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Abstract: To attain good reliabili ty of any software product, its
development should begin with a formal specification. This way, it is
very easy to perform correctness verification and some performance
evaluation information is also available. Formal specification of
distributed systems is frequently used for a cost-effective error
detection and correction during the initial phase of the software
development process. In order to achieve this goal, several tools have
been developed for program analysis, code generation, simulation,
testing, test data generation. It is important to notice that this kind of
tools and models can be used for general distributed system
applications.
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1. INTRODUCTION

There are several types of failures that can occur in a
distributed system: software crashes, disk failures,
and bus errors, network errors, processor errors and
power losses. The first consequence of such a failure
is a data loss, which can lead to an inconsistent
system state. The state of a distributed system
depends on the states of each process in the system.
But due to inter-process communication the states of
processes depend on one another. If a component of a
distributed system fails, its failure could propagate to
and affect other components. Especiall y for these
systems reliability is a very important issue: it would
be very useful to have the system working even in
the presence of some failures.

1.1. Formal specifications

Formal program verification is the most reliable
technique because it is complete, but it is also
expensive. There are several formalisms proposed to
describe parallel and distributed systems.

• Model Based Approach that uses
mathematics, logic and set theory (Z and
VDM languages).

• Algebraic Approach.
• Concurrency Approach - CSP, CCS,

LOTOS, ESTELLE, SDL.

In the ‘80s several hybrid models were proposed, but
ISO or ITU-T (former CCITT) has adopted three of
them, called Formal Description Techniques, as
standards. These specification languages are
ESTELLE (Extended Finite State Machine
Language), SDL (Specification and Description
Language) and LOTOS (Language Of Temporal
Ordering Specification). These languages have some
common features. They allow a hierarchical structure
of models to be specified, where subsystems are
running in parallel and are communicating through
message exchanges. Each specification contains a
control part (how does the system react to events?)
and a data part (what kinds of information exist and
how does a message look like?).

ESTELLE is a FDT defined within ISO for
specification of distributed, concurrent information
processing systems (communication protocols and
services). An ESTELLE system consists of several
module instances (tasks), with asynchronous



behavior. Each module has a number of input/output
access points that are connected by bi-directional
links. Messages (interactions) are stored in a FIFO
queue in each interaction point allowing for a non-
blocking message sending. Another way to
communicate is by the way of common variables
(restricted to the son - parent communication). Two
kinds of task parallelism can be expressed in
ESTELLE: asynchronous parallelism and
synchronous parallelism.

SDL is not directed specifically to describing
telecommunications services, but it is a general-
purpose description language for communication
systems. The basis for description of behavior
description is the communicating Extended State
Machines that are represented by processes.
Communication is represented by signals and can
take place between processes or between processes
and the environment of the system model. A process
has an infinite FIFO input queue, where incoming
signals are placed. A process is either waiting in a
state or performing a transition between two states. A
transition is initiated by a signal in the input queue,
from which it is removed. During a transition
variables can be manipulated, decisions made, new
process instances created, signal sent, etc. Processes
can be created statically or dynamicall y.

LOTOS is a FDT standardized by ISO for the design
of distributed systems, and in particular for OSI
services and protocols. Experts of the ISO FDT
group developed LOTOS from 1981 to 1988; it has
now the status of International Standard [IS8807].
Unlike FDTs based on the state representation of a
system, LOTOS describes a system by defining the
temporal relations between externally observable
events at so-called event gates. LOTOS is composed
of two parts: a process algebraic part based on
Milner's Calculus of Communicating Systems (CCS)
and on Hoare's Communicating Sequential Processes
(CSP), and a data algebraic part based on the abstract
data type language (ACT ONE). These two aspects
of LOTOS are complementary and independent: the
process algebra is used to model dynamic behaviors
of systems, and ACT ONE is used to model data
structures and value expressions, which allows
handling data without unnecessary implementation
details.

1.2. Fault Tolerance

A system failure is a behavior that doesn't follow the
system specification (which should be complete,
correct and consistent). After a system failure occurs,
the service provided by the system is no longer that
stated in its specification. A computing system is
fault tolerant if it produces correct results, even if
some components are faulty. The basic way to fight
against failures has been proposed by Von Neumann:
the use of protective redundancy. There are some

extra components (hardware, software or time
components), useless for a normal behavior, but
which mask failures after they appear. Each
calculation step is added some extra operations,
performed by different software or hardware entities.
So fault tolerance can be obtained in different ways:
by adding extra processors, memory or
communication links (hardware redundancy), by
adding extra software modules to deal with extra
hardware (software redundancy), by using extra time
to implement several methods (time redundancy).

A distributed system consists of a set of autonomous
loosely coupled nodes, interconnected through a
communication network. Communication is made
using a message passing approach, because in
general there is no shared memory. From a fault
tolerance point of view, a very important issue is the
absence of a global clock. Each node has some
atomic components that can fail (a processor, a local
clock, a network interface, a stable storage and some
software modules). Links between nodes can also
fail , but this kind of failure could be viewed as
processor failures. The way in which nodes are
linked - the system topology - is another critical
component: the better the connectivity is, the higher
the reliabili ty is. A distributed application consists of
several concurrent processes (or threads) that
compete or cooperate to provide a service. These
processes communicate using communication
channels that are logical li nks. Distributed systems
considered in practice are said to be synchronous:
each action has a finite duration. This way one can
figure out if a delay is caused by a processor crash or
it is a communication delay.

Error recovery involves restoring an error-free state
from an erroneous one. Error recovery schemes are
usually classified as:

• Forward error recovery, when the state that
has just been found to be in error is further
used, in an attempt to generate the correct
state, using some error correction or error
compensation techniques.

• Backward error recovery, when some
processes are rolled back to a previous error
free state, and then the computation is
restarted.

Backward error recovery makes possible to recover
from an arbitrary fault, thus it can be considered as a
general recovery mechanism. It is based on some
recovery points, that allow saving and restoring the
state of a process. These recovery points can be
obtained using several techniques, one of the most
used being checkpointing, in which a set of local
checkpoints (saved local states) is determined during
normal computation, such us upon a failure
occurrence, a rolled back computation can be
resumed from this set. In order to achieve this, the
checkpoints should be consistent. A consistent global



checkpoint is a set of local checkpoints, one from
each process, if there are no causal dependencies
between them.

In a consistent checkpointing algorithm may appear a
stable storage contention between processes, because
they try to save the state on about the same time. To
avoid this arbitrarily staggered consistent checkpoints
could be used.

Checkpointing algorithms are classified as

• Synchronous (coordinated), where
processes synchronize their checkpointing
activities, so that a globally consistent set of
checkpoints is always maintained. This
involves message overhead and performance
degradation because process execution may
be suspended during coordination.
Coordinated checkpointing periodically
saves the state on stable storage.

• Asynchronous (uncoordinated), when
processes do not coordinate with others
when taking a checkpoint. This provides
maximum process autonomy, but some
checkpoints may be inconsistent. So it is
worth to reduce the number of useless
checkpoints. One method for doing this is a
communication-induced checkpoint, where
some checkpointing activity is triggered by
the message pattern and knowledge gained
about dependencies. Communication
induced checkpointing uses a lazy
coordination, by piggybacking control
information on application messages. There
are basic checkpoints and forced checkpoints
and two distinct categories: model-based
(that assures a deterministic behavior and
domino-free property) and index-based (that
assigns sequence numbers to local
checkpoints and enforces consistency for the
same sequence number).

Checkpointing algorithms can use a periodic state
saving, an incremental state saving or a hybrid
approach. Another possibil ity is diskless
checkpointing, used for long running computations,
without relying on a stable storage. The stable
storage is replaced with memory and processor
redundancy, eliminating the main source of overhead
(but not for free). Recovery uses replacement
processors that calculate the state of faulty
processors.

There is another classification of checkpointing
algorithms:

• Blocking algorithms, that force all relevant
processes to block their computation during
checkpointing.

• Non-blocking algorithms, that use a
sequence number scheme, can be centralized
or distributed.

• Combined approach, which forces only a
minimum number of processes to take
checkpoints. It involves system messages
and not computation messages.

The notion of consistent global checkpoint is
fundamental to many areas of distributed systems:

• Parallel and distributed debugging
• Distributed computing
• Fault tolerance
• Detection of stable properties
• Migrating processes between processors

2. THE FORMAL DESCRIPTION TECHNIQUE
LOTOS

In the past years the standardized FDT LOTOS has
received a considerable attention from the research
community. LOTOS is a Formal Description
Technique (FDT) standardized by ISO for the design
of distributed systems, and in particular for OSI
services and protocols. Experts of the ISO FDT
group developed LOTOS from 1981 to 1988; it has
now the status of International Standard [IS8807].
Unlike FDTs based on the state representation of a
system, LOTOS describes a system by defining the
temporal relations between externally observable
events at so-called event gates. LOTOS is composed
of two parts: a process algebraic part based on
Milner's Calculus of Communicating Systems (CCS)
and on Hoare's Communicating Sequential Processes
(CSP), and a data algebraic part based on the
abstract data type language (ACT ONE). These two
aspects of LOTOS are complementary and
independent: the process algebra is used to model
dynamic behaviors of systems, and ACT ONE is
used to model data structures and value expressions,
which allows handling data without unnecessary
implementation details.

LOTOS has been widely used for the specification of
large data communication systems. It is
mathematically well defined and expressive: it allows
the description of concurrency, non-determinism, and
asynchronous communications. It supports various
levels of abstraction and provides several
specification styles. In LOTOS a system is viewed as
a hierarchy of (parallel) processes that can interact
with each other or with the environment. In its early
ages have no temporal constraints. A process is
described using behavior expressions.
Communication and synchronization are done
through rendezvous, without shared memory. Good
tools exist to support specification, verification and
code generation. LOTOS is one of the few process
algebras that have moved out of the theoretical
community.



LOTOS is currently under revision in ISO under the
ELOTOS (Enhancements to LOTOS) activity to
improve the data type language and add features such
as a module system and quantitative time.

Verification of the desired properties of a
specification may be divided into several categories:

• Proof-theoretic (or axiomatic): where
specifications are written in or translated into
the notation of a proof system in which
theorems may be proved using, for example,
equational reasoning and term rewriting.
Properties of systems specified in process
algebra have been proved using
compositional proof methods working with a
given notion of equivalence: a system is
broken into components which are shown to
have certain properties that are together
strong enough to imply the desired
properties of the overall system.

• Model-checking (state/process based): A
transition system is “captured” in some way
by a machine representation (an automaton
or some other finite state machine), which is
generated by recursively applying the rules
for transitional semantics. An algorithm,
called a model checker, then can establish
automatically and exhaustively whether or
not desired properties hold for this
representation (and hence for the transition
system).

• Testing: is dependent upon how the
system's behavior may be observed in its
external interaction. Tests may be derived
from an initial specification, and the
resulting interaction with the implementation
under test (IUT) simulated. This offers
quickly some initial indications of whether
an implementation satisfies certain
requirements. The types of tests possible
depend upon the language used.

The CADP toolbox is dedicated to the design and
verification of communication protocols and
distributed systems. It was initiated in 1986 at INRIA
Rhones-Alpes, Grenoble, France and now the CADP
99 beta t version is available. It consists of several
tools, that can be used in a command line style or
through a graphic interface (EUCALYPTUS). The
main tools are:

• CAESAR, CAESAR.ADT are compilers
able to translate a LOTOS program into a
finite state graph describing its exhaustive
behavior.

• ALDEBARAN is a verification tool able to
either compare or to minimize graphs with
respect to bisimulation relations.

• TERMINATOR, EXHIBITOR,
XSIMULATOR, EVALUATOR are tools

that operate on the fly, providing
respectively partial deadlock detection,
incorrect execution sequence exhibition,
interactive simulation and evaluation of
temporal logic formulas.

3. BASIC CHECKPOINTING ALGORITHMS

There are several known checkpointing algorithms.
All of these induce a communication and
computation overhead that can lead to system
performance degradation. This is why a
checkpointing algorithm should be as simple as
possible. We have chosen to analyze here some
checkpointing algorithms that have (at least at the
first sight) this property. The Sync-and-Stop (SNS)
Algorithm is a representative for the blocking
algorithm class, while the Chandy-Lamport (CL)
algorithm represents the non-blocking class of
algorithms.

1.3. The Sync-and-Stop (SNS) Algorithm

It is a very simple consistent checkpointing algorithm
that basically shuts down the application to define a
consistent cut and take a global checkpoint. There is
a special, coordinating processor (Pc) that has the
role to start and stop checkpoints. When it is time to
start a checkpoint (on a periodical basis) the
coordinator first stops the application and then
broadcasts a special marker message to all other
processors. When a regular processor P receives the
marker message it stops running its program and
waits for all sent application messages to be received.
After that it sends the marker message back to Pc.
After receiving the marker from all processes, Pc

rebroadcasts it and takes its local checkpoint. After
receiving the second marker, each regular process
takes its local checkpoint and resends the marker to
Pc. When Pc receives the message from each process,
the checkpoint is complete. It has to rebroadcast the
marker to let other processes know that the
checkpoint is done. Before restarting the application,
each process could perform some garbage-collection
activity by removing old checkpoints.

1.4. The Chandi-Lamport (CL) Algorithm

It is more complex than the SNS algorithm and its
main feature is that the application is not stopped: it
interferes with the checkpointing algorithm. It also
has a coordinating processor and it takes into account
the communication links between processors. Pc

starts the checkpoint by broadcasting a special
message to all i ts neighbors. When a processor
receives the special message and has not taken its
local checkpoint yet, it broadcasts the special
message to all i ts neighbors and right after that it
takes its local checkpoint. Afterwards, if the same
process receives an application message on a channel



on which it has not received the special message yet,
it must log the message because it is a cross-cut
message. When there are no more cross-cut messages
(all processors have received the special message on
all their incoming channels) the local checkpoint is
finished. Each process now notifies Pc by sending an
acknowledgement. When Pc receives all
acknowledgements it rebroadcast the message and
when this last message is received the checkpoint is
done and the garbage-collection operation could be
performed.

4. FORMAL SPECIFICATION OF
CHECKPOINTING ALGORITHMS

To obtain the formal specification for the
checkpointing algorithms we considered that several
interconnected processes cooperates by message
passing for a long running finite, distributed
computation The processes can access a stable
storage, on which the checkpoints and message logs
are stored. The system architecture is depicted in
Figure 1, where each box stands for a LOTOS
process.

Figure 1.  The system architecture.

The Network process models the interconnection
network; it is in fact a buffer with a controllable
capacity. The network topology resides in the data
part, several topologies have been implemented: star,
ring, bi-directional ring, and full connectivity.
Messages are identified by a sender ID, a receiver ID,
a tag and a body. A message can be send only if the
network is not full. The Storage process models the
stable storage. The Proc process is the actual
application process, the core of the specification. The
Controller process is the decision center; it decides
when a message has to be sent and when a
checkpoint is to be started; it has two distinct
components, one that controls the distributed
application and one that controls the checkpointing
algorithm. The Proc and Controller processes model
the distributed application. A process can send /
receive an application message, perform an internal
computation, participate to the checkpoint algorithm,
fail and detect that another process has failed. Each

process terminates after a finite number of exchanged
messages. In the SNS algorithm, because of the sharp
separation between application and checkpointing,
we used a distinct LOTOS process for the
checkpointing part, while in the CL case there is a
single LOTOS process. Each of these components is
implemented as some finite state machines.

The way in which the broadcast is performed is
essential for an efficient checkpointing algorithm, so
we have used broadcast algorithms that are
constructed taking into account the network
topology. This way we reduced the number of
exchanged messages and simplified the specification.
If a failure does occur, the recovery mechanism
should be activated using a timeout technique.
Because there is no explicit time in actual LOTOS,
the timeout is modeled using a rendezvous. Another
available one replaces the affected process. The state
of the new process is read from the stable storage and
then the computation is resumed. If a process fails,
the others have to roll back to the previous recorded
state, before resuming the computation.

5. RESULTS

First the ideal distributed system / application has
been implemented, without any errors. Then the
checkpointing algorithm has been added. Finally, the
failure possibility and the recovery mechanism have
been introduced. This gradually specification growth
has lead from a system with tens of states to a system
with millions of states, hardly to analyze. This is why
the direct approach has been used only for simple
systems, the complex ones being analyzed using a
compositional approach (each system component has
been individually minimized, and then all these
intermediate results have been gathered).

The main analyzed cases are depicted in Table 1 and
some results are presented in Table 2. However,
more than 140 intermediate specifications have been
analyzed. From these we can say that the ring version
and the SNS algorithm have fewer states.

Table 1. Cases under study.

Ring Star
Distributed system, no
faults

Distributed system, no
faults

Distributed system, SNS Distributed system, SNS
Distributed system, CL Distributed system, CL
Distributed system, SNS,
faults, recovery

Distributed system, SNS,
faults, recovery

Distributed system, CL,
faults, recovery

Distributed system, CL,
faults, recovery

The use of LOTOS disabling operator ‘ [>‘ operator is
prohibitive, because it leads to a state explosions, that
can hardly be controlled. The smallest resulted graph
(for ring topology, without faults) has 2776 states and



12639 transitions (527/1428 after minimization). The
biggest resulted graph (for star topology, with
checkpoint) has 166761 states and 17100248
transitions.

Figure 2.  Number of states for star topology.

Table 2. Some results.

Case States Trans BF
Initial
Ring, ideal 2776 12639 4.55
Ring, with
checkpointing

13368 46927 3.51

Star, ideal 7449 16960 2.27
Star, with
checkpointing

30779 77334 2.56

Fully connected, ideal 588661 2857854 4.80
Ring, 4 processes,
period 3

21144 61057 2.89

Star, 4 processes,
period 3

27104 71859 2.65

Star, 4 processes,
period 8

43670 182718 4.18

Star, 8 processes,
period 3

500000 2500000 5.00

Minimised
Ring, ideal 527 1428 2.71
Ring, with
checkpointing

732 1418 1.94

Star, ideal 238 433 1.82
Star, with
checkpointing

532 899 1.69

Ring, 4 processes,
period 3

301 498 1.65

Star, 4 processes,
period 3

458 808 1.76

Star, 4 processes,
period 8

613 1018 1.66

The following properties has been verified using the
CADP toolbox:

• All graphs are deadlock free.
• All graphs are livelock free.
• Each process terminates.
• Each SEND operation has a corresponding

RECEIVE.

• There is no RECEIVE operation without a
corresponding SEND (the corresponding
predicate is shown below).

[(( not "SEND !0 !1 !SNDRCV !APP")* .
    "RECEIVE !1 !0 !SNDRCV !APP") |
    (( not "SEND !1 !2 !SNDRCV !APP")* .
       "RECEIVE !2 !1 !SNDRCV !APP") |
       (( not "SEND !2 !3 !SNDRCV !APP")* .
          "RECEIVE !3 !2 !SNDRCV !APP") |
          (( not "SEND !3 !0 !SNDRCV !APP")* .
            "RECEIVE !0 !3 !SNDRCV !APP")] false

Figure 3.  The predicate that check that "There is no
RECEIVE without a corresponding SEND".

• Safety and liveness of the checkpointing.
• Cut consistency.
• After a fault each process eventually

terminates.

6. CONCLUSIONS AND FUTURE WORK

We can say that CADP is a very useful toolbox,
comparing with other similar tools. It has several
components that allow the formal specification and
verification of distributed systems. It is available for
SOLARIS, LINUX and Windows platforms, its
portability being a great advantage. However, it
requires many resources (especially memory). This is
not a very big problem, because there is the
compositional approach and memory becomes
cheaper.

Formal specification is a promising issue for
checkpointing, the resulting software being more
reliable. However modeling faults and using dynamic
data determine a state explosion, but this is a
reasonable price paid.

This work will be continued by further refining the
LOTOS specifications and by focusing on other
interesting checkpointing algorithms and finally will
lead to a real implementation.
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