methodologies have been developed to help capture, represent, specify, validate

and verify AIP, such as Extended UML [23], COOL [2], Extended Finite State Machines
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[23] and Petri Nets [8]. Protocols are modelled using several theories, such as expection

and commitment [14]. However, these theories and methdologies bear some limitations

summarized in [24], as mentioned in introduction part.

1.2 Multi-agent System Architectures

The knowledge of MAS architecture is necessary to develop a suitable AIP specification

structure. MAS are usually constructed upon agent platforms. Therefore, MAS are similar

in many aspects. A typical abstract MAS architecture is shown in figure 1, and it is based

on the FIPA specification 1.

Agent Agent

Message Transport Service (MTS)

Agent

MTS

Agent Agent Agent

...

......

M M M M MMessage (M)

MTS

Agent Platform (AP) AP AP

M

Figure 1: Agent Abstract Architecture

Each agent features an inner control responsible for changing its status and sending

messages [32]. Agents reside in agent platforms which provide fundamental functionalities

such as:

• Lifecycle management. It is responsible for creating, activating, suspending, invok-

ing, moving and destroying agents. In its lifecycle, an agent may stay in different

states, such as unknown, active, waiting and suspending.

• Message transport service (MTS). It plays a vital role in agent communication. MTS

provides message addressing and transferring services. MTS also enforces the rules

of message buffering with respect to different states of agents. When an agent is in

a waiting state, MTS stores the messages in its message buffer for further processing

when it becomes active. When an agent is in unknown state, MTS may discard the

messages.

• Directory service. It is used to find agents or services provided by them. It is similar

to the familiar white and yellow pages provided by tele-companies.

1http://www.fipa.org/repository/index.html
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2 AIP Specification

The specification language Lotos is an ideal choice for the description, validation and ver-

ification of agent interaction protocols. For instance, we have applied Lotos to describe,

simulate and verify a dynamic agent-based online auction protocol [7]. First, Lotos has

been extensively studied and applied on concurrent and distributed systems, such as ISO

communication protocols. Second, Lotos is executable, modular and capable of synchro-

nization between processes [9]. Third, many tools have been developed for the validation

and verification of Lotos specifications. In addition, many aspects of system functionality

can be effectively represented in Lotos [12], such as the external and internal descrip-

tions, representing respectively what the system does and how the functionalities are

implemented. Various specification styles and development methodologies have also been

proposed to make the language useful in different development stages from requirements

capture to detailed design [33].

Our model of the interactive behaviors of an agent is based on the semantics of Lo-

tos, defined by Labelled Transition System (LTS). A protocol is modelled as a set of

communicating processes executing concurrently. They express the constraints on the

relationship between Send and Recv gates, representing sending and receiving messages.

These constraints represent the protocol mechanism. This model emphasizes the agent

collaborative aspects, namely, its interactive behaviors. It follows the social approach

to describe AIP [14, 32]. The advantage of this model is that agent interaction can be

described even internal and mental structure of agents are unclear.

Lotos is suitable to design architecture [18]. We will use it to design a flexible frame-

work for specifying agent interaction protocols. This framework will capture as many

essential properties of MAS as possible while it tries to avoid the details irrelevant to AIP.

2.1 Architecture Design

The essential techniques for effectively handling complexity of any software systems are

decomposition, abstraction and organization. Object-oriented methods decompose a sys-

tem into objects, while agent-oriented methods abstract a system as a number of agents.

The appropriate separation of concerns is vital to modularity and reuse. Interaction proto-

col specifications are decomposed into role modules and message transportation modules,

which are modelled as Lotos processes. A grey-box approach [32] is applied to design
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these modules. This means that we specify both the external and internal behaviors of

agents. However, the internal aspects of an agent are only described as far as it affects

the interaction. Internal deliberations are represented as undeterministic choices. This

architecture results in a good separation of concerns.

The framework is designed to be flexible and scalable, separate the standard func-

tionality form application-specific behaviors. We try to capture the essential structure of

agent interactions and only necessary agent internal design. We keep the specifications in

appropriate abstraction level that make verification viable. Therefore, we do not mix pro-

tocol specification with life-cycle management specification, which are internal elements,

viewed from the observers.

The overall communication pattern description is accomplished by the parallel compo-

sition of the role modules and message transportation modules. This convenience is due

to the synchronization mechanisms of Lotos. These modules synchronize on the message

exchange gates to form the whole constraints on the message sequence. All the interaction

scenarios can be produced automatically by simulating the specification. These scenarios

can be represented in different formats, such as text, tree and MSC. Unlike UML that can

only model a small number of possible scenarios, our approach can simulate dynamically

almost all the possible scenarios allowed by a protocol.

Styles denote the way the designer expresses the functionality of system, making use

of language elements. The individual modules are defined first using the state-oriented

style. This style provides insight in the amount of state information to be maintained by a

resource, and the complexity of manipulating this information. The internal insight helps

transform the formal specification into a final implementation of the resource, because the

style gives much hints to develop data and program structures of final implementation.

Finally, all the individual modules are composed to obtain the overall behaviour of the

system using resource-oriented style [34, 30, 11].

We also consider the limitations of available Lotos tools. That means, we do not use

some features of Lotos language, such as recursive processes on parallel operators.

2.2 Message Structure

Messages are specified using Lotos data part, which can abstractly represent message

content. The symbolic messages are independent of any agent language. We focus on
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message semantics, without caring about its physical implementation details.

A message has three parts: a sender, a set of receivers, and a content. This means that

one message can be sent to multiple agents at once. For instance, in the message msg(sid,

add(rid, nil), cnt(not-understood)), the sender is sid, the receiver is rid, and the message

content is not-understood. Because Lotos data type definition allows polymorphism, the

operation cnt can encapsulate any numbers and kinds of information, such as cnt(request)

and cnt(inform-done, result).

2.3 Agent Role Modules

Each role in an interaction is modelled by a process, which encapsulates a set of con-

versation rules related to a role in an interaction protocol. An interaction protocol can

be viewed as a set of constraints on the temporal order of messages and the messages’

content. The overall constraints consist of local constraints through individual roles. A

role module only focuses on how an agent in a given state receives a message of specified

type, performs local actions, sends out messages, and switches to another state.

An agent interacts with its environment through sending and receiving messages. Cor-

respondingly, a role process has two gates: Send and Recv. An action Send has a common

format Send !m, where m is a expression of message type. Through this gate, a role pro-

cess synchronizes with the process MessageTransportation to offer a message. A Recv

action has a common format Recv !id ?m:Message. Through this gate, a role process

synchronizes with AgentMessageBuffer to read a message.

Agents are both reactive and proactive. Agents are proactive because they not only

react, but also exhibit goal-oriented behaviors. Agents are reactive because they must

take timely actions in response to changes in the environment. In correspondence, the

role process consists of a proactive and a reactive part. The active part runs actively

depending on its inner state and events. The reactive part executes activities only when

it is triggered by incoming messages. The role’s structure is illustrated in figure 2.

In correspondence, the Lotos specification of proactive and reactive part has the fol-

lowing structure:

• The proactive part:
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Reading a message from message buffer;

[]

Reactive Part

Recursivity

[][stateN]−>Sending allowed messages; changing state

  [state1] −> Sending allowed messages; changing state

([] [content1] −> Replying with messages if necessary;

changing state

(Sending Messages Reactively)

changing state

[] eventN; sending messages; changing state

([] [contentN] −> Replying with messages if necessary;

[] event1; sending messages; changing state

RecvSend

(Sending Messages Actively)Proactive Part

Figure 2: Role Process

[state1] → perform some actions, change its state ...

[]

...

[]

[stateN] → ...

[]

[event1] → perform some actions depending on inner event; change its state ...

[]

...

[]

[eventN] → ...

• The reactive part:

pick up a message from message buffer (

[content1] → perform some actions depending on state and message content,

change its state...

[]

...

[]

[contentN] → ...

)

Every role process has a state data to control its message output. This state reflects

the interaction stages from an agent’s local viewpoint. A completed interaction can be

divided into several stages. In each stage, a role can only send out some specified types

of messages. From the beginning to the ending of an interaction, every role should at
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least has an initial and a terminal state. Entering into a new state is triggered by what

messages a role has received and sent, and sometimes, the inner events, such as time-out.

Each state are simply specified in Lotos as distinct values in a sort. Those values should

be comparable, hence operations equality and non-equality should be defined.

In each stage of an interaction, a role should record its state, and other information

related to a specified application. These information is combined together as a Session

data structure. The Session has following structure: Session(AgentId, State, Info1, ...

InfoN). For example, an auctioneer agent session has the following fields: conversation

state, administrator, a set of buyers, auction item, seller, starting price, bid increment,

reserved price, current bid, current winner. We define the operations to extract each field

from a variable of session sort, such as getState, getSeller, and getBuyers.

2.4 Message Transportation Module

The protocols are layered upon an underlying asynchronous point-to-point messaging

infrastructure [10]. We use gates Send and Recv as well as buffer data structure to

describe asynchronous message exchanging. The message transportation module is the

core functionality that all protocols needs. It can be reused in all interaction protocol

specifications without any modification. It simulates the transferring of a message from

a sender to several receivers concurrently.

Message transportation module is modelled by two Lotos processes: MessTransporta-

tion [Send, BuffIn] and AgentMessageBuffer [BuffIn, Recv], as shown in figure 3. Mes-

sages transportation delivers one agent’s intention and information to other agents. Mes-

sages can be sent in a synchronous or asynchronous way. When using synchronous com-

munication, the sender waits (blocked) until it makes sure that the message has been

taken. When using asynchronous way, the sender does not wait, instead it continues

processing immediately after outputting a message. Message transportation allows both

one-to-one and one-to-many messages exchanging.

Message
(msg(Agent,AgentSet, TypeOfAct, AttributeMap)

Sender
(Agent)

Receivers
(AgentSet)

Message Type
(TypeOfAct)

Message Content
(AttributeMap)

Attribute
( &(Key, Value) )

Key
( K(*))

Value
( V(*) )

Attribute
( &(Key, Value) )

Figure 3: Message Transportation
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Asynchronous message exchanging is realized through three synchronization steps.

1. First, the synchronization between a sender and MessTransportation.

2. Then, the synchronization between MessTransportation and AgentMessageBuffer.

This step adds a message into a receiver’s buffer.

3. Finally, the synchronization between the receiver and AgentMessageBuffer. In this

step, an agent extracts a message and removes it from the buffer, which buffer is

vital for asynchronous message transportation.

3 Incremental Development of AIP

FIPA Interaction Protocols 1 are used as examples to demonstrate AIP development using

the proposed framework and methodologies. .

The design process of complex distributed and concurrent systems is a complicated

task. Hence it is better to construct AIP in an incremental approach as defined in [31].

This approach is also called step-wise refinement [4]. The design process consists of the

steps to identify the message types, states and design the Lotos guard expressions. These

expressions specify the conditions and constraints of message pattern in an interaction

protocol. The steps are illustrated in figure 4.

Extend Types of Act

Extend Role&Agent Names

Identify Active Messages Refine Interactive Rules

Second Stage

First Stage

Identify Incoming Messages

Design Reactive Messages

Add Guard Expressions

Design Attribute Values

Extend Attribute Keys

Adjust Specification

Validate & Verify

Figure 4: Step-Wise Refinement

The first step is to identify how many types of messages exist in an interaction protocol.

Message types are specified as constructors. Because the representation is symbolic, it is

1http://www.fipa.org/repository/index.html
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easy and convenient to add any new message types. For example, below is the message

types in the request interaction protocol.

request, refuse, agree, failure, inform-done, inform-result, cancel, not-understood

: → MsgType

Next, decide what messages a role can send and receive. Initiator can only send out

request and cancel messages. And a responder can send out refuse, agree and so on.

Below, we defines both the initiator and responder’s possible output of messages.

Process Initiator :=

Send !msg(id, add(p, nil), cnt(request))

[]Send !msg(id, add(p, nil), cnt(cancel))

endproc

process Responder :=

Send !msg(id, add(ir, nil), cnt(not-understood));

[]Send !msg(id, add(ir, nil), cnt(refuse));

[]Send !msg(id, add(ir, nil), cnt(agree));

[]Send !msg(id, add(ir, nil), cnt(failure));

[]Send !msg(id, add(ir, nil), cnt(inform-done));

[]Send !msg(id, add(ir, nil), cnt(inform-result));

endproc

Next, we have to figure out the required interactive rules. The consideration includes

the relationships between actions. For example, some requests are allowed to delay, while

some others have to be done immediately. To express that two actions occur one after

another, we should combine these two actions using the action prefix operator (;). Oth-

erwise, we should assemble them in parallel to allow them and other actions to occur

alternately.

Example 3.1 This is an example rule in the Request protocol. When a responder receives

a request, it may respond with not-understood, refuse or agree.
[messageType eq request] → (

Send !msg(...not-understood...);

[]

Send !msg(...refuse...);

[]

Send !msg(...agree...);

)

Then, identify the agent states from an agent’s standpoint. States identification can

be done incrementally. We can add a new state whenever we find it necessary during
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the development. For example, below is the initiator role’s state. In its initial state,

initiator can send out a request ; in its started state, it can send out a cancel message; in

its terminal state, it can do nothing related to this interaction.

initial, started, terminal

→ InitiatorSessionState

Based on the above information, we can design the guard expressions to describe

the constraints of message pattern from an agent’s local viewpoint. Guards are boolean

expressions of states, the conditions that some action can be performed or not. After this

step, we can simulate the protocol. If we find something unpredicted, we can go back to

above steps to correct and refine the protocol.

Example 3.2 After a responder accept a request, it can send out the following messages

at any time.
[st eq started] rightarrow (

Send !msg(...not-understood...);

[]Send !msg(...failure...);

[]Send !msg(...inform-done...);

[]Send !msg(...inform-result...);

This approach can help us find inconsistences and then deal with subtle situations in

the protocol. First, we can execute the protocol specification via simulation, to observe

the possible behaviors. Simulation not only helps users understand interaction pattern

between agents, but also helps users find the subtle design errors. Second, verification tools

examine the specification against the temporal logics used to describe the properties of a

protocol. This can produces all the unwanted behaviors if they exists in a specification.

4 Validation and Verification

There are several kinds of verification in MAS [15, 16], including:

• Verify protocol properties.

• Verify their implementation is equivalent to the protocol.

• Verify that an agent will always comply to an AIP.
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AIP properties can be expressed in different temporal logics, such as CTL and ACTL.

CADP offers various tools for validation and verification of Lotos Specifications [7]. Verifi-

cation can increase our confidence that a specification satisfies its requirements and meets

some important properties, such as liveness or safety. The general properties of AIP can

be categorized as below:

• Safety. It requires that a property be held in any sequence of messages. For exam-

ple, there is not deadlock in the specification before the protocol is ending. And

some actions should always occur before another actions. Deadlock freedom can be

expressed by the formula [true] ¡true¿ true.

To facilitate verification, we can define some temporal logic macro expressions.

For example, the order of actions can be expressed using a predefined macro be-

fore(action1, action2). The macro is defined as below:

Example 4.1 macro before(A, B) = not( [ (not (B))* . (A) ] false ) end macro

• Liveness. It requires that a property should be satisfied by at least one sequence

of messages in the protocol. For example, there is not livelock in the specification.

LiveLock can be expressed as ¡ true ¿ ( ”i” ).

• Fairness and Justice. There are different kinds of fairness properties. For example,

one requires that each action has the infinite opportunity to be performed. An

action ACT will be fairly reached initially can be expressed as: [ (not ÄCT)̈ ] ¡ true

. ÄCT¿̈ true.

AIP properties can also be directly modelled in Lotos. The observational equivalence

between property specifications and the protocol specification is calculated automatically.

The observational equivalence is also useful to check the compliance between agents and

protocols.

4.1 Explanation

In order to design agents compliant to a protocol, we have to understand the protocol

thoroughly. Given a Lotos AIP specification, the recognition and explanation of a protocol

can be accomplished by automatic or manual simulation of the specification. Simulation

is symbolically executing a Lotos specification. It can help us understand subtle aspects
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in AIP. By simulating a protocol expressed in Lotos, we can observe and recognize its

behaviors, and also produce different scenarios of a protocol under different situations.

Thus, we obtain an unambiguous understanding of the protocol.

Another way to examine the protocol is to generate the Labelled Transition System

(LTS) of the protocol. The edges (transitions) represent sending messages. In a LTS, there

is a distinguished initial state, in which any conversation starts, and several terminal states

that signal the ending of a conversation. The path from the initial state to a final state

represents a complete interaction between agents.

We can also obtain different views of an interaction protocol by hiding some gates.

For example, in a local interpretation, the edges either model the sending of a message, or

its reception. In contrast, from an external observer’s view (global interpretation of the

interactions among the agents), edges exclusively represent sending messages [21]. For

the second viewpoint, we can hide gates Recv and BuffIn in the specification.

5 Specialization to the Online Auction

The generic framework provides generic data types for reuse, and templates for building

correct protocols. Specialization of the framework consists of the following steps:

• Extending, renaming and overloading existing data types

• Deciding the types of messages

• Deciding the states reflecting the evolution of a protocol

• Adding constraints to remove undeterminable choices due to incompleteness

• Refining the protocol to a suitable level by repeating the above steps

The agent-based auction protocol in [7] is used as an example to demonstrate the

specialization procedure.

5.1 Data part

A generic data type can be extended using operator “IS”. New agent identifiers (roles)
and new message types can be easily added as below:

17



GenericAgent

→

TYPE AuctionAgent IS GenericAgent

administrator,

auctioneer,

seller,

buyer1,

buyer2 → Agent

ENDTYPE

New session states can be defined by first renaming, and then extending.

GenericAgentState

→

TYPE GeneralAuctioneerAgentState IS

GenericAgentState renamedby

SORTNAMES

AuctioneerAgentState FOR State

ENDTYPE

→

TYPE AuctioneerAgentState IS

GeneralAuctioneerAgentState

auctionStarted,

auctionTimeOut,

auctionDone → AuctioneerAgentState

ENDTYPE

A message content consists of a message type and other data. We can define different
message content by overloading “content”.

AuctionMessageContent

→

TYPE AuctionMessageContent is GenericMessageContent

content:

MsgType, Item, Money, Agent

(* a proposal *)

→ MsgContent

content:

MsgType, Agent, Item, Agent, Money, Money

(* call for proposal *)

→ MsgContent

ENDTYPE
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5.2 Behaviour part

The GenericAgent process can be used as a template to define new process representing

a role in a protocol. For example, to design an Auctioneer process, GenericAgent will be

actualized as Auctioneer, AgentSession will be actualized as AuctioneerSession, and so

on.

PROCESS GenericAgent[Send, Recv](AgentSession as) : NOEXIT :=

LET

id : Agent = getID(as),

cst : State = getState(as),

info : SessionInfo = getSessionInfo(as)

IN (

...(* Active part *)

Recv !id ?c : Message; (

Let sender : Agent = getSender(m),

cnt : Content = getContent(m),

t : MessageType = getType(m)

IN(

... (* Reactive part *)

)

)

ENDPROC

→

PROCESS Auctioneer[Send, Recv](AuctioneerSession as) : NOEXIT :=

...

ENDPROC

Behavior specialization consists of the following steps:

1. Decide all the message types a role can send out actively. These actions are not

triggered immediately by received messages.

Deciding the actively outgoing messages

Send !msg(id, ..., cnt(callProposal,...))

[]

Send !msg(id, ..., cnt(AuctionSuccess,...))

[]

Send !msg(id, ..., cnt(AuctionFailure,...))

2. Decide all the message types a role will receive.
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Deciding the incoming messages

[mt eq subscribe]

[]

...

[]

[mt eq propose]

3. Decide the actions a role will perform after it receives a specified type of message.

Deciding the reactively outgoing messages

[mt eq cancelSubscription] → (

Send !msg(id, ..., cnt(acceptCancelSub, ...)

[]

Send !msg(id, ..., cnt(rejectCancelSub, ...)

)

4. Decide how a role will change its state and session information after receiving and

sending a message.

Deciding the transformation of state and session

Send !msg(id, ..., cnt(acceptCancelSub, ...));

AuctioneerAgent[Send, Recv](id, removeBuyer(sender, as))

[]

Send !msg(id, ..., cnt(rejectCancelSub, ...));

AuctioneerAgent[Send, Recv](id, as)

5. Add more constraints to remove undeterministic choices.

[mt eq cancelSub] → (

[sender ne winner] →

Send !msg(id, ..., cnt(acceptCancelSub, ...));

...

[]

[sender eq winner] →

Send !msg(id, ..., cnt(rejectCancelSub, ...));

...

)

The above steps will be repeated until all the constraints have been added and the

protocol is complete. During the procedure, the protocol can be simulated to examine

their behaviors even if it is not completed.
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6 Conclusion

Lotos language and its related technologies have shown their strength in specifying and an-

alyzing agent interaction protocols. First, they can ambiguously describe the requirements

of agent interaction protocols. Second, the specification can be executed symbolically to

show the dynamic behaviors of agent communication. Third, it is possible to validate

and verify the specification. The success of Lotos in specifying concurrent systems will

contribute to the agent fields.

However, Lotos has some limitations, such as that it cannot specify quantitative time

and exception handling. ELotos removes those limitations and provides better structuring

mechanisms, such as module, interface and other user-friendly features. ELotos is more

powerful for specifying distributed systems. We would like to apply ELotos in such area

but no supporting tools.
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