
Towards Model Checking C Code with OPEN/CÆSAR⋆

Maŕıa del Mar Gallardo, Pedro Merino and David Sanán

Dpto. de Lenguajes y Ciencias de la Computación
University of Málaga
29071 Ḿalaga, Spain

{gallardo,pedro,sanan}@lcc.uma.es

Abstract. Verification technologies, like model checking, have obtained great
success in the context of formal description techniques (FDTs), however there
is still a lack of tools for applying the same approach to real programming
languages. One promising approach in this second scenario is the reuseof
well known and stable software architectures originally designed forFDTs, like
OPEN/CÆSAR. OPEN/CÆSAR is based on a core notation for Labeled Transi-
tions Systems and contains several modules that can help users to implement
tasks such as reachability analysis, bisimulation, and test generation. All these
functions are accessible with a standardAPI that makes it possible the generation
of specific model checkers for new languages. In this paper, we discuss how to
construct a model checker for C distributed applications using OPEN/CÆSAR.

1 Introduction

The difficulty of constructing reliable complex software iswell known, especially
when developing distributed communication systems. Formal techniques such asmodel
checkinghelp us to improve the quality of these systems, assuring thesatisfaction of
certain critical properties (typically temporal properties). Traditional model checking
tools (SPIN[5], CAESAR[6]) have been oriented towards analyzing system models de-
scribed in a particular high level language also known as formal description technique
(FDT). For instance, the modelling languagePROMELA is the input forSPIN, while
process algebras are valid inputs forCAESAR. However, currently, many academic and
commercial projects are focused on extending the techniques and algorithms developed
for FDTs to the usual and more complex implementation languages. This is the case of
Bandera and JPF [4] for JAVA and CMC andSOCKETMC [2] for C.

There exist two main approaches to attack the problem of software verification. On
the one hand, Feaver, Bandera andSOCKETMC, translate the original system, written in
a programming language, into a particularFDT that is the standard input of an existing
model checker. This method, that is called “model-extraction”, allows us to reuse the
target tool, but having into account the additional effort of constructing a high level
model from the original system.

The second approach to verify software consists inimplementingnew “language-
specific tools”. Clearly, this method may involve a considerable amount of development

⋆ Work partially supported by projects TIN2004-7943-C04-01 and TIC2005-09405-C02-01.

// Client process

int main() {

struct hostent *ptrh;

struct protoent *ptrp;

struct sockaddr_in sad;

int sd;

int port;

char *host;

.................

memset((char *)&sad,0,sizeof(sad));

sad.sin_family = AF_INET;

sad.sin_port = htons((u_short)port);

socket(PF_INET, SOCK_STREAM, ptrp->p_proto);

..

read(0,cadena,sizeof(cadena));

n = write(sd,cadena,strlen(cadena));

n = read(sd, buf, sizeof(buf));

// Client process

int main() {

// Server process

int main() {

Operating System Support
Concurrency,

Communications,

I/O,

Memory management,

Files, ...

APIS

Parser
(filtering,

normalization, ..)

Model generator

LTL,

Büchi

C, C++

Socket based software

Properties

PROMELA

SPIN 4

Operational

Semantics

(Sockets)

LTS

CADP

…

Fig. 1.Schema for verifying systems with well-defined APIs.

work. Fortunately, some frameworks may assist in this task.For instance, the toolset
OPEN/CÆSAR[3] permits the construction of specific model checkers, having as input
models described using a labeled transition system (LTS). The tool also provides an
application programmer interface (API) which facilitates the construction ofLTSs and
diverse libraries which, for instance, provide structuresto store the states or compute
hashing functions.

In this paper, we propose to extend the range of input languages for the
OPEN/CÆSAR framework, adding the possibility of verifying the popularC language.
Moreover, and following the idea ofSOCKETMC, the tool will be able to verify
client server applications that make an extensive use of anAPI, e.g. the SocketAPI.
Figure 1 gives an overview of the process followed to verify systems that use well-
definedAPI. As an initial step in the construction of a specific model checker, this paper
describes how to translate clientserver applications into the data structures employed
by OPEN/CÆSAR. The new representation obtained will allow us to have more control
over the algorithms and data structures which play a crucialrole in the model checking
process. For instance, we may add new features to the model checker such as variable
compression, hashing, abstraction, and the localization of errors in the original code.

2 Integrating C into OPEN/CÆSAR

In this section, we describe the process of constructingLTS representations from C
programs. This transformation will allow us to reuse the OPEN/CÆSAR environment
and all the programs developed inCADP such asBISIMULATOR, ALDEBARAN, etc. We
may structure the process of verifying C code in OPEN/CÆSAR in four phases:

2.1 Analyzing theC Code

The translation of the original system must start with an analysis phase. This phase is
not trivial due to the complexity of the C language. In order to simplify this task, we
first translate the C code into an intermediateXML -based language namedPIXL.

Once the code is written in the mark up language, we perform ananalysis focussing
on two main issues. First, we need to extract every system call and control sentence for
the creation of theprocess graph, described in the following section. Second, we need
to analyze every variable in the program to determine whether it should be inserted in
the state vector. In this case, the code has to be modified to reference the field of the
state vector associated to the variable.

199

2.2 Creating the Process Graph

As mentioned above, our goal is to generate an implicitLTS from a C application con-
taining external calls. In order to build the successor function needed to specify the
LTS, we need a suitable representation of the different processes of the system to be
analyzed. To this end, all these processes are converted into a graph before creating the
implicit LTS.

We consider two types of labels. On the one hand, a label may represent a sequence
of C statements (a block) that do not include any system call and, on the other, a label
may represent a single system call.

Non determinism is an important aspect when representing system calls. Non deter-
minism is implicit in communications, e.g. a broken connection, or failures in the calls
to OS due to the impossibility of assigning a descriptor in a socket system call. There-
fore, every system call with a nondeterministic behavior must be expressed by means
of various transitions showing every possible behavior of the function.

Another point that must be taken into account is the translation of certain control
sentences in the original C code. If the selection or iteration statements (if, case, while)
containAPI calls, we explicitly translate the structure of these sentences into the process
graph. We express each selection sentence as the condition,the selection body, and the
else branch. Similarly, each iteration sentence is defined as the condition and the body.

2.3 Generating the Implicit LTS

In the OPEN/CÆSAR environment, the generation of anLTS model from a C system
involves the representation of states and labels of the system, and the implementation
of the interface provided byCAESARGraph.h. This interface gives us the necessary
primitives to manipulate states and labels that will be partof the finalLTS.

Therefore, every global state, usually called state vectorin model checking, con-
tains the global data that may be accessed by all system processes as well as the local
data corresponding to particular process instances. Global data include, for instance,
channels in sockets orOS buffers. Local process variables are clearly local data. The
global space also contains relevant data about the total number of processes running in
the system. In addition, every process in execution keeps information about the actual
state of the process, its pid, and the process type.

Besides the state representation, we must provide the labelrepresentatio. Labels
represent actions to be carried out in order to evolve from one state to the following one.
The label concept ofCAESAR that have been inherited fromLOTOSdoes not exists in C.
In CAESAR a label is considered as aLOTOS gate and a number of experiments offered
by the gate. However, in the socket case, we can find a direct relationship between
the notions of gate and socket. Thus, the transition for a system call, e.g. a read call,
generates a label similar toread(5), where the number represents the socket identifier
used for this communication.

Moreover, the generation of this interface requires two special primitives for con-
structing the transition relation of theLTS. One primitive is responsible for generating
the initial state, and the other generates the successor states for any given state. The
algorithm works in two phases. In the first one, for every system process, it explores all

200

the transitions from its actual state. These transitions are obtained from the automaton
associated to the process. The second phase of the algorithmexecutes each transition
generated, appropriately updating the state vector variables and producing the corre-
spondingLTS label. In order to execute the transition in theLTS, we need to execute the
associated code in the process graph. Recall that this code is the result of the previous
analysis described in Section 2.1. Thus, the successor state is generated automatically
while executing the transition. It is worth noting that the transformed code works di-
rectly with the variables in the vector state.

The graph interface includes an initialization primitiveCAESAR INIT GRAPH,
which has to be called before using any operation with the graph. This method in-
volves the allocation in memory of the process graphs (described in Section 2.2) of the
different processes forming the system to be analyzed.

3 Conclusions and Future Work

Originally, OPEN/CÆSAR were designed as an open environment extending the func-
tionality of CAESAR that is used for verifying aLOTOS specification. In this paper, we
propose to use this framework for analyzing C programs that make use of well defined
APIs. Most existing software model checkers are well suited to verifying distributed
systems. Some of them, such as JPF or Bandera, analyze systems described inJAVA.
Others are designed to analyze specific kinds of software. For instance, SLAM [1] ver-
ifies whether the behavior of a driver is secure wrt the uses oftheAPI that it offers.

Actually, this proposal is its final stage of implementation, and the final version
will be available inhttp://www.lcc.uma.es/gisum/fmse/tools . Future work could follow
several lines. On the one hand, we could compare the results provided by our previous
tool SOCKETMC, and by the current proposal. This comparison should takeinto ac-
count not only the numerical results, but also the easiness for obtaining the models. On
the other, we also propose to extend our approach by considering differentAPIs or by
implementing abstraction techniques.

References

1. Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. Slamand static driver
verifier: Technology transfer of formal methods inside microsoft. InIFM, pages 1–20, 2004.

2. M. Camara, M.M. Gallardo, P. Merino, and D. Sanan. Model checking software with well-
defined apis: The socket case. In(FMICS05), pages 17–26. ACM SIGSOFT, 2005.

3. H. Garavel. OPEN/CAESAR: An open software architecture for verification, simulation, and
testing. InTACAS’98, volume 1384, pages 68–84, 1998.

4. K. Havelund and T. Pressburger. Model checking java programsusing java pathfinder, 1999.
5. Gerard J. Holzmann. The model checker SPIN.Software Engineering, 23(5):279–295, 1997.
6. J. -C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighireanu.

CADP: a protocol validation and verification toolbox. In Rajeev Alur and Thomas A. Hen-
zinger, editors,Proceedings of the Eighth International Conference on Computer Aided Ver-
ification CAV, volume 1102, pages 437–440, New Brunswick, NJ, USA, / 1996. Springer
Verlag.

201

