
Verifying Erlang/OTP Components in µCRL

Qiang Guo

Department of Computer Science,
The University of Sheffield,

Regent Court, 211 Portobello Street, S1 4DP, UK
Q.Guo@dcs.shef.ac.uk

Abstract. Erlang is a concurrent functional programming language with
explicit support for real-time and fault-tolerant distributed systems. Generic
components encapsulated as design patterns are provided by the Open
Telecom Platform (OTP) library. Although Erlang has many high-level
features, verification is still non-trivial. One (existing) approach is to per-
form an abstraction of an Erlang program into the process algebra µCRL,
upon which standard verification tools can be applied. In this paper we
extend this work and propose a model that supports the translation of an
OTP finite state machine design pattern into a µCRL specification. Then
a standard toolset such as CADP can be applied in order to check prop-
erties that should hold for the system under development. Two small
examples are presented, which experimentally show how the proposed
model assists in model checking Erlang OTP components in µCRL.

Key words: Erlang, OTP, process algebra, µCRL, Verification

1 Introduction

Model checking [8] has been widely used in system design and verification. The
advantage of using model checking based techniques for system verification is
that, when a fault is detected, model checker can generate a counter example
given as a trace. These traces are useful since they help the system designer to
understand the reasons that cause the occurrence of failures and provide clues
for fixing the problem.

Model checking can be applied in two ways. One way, in combination with
a model checker, is to use a formal specification language such as a process
algebra [15], to obtain a correct specification. The specification is then used to
develop an implementation in a programming language such as Erlang [1]. The
other way uses the program code as a starting point and abstracts it into a
form suitable for use by a model checker, and this requires an interpretation
mechanism to support the translation of the programming language into the
formal specification language used by the model checker.

Recently this second approach has been applied to the verification of Erlang
programs and OTP components [2,3,6,10]. Here the process algebra µCRL [13]
has been used as the formal language upon which verification is carried out. A

2 Qiang Guo

toolset, etomcrl, has been developed to automate the process of translation of an
Erlang program into a µCRL specification. The translation from Erlang to µCRL
is performed in two stages, where in the first, a source to source transformation
is applied, resulting in Erlang code that is optimised for the verification, but has
identical behaviour. Then second, this output is translated to µCRL.

Erlang/OTP software is usually written according to strict design patterns
that make extensive use of software components. Encapsulated in the extensive
OTP library are a variety of design patterns, each of which is intended to solve
a particular class of problem. Solutions to each such problem come in two parts.
The generic part is provided by OTP as a library module and the specific part
is implemented by the programmer in Erlang. Typically these specific callback
functions embody algorithmic features of the system, whilst the generic com-
ponents provide for fault tolerance, fault isolation and so forth. The etomcrl
translation tool currently produces translations of the callback modules of the
OTP generic servers and supervisors.

In addition to generic servers and supervisors, OTP provides further generic
components including finite state machines, event handlers, and applications.
These considerably simplify the building of systems. In this paper we extend the
above approach to develop a model that supports the translation of OTP finite
state machines (FSMs) into µCRL.

To do so, the Erlang state function in the FSM is translated into two parts
in µCRL, one of which defines a µCRL state-process that can be called or syn-
chronized by some other processes, while, the other consists of a series of µCRL
state functions. The set of sequences of actions defined in an Erlang state func-
tion are translated into a set of pre-defined action sets in µCRL, each of which
is uniquely indexed by an integer. A µCRL state-process starts by calling its
µCRL state function. The function returns an index number that determines
which pre-defined action set needs to be performed. we use a simple stack to
simulate the management of FSM states and data. In order to define the correct
translation we use techniques proposed in [16] which are needed to deal with the
presence of overlapping patterns in pattern matching.

The rest of this paper is organized as follows: Section 2 introduces the Erlang
programming language; Section 3 describes the process algebra µCRL; Section 4
reviews the related work for the translation of Erlang programs into µCRL; Sec-
tion 5 investigates the translation of Erlang FSM programs into µCRL; Section
6 evaluates the proposed model with two case studies; conclusions are finally
drawn in Section 7.

2 Erlang and OTP

The programming language Erlang [1] is a concurrent functional programming
language with explicit support for real-time and fault-tolerant distributed sys-
tems. Since being developed, it has been used to implement some substantial
business critical applications such as the Ericsson AXD 301 high capacity ATM
switch [4]. Erlang is available under an Open Source licence from Ericsson, and

Verifying Erlang/OTP Components in µCRL 3

its use has spread to a variety of sectors. Applications include TCP/IP pro-
gramming (HTTP, SSL, Email, Instant messaging, etc), web-servers, databases,
advanced call control services, banking, 3D-modelling.

Erlang is a functional programming language, and as such an Erlang program
consists of a set of modules, each of which define a number of functions. Functions
that are accessible from other modules need to be explicitly declared as export. A
function named f name in the module module and with arity N is often denoted
as module:f name/N.

Erlang is a concurrent programming language, and as such provides a light-
weight process model. Several concurrent processes can run in the same virtual
machine, each of which being called a node. Each process has a unique identifier
to address the process and a message queue to store the incoming messages.
Erlang has an asynchronous communication mechanism where any process can
send (using the ! operator) a message to any other process of which it happens
to know the process identifier. Sending is always possible and non-blocking; the
message arrives in the unbounded mailbox of the specified process. The latter
process can inspect its mailbox by the receive statement. A sequence of patterns
can be specified to read specific messages from the mailbox. When reading a
message, a process is suspended until a matching message arrives or timeout
occurs. A distributed system can be constructed by connecting a number of
virtual machines.

A unique feature of Erlang is the OTP architecture, which is designed to
support the construction of fault-tolerant systems containing soft real-time re-
quirements. Its use has been very successful since Erlang/OTP software is usually
written according to strict design patterns that make extensive use of software
components. Each design patterns solves a particular class of problem, and so-
lutions to each such problem come in two parts: the generic part is provided as
a library module and the specific part is implemented by the programmer. The
specific callback functions implement the necessary algorithm, and fault toler-
ance, fault isolation etc is provided by the generic component. The following
briefly reviews generic servers, supervisors and finite state machines - the three
key components which account for around 80% of OTP compliant code.

Generic servers and supervisors The Erlang/OTP supports a generic im-
plementation of a server by providing the gen server module which provides a
standard set of interface functions for synchronous and asynchronous communi-
cation, debugging support, error and timeout handling, and other administra-
tive tasks. A generic server is implemented by providing a callback module where
(callback) functions are defined specifying the concrete actions of the server such
as server state handling and response to messages. When a client wants to syn-
chronously communicate with the server, it calls the standard gen server:call
function with a certain message as an argument. If an asynchronous communi-
cation is required, the gen server:cast is invoked where no response is expected
after a request is sent to the server. A terminate function is also defined in

4 Qiang Guo

the call back module. This function is called by the server when it is about to
terminate, which allows the server to do any necessary cleaning up.

When developing concurrent and distributed systems, a commonly accepted
assumption is that any Erlang process may unexpectedly terminate due to some
failures. Erlang/OTP supports fault-tolerance by using the supervision tree,
which is a structure where the processes in the internal nodes (supervisors)
monitor the processes in the external leaves (children). A supervisor is a process
that starts a number of child processes, monitors them, handles termination
and stops them on request. The children themselves can also be supervisors,
supervising their children in turn.

Finite state machines The Erlang/OTP architecture supports the implemen-
tation of finite state machines by providing the gen fsm module, and these are
used extensively in a variety of contexts.

A (deterministic) FSM M can be described as a set of relations of the form
State(S)×Event(E) → (Action(A), State(S)) where S, E and A are finite and
nonempty sets of states, events and actions respectively. If M is in state s ∈ S
and receives event e ∈ E, action a ∈ A is performed, moving M to a state s′ ∈ S.
For an implementation using the gen fsm module, gen fsm is started by calling
start link(Code):

start link(Code) →
gen fsm : start link({local, fsm name},

callback module name, Code, []).

{local, fsm name} implies that the FSM is locally registered as fsm name; callback
module name is the name of the callback module where the callback functions
are located; Code is a term that is passed to the callback function init; the last
argument, [], is a list of options. If the registration succeeds, the new gen fsm
process calls the callback function callback module name:init(Code). This func-
tion is expected to return {ok, StateName, StateData} where StateName saves
the name of initial state and StateData the corresponding state data.

The state transition rules are written as a number of state functions that
conform to the following convention:

StateName(Event, StateData) →
... code for actions ...;

{next state,StateName′,StateData′,Timer}.

Having performed all pre-defined actions, the state function returns a tu-
ple that contains the name of the next state, StateName′, and an updated
state data, StateData′. StateName′ is updated as the new current state by the
gen fsm module. Timer is an optional element, if it is set to a value, a timer is
instantiated, and a timeout event will be generated when the time-up occurs.

The function send event is defined to trigger a transition. When send event
is executed, the gen fsm module automatically calls the current state function.

Verifying Erlang/OTP Components in µCRL 5

Fig. 1. FSM - door with code lock.

-module(fsm door). locked({button, Password}, Code) →
-export([start link/1, button/1, init/ 1]). case Password of
-export([locked/2, open/ 2]). Code →

action:do unlock(),
start link(Code) → {next state, open, Code};

gen fsm:start link(local, fsm door, Wrong →
fsm door, Code,[]). action:display message(),

{next state, locked, Code}.
init(Code) →

{ok, locked, Code}. open({button, Password}, Code) →
action:do lock(),

button(Password) → {next state, locked,Code};
gen fsm:send event(fsm door,

{button, Password}).

Fig. 2. The Erlang code for a door with code lock.

Example - a door with code lock The initial design for a door with a code
lock is illustrated in Figure 1, and consists of two states, locked and open, and
a system code for opening the door. Initially, the door is set to locked while the
code is set to a word. The door switches between states, driven by an external
event.

The Erlang/OTP implementation of the system is shown in Figure 2 where
the function button is defined to simulate the receiving of a password. The action
send event triggers a state transition where a state function is executed, in this
example either locked or open. A password generated from an external action
is evaluated, and if the door is in the state locked and the received password is
correct, the door will be opened through action send event. Otherwise, if the
password is not correct, the door remains locked. When the door is in the state
open and action send event is performed, the door will be locked, regardless of
the password received.

6 Qiang Guo

3 The process algebra µCRL

The process algebra µCRL (micro Common Representation Language) [13] is an
extension of the process algebra ACP [14], where equational abstract data types
have been integrated into the process specification to enable the specification of
both data and process behaviour (in a way similar to LOTOS).

A µCRL specification comprises two parts: the data types and the processes.
Processes are declared using the keyword proc, and contains actions representing
atomic events that can be performed. These actions must be explicitly declared
using the keyword act. Data types used in µCRL are specified as the standard
abstract data types, using sorts, functions and axioms. Sorts are declared using
the keyword sort, functions are declared using the keywords func and map.
Axioms are declared using the keyword rew, referring to the possibility to use
rewriting technology for the evaluation of terms.

A number of process-algebraic operators are defined in µCRL, these being:
sequential composition (·), non-deterministic choice (+), parallelism (‖) and
communication (|), encapsulation (∂), hiding (τ), renaming (ρ) and recursive
declarations. A conditional expression true C condition B false allows data ele-
ments to influence the flow of control in a process, and the operator (

∑
) provides

the possibly infinite choice over some sorts.
In µCRL, parallel processes communicate via the synchronization of actions.

The communication in a process definition is described by its communication
specification, denoted by the keyword comm. This describes which actions may
synchronize on the level of the labels of actions. For example, in comm in|out,
each action in(t1, ..., tk) can communicate with out(t′1, ..., t

′
k) provided k = m

and t1, t′1 denote the same element for i = 1, ..., k.
As an example, consider the specification of a stack in µCRL given in Figure

3. The stack, initially defined in [3] for coping with side effect functions, de-
fines six actions, these being rcallvalue, wcallresult, push callstack, rcallresult,
wcallvalue and pop callstack; rcallvalue | wcallresult = push callstack and
rcallresult | wcallvalue = pop callstack. The action rcallvalue pushes a value
to stack, while, the action rcallresult pops up the top value from stack.

An interleave relation with the process CallStack needs to be defined for
those processes that will exchange data with the stack. To save a V alue, a
process needs to perform wcallresult(V alue) first, which leads to the synchro-
nization between this process and process CallStack. The action sum(V alue :
Term, rcallresult(V alue)) is consequently performed, which pushes the value
into the stack. To read a value, a process needs to perform sum(V alue : Term,
rcallresult(V alue)) where wcallvalue is performed to pop up the top value from
stack and assign it to V alue.

4 Related work

As discussed in the introduction, Benac Earle et al. [2,3,6,10] have studied the
translation of Erlang programs into µCRL and developed a toolset, etomcrl, for
automating the process of translation.

Verifying Erlang/OTP Components in µCRL 7

sort is empty(push(T1,S1)) = F
TermStack pop(push(T1,S1)) = S1

func top(push(T1,S1)) = T1

empty: → TermStack eq(empty,S2) = is empty(S2)
push: Term # TermStack → eq(push(T1,S1),S2)

TermStack = and(is top(T1,S2),eq(S1,pop(S2)))
map

is top: Term # TermStack → Bool act
is empty: TermStack → Bool rcallvalue,wcallresult,push callstack: Term
pop: TermStack → TermStack rcallresult,wcallvalue,pop callstack: Term
top: TermStack → Term comm
eq: TermStack # TermStack → Bool rcallvalue | wcallresult = push callstack

var rcallresult | wcallvalue = pop callstack
S1, S2: TermStack proc
T1, T2: Term CallStack(S TermStack) =

rew sum(Value:Term,rcallvalue(Value).
is top(T1,empty) = F CallStack(push(Value,S))) +
is top(T1,push(T2,S1))= eq(T1,T2) (delta C is empty(S)B wcallvalue(top(S)).
is empty(empty) = T CallStack(pop(S)))

Fig. 3. The syntax of µCRL stack.

4.1 Translating Erlang programs into µCRL

The translation from Erlang to µCRL is performed in two stages. First, a source
to source transformation is applied, resulting in Erlang code that is optimized
for the verification, but has identical behaviour. Second, this code is translated
to µCRL.

The actual translation is quite involved due to particular language features
in Erlang. For example, Erlang makes use of higher-order functions, whereas
µCRL is 1st order; Erlang is dynamically typed, but µCRL is statically typed;
in Erlang communication can take place in a computation, in µCRL it cannot.
However, µCRL is sufficiently close that such a translation is feasible, and model
checking on it computationally tractable even if the translation is involved.

Because Erlang is dynamically typed it is necessary to define in µCRL a data
type Term where all data types defined in Erlang are embedded. The translation
of the Erlang data types to µCRL is then basically a syntactic conversion of
constructors as shown in Figure 4.

Atoms in Erlang are translated to µCRL constructors; true and false rep-
resent the Erlang booleans; int is defined for integers; nil for the empty list;
cons for a list with an element (the head) and a rest (the tail); tuplenil for
a tuple with one element; tuple for a tuple with more than one element; and
pid for process identifiers. For example, a list [E1, E2, ..., En] is translated to
µCRL as cons(E1, cons(E2, cons(..., cons(En, nil)))). A tuple {E1, E2, ..., En} is
translated to µCRL as tuple(E1, tuple(E2, ..., tuplenil(En))).

8 Qiang Guo

sort
Term

func
pid: Natural → Term
int: Natural → Term
nil: → Term
cons: Term # Term → Term
tuplenil: Term → Term
tuple: Term # Term → Term
true: → Term
false: → Term

Fig. 4. The translation scheme for Erlang data types.

Variables in Erlang are mapped directly to variables in µCRL. Operators
are also translated directly, specified in a µCRL library. For example, A + B
is mapped to mcrl plus(A,B), where mcrl plus(A,B) = int(plus(term to nat(A),
term to nat(B))). Higher-order functions in an Erlang programs are flattened
into first-order alternatives. These first-order alternatives are then translated
into rewrite rules.

Program transformation is defined to cope with side-effect functions. With a
source-to-source transformation, a function with side-effects is either determined
as a pure computation or a call to another function with side-effects. Stacks are
defined in µCRL where push and pop operations are defined as communication
actions. The value of a pure computation is pushed into a stack and is popped
when it is called by the function.

Communication between two Erlang processes, which can be asynchronous,
is translated via defining two process algebra processes, one of which is a buffer,
while the other implements the logic. The synchronous communication is mod-
elled by the synchronizing actions of process algebra. One action pair is defined
to synchronize the sender with the buffer of the receiver, while another action
pair to synchronize the active receive in the logic part with the buffer. In this
way the asynchronous communication and the Erlang message queue is simulated
directly in the µCRL abstraction.

4.2 Overlapping in pattern matching

Erlang makes extensive use of pattern matching in its function definitions. The
toolset etomcrl translates pattern matching in a way where overlapping pat-
terns are not considered. This might induce faults in the µCRL specification in
our translation, and we need to use techniques to cope with the occurrence of
overlapping patterns.

In Erlang, evaluation of pattern matching works from top to bottom and from
left to right. When the first pattern is matched, evaluation terminates after the
corresponding clauses are executed. However, the µCRL toolset instantiator does

Verifying Erlang/OTP Components in µCRL 9

not evaluate rewriting rules in a fixed order. If there exists overlapping between
patterns, the problem of overlapping in pattern matching occurs, which could
lead to the system being represented by a faulty model.

The problem of overlapping in pattern matching was studied in [16]. An
approach was proposed where an Erlang program with overlapping patterns
is transformed into a counterpart program without overlapping patterns. The
rewriting operation rewrites all pattern matching clauses in the original code
into some calling functions. A calling function is activated by a guard that is
determined by the function patterns match. Function patterns match takes the
predicate of the pattern matching clauses and one pattern as arguments and is
true iff the predicate matches the pattern.

A data structure called the Structure Splitting Tree (SST) is defined and
applied for pattern evaluation, and its use guarantees that no overlapping pat-
terns will be introduced to the transformed program. The evaluation of an SST
is equivalent to the searching of nodes in a tree, and thus is of linear complexity.

After an Erlang program has been translated into a µCRL specification, one
can check the system properties by using some existing tools such as CADP [7].
The toolset CADP provides a number of tools for system behaviour checking. It
includes an interactive graphical simulator, a tool for the visualization of labelled
transition systems (LTSs), several tools for computing bisimulations and a model
checker.

Properties one wishes to check with the CADP model checker are formalized
in the regular alternation-free µ-calculus (a fragment of the modal µ-calculus),
a first-order logic with modalities, and least and greatest fixed point operators
[9]. Automation for property checking can be achieved by using the Script Veri-
fication Language (SVL). SVL provides a high-level interface to all CADP tools,
which enables an easy description and execution of complex performance studies.
We very briefly illustrate the approach in Section 6 where a few simple properties
are defined for our running examples.

5 Translating Erlang/OTP FSMs into µCRL

This section investigates the translation of the OTP FSM design pattern into
µCRL.

5.1 Simulating state management

When translating an Erlang FSM program into µCRL, the first thing one needs
to consider is how to maintain the FSM states and data. In particular, a scheme
needs to be defined to store and update the current state and the state data
in µCRL. Normally a global variable would be used to perform such a task,
however, µCRL does not support the use of global variables. Thus we use a (one
place) stack for simulating the management of states and data as it has well been
defined in µCRL. Alternatively, one might define some other mechanics such as
data buffer for state and datum management.

10 Qiang Guo

act fsm change state =
s event, r event, send event: Term sum(Cmd:Term,

r event(Cmd).read(Cmd))
comm

s event | r event = send event fsm init(S:Term,Data:Term) =
fsm next state(S,Data)

proc
write(Val:Term) = fsm next state(S:Term,Data:Term) =

wcallresult (Val) wcallresult(tuple(S,tuplenil(Data))).
sum(Cmd:Term,r command(Cmd).

read(Cmd:Term)= s event(Cmd).fsm change state)
sum(Val:Term, recallresult(Val).

fsm S1(Cmd,element (2,Val)) fsm S1(Cmd:Term, Data:Term) =
C is s S1(element(1,Val)) B pre defined actions ...

fsm S2(Cmd,element (2,Val)) fsm next state(nex State, new data)
C is s S2(element(1,Val)) B

... fsm Sn(Cmd:Term, Data:Term) =
fsm Sn(Cmd,element(2,Val)) pre defined actions ...

C is s Sn(element(1,Val))B fsm next state(next State,new data)
delta)

Fig. 5. Rules for translating state processes.

The translation rules are defined in Figure 5, where three actions, s event,
r event and send event, are defined respectively. A command, generated from
an external action is sent out to some other processes by action s event. This
command is received through action r event and is used for further processing;
s event : r event = send event.

An Erlang FSM state is assigned a µCRL state name (“s ” plus the state
name) and a state process (“fsm ” plus the state name). For example, state
S1 is given a µCRL state name s S1 and a state process fsm S1. The current
state and the state data are coded in a tuple with the form of tuple(state,
tuplenil(state data)) and saved in the stack. The stack used for managing states
and data is defined in a way where only one element can be read/written. This
ensures that only one current state is available.

The process write is defined to push the current state and the state data
onto the stack while a process called read is used to pop the current state and
the state data from the stack. The process fsm init(State:Term, Data:Term) is
defined to initially push tuple(Init State, tuplenil(State Data)) onto the stack.
The process fsm next state(State:Term, Data:Term) updates the current state
and the state data in the stack.

The process fsm next state will receive commands through the action r
command. The action r command communicates with the action s command
which is externally performed. When a command is received, the process fsm
state change, guarded by the action s event, is enabled. It passes the command

Verifying Erlang/OTP Components in µCRL 11

to the process read where the current state and the state data are read from
stack. The current state determines which state process is about to be activated.

A state process fsm Si starts by calling its µCRL state function Si(Command :
Term, Data : Term). Function Si returns a tuple with the form of tuple(next state,
tuple(new data, tuplenil(index))) where next state shows the next state; new data
the updated state data. The index saves an index number for the sequence of
actions to be selected. Rules for the translation of Erlang state functions are
discussed in Section 5.2.

Having performed all actions, a state process ends up by calling the pro-
cess fsm next state(next state, new data), updating the current state and the
state data in stack. The process CommandList(CmdList : Term) is defined to
simulate the behaviour of the external actions. A list of commands is initial-
ized in CmdList, where commands in the list define the logic for verification.
The process fsm next state will synchronize with CommandList through the ac-
tions r command and s command, r command | s command = cmd. Each time,
fsm next state reads the head of CmdList, and communication terminates when
CmdList is empty.

5.2 Translating the state functions

An Erlang state function may consist a list of branches, each of which defines a
sequence of actions to be performed. A branch is usually guarded by a pattern,
and only when the function arguments match the pattern of its guards, can a
branch be selected for execution. Thus in the door locking example above, the
state function locked defines a number of actions (do unlock, display message)
which are selected depending on the value of the password inputted.

Si(N) →
case N of Si(N) when N is of P1 →

P1 → actions(1);
actions(1); Si(N) when N is of P2 →

P2 → actions(2);
actions(2); ...

... Si(N) when N is of Pn →
Pn → actions(n).

actions(n).
A: Matching. B: Guards.

Fig. 6. Guarded Erlang programs.

In general there are two ways in which such pattern matching can be defined,
and Figure 6 illustrates an example where the program in Figure 6-A is writ-
ten using pattern matching, while, in Figure 6-B, with a set of guards. When

12 Qiang Guo

N matches Pi, the action sequence action(i) is enabled. In general, overlap-
ping might exist between patterns Pi and Pj , and only the first matched action
sequence action(i) will be performed.

The translation of an Erlang state function into µCRL starts by splitting
the function into two parts, one of which defines a series of µCRL state func-
tions while the other a set of action sequences. Every set of action sequences
is translated into a pre-defined action set in µCRL. According to the order
that patterns and guards occur in the function, the pre-defined action sets are
uniquely indexed with a set of integers. For example, in Figure 6, the set of
action sequences {actions(1), ..., actions(n)} is indexed with an integer set {1,
..., n} where integer i identifies the pre-defined action set actions(i).

The selection of a µCRL state function for execution is determined by the
pattern of function arguments. By the end, the function returns a tuple with the
form of tuple(next state, tuple(new data, tuplenil(index))) where next state
returns the next state, new data the updated state data and index the index of
the action sequence that needs to be performed.

To eliminate any potential overlapping between patterns, techniques pro-
posed in [16] are applied. Specifically, pattern matching clauses in the program
are replaced by a series of case functions. These case functions are guarded by the
patterns match function that takes the predicate of pattern matching clauses
and one pattern as arguments, then if the predicate matches the pattern, function
patterns match returns true; otherwise, false, and this eliminates the overlapping
between patterns and ensures that the index returned by the µCRL state func-
tion is deterministic and unique. Figure 7 illustrates an example for the state
functions shown in Figure 6.

rew proc
Si(Args) = fsm Si(Cmd:Term,Data:Term) =
Si case 0(patterns match(Args,P1),Args) actions(1).

Si case 0(true,Args) = fsm next state(element(1,Si(Cmd,Data)),
tuple(Sj ,tuple(Data,tuplenil(1))) element(2,Si(Cmd,Data)))

Si case 0(false,Args) = C element(3,Si(Cmd,Data))=1 B
Si case 1(patterns match(Args,P2),Args) (actions(2).

Si case 1(true,Args) = fsm next state(element(1,Si(Cmd,
tuple(Sk,tuple(Data,tuplenil(2))) Data)),element(2,Si(Cmd,Data)))
... C element(3,Si(Cmd,Data))=2 B

Si case (n-1)(true,Args) = ...
tuple(Su,tuple(Data,tuplenil(n-1))) (actions(n).

Si case (n-1)(false,Args) = fsm next state(element(1,Si(Cmd,
Si case n(patterns match(Args,Pn),Args) Data)),element(2,Si(Cmd,Data)))

Si case n(true,Args) = C element(3,Si(Cmd,Data))=n B
tuple(Sv,tuple(Data,tuplenil(n))) delta)...)

Fig. 7. Translation rules for Erlang state function.

Verifying Erlang/OTP Components in µCRL 13

When the state process fsm Si starts, it first calls the µCRL state function
Si(Cmd,Data). Si returns an index number i that determines which action
sequence action(i) is about to be performed. The process fsm Si ends up by
calling process fsm next state, updating the current state and the state data in
the stack.

6 Case studies

To illustrate the approach we present two case studies, one of which is a door
with code lock system, while, the other a coffee machine system. As discussed
in Section 2, gen fsm:send event is often called through some external actions.
Therefore, before starting a simulation process, a sequence of actions needs to
be initialized in the process CommandList to simulate the external behaviour.

6.1 A door with code lock

Consider the example given in Section 2. In the simulation, the system code is
set to abc. The function button is defined to input a password.

Following the rules defined in Section 5, the OTP component is translated
into µCRL, and the resultant µCRL specification is listed in the appendix. A
sequence of external actions [{abb}, {abc}] is initialized in the µCRL specification,
stating that two passwords, abb and abc, are consecutively inputted. The LTSs
derived from CADP are shown in Figure 8 where Figure 8-A lists all actions,
while, Figure 8-B hides the actions push callstack and pop callstack as internal
actions.

Fig. 8. LTSs derived from the door with code lock system.

14 Qiang Guo

From the LTSs it can be seen that, initially, the system pushes the state
s locked and the code abc onto the stack. This simulates the start link function
in the Erlang program where the initial state and the system code are set to
s locked and abc respectively. When the action send event is performed, the
state s locked, saved in the stack, is read out. The state s locked determines
process fsm locked is about to be activated. This simulates the process that the
current state function is executed when gen fsm : send event is invoked. Since
the first password is not correct, abb 6= abc, a warning message is given and
the door remains locked. After abc is received, the door is opened and the state
s open is pushed onto the stack.

We can then use a toolset such as CADP to verifying design properties of
the system. For instance, to check “without receiving a correct password “abc”,
the door cannot be opened”, the property can be formulated as:

[not (“cmd(abc)”)* . “do unlock”] false,

Another property one might wish to check can be formulated as:

<true*. “cmd(abb)” . (“pop calls(tuple(s locked,tuplenil (tuplenil(abc))))”)* .

“warning message”> true,

stating that when an incorrect password “abb” is received and the current state
is s lokced, the action warning message will be fairly performed. Thus once we
have a specification in µCRL, applying model-checking approaches is standard.

However, the example given in this section is simple and the system is com-
paratively easy to be verified. In the next sub-section, a more complicated system
is designed to further evaluate the proposed model.

6.2 Coffee machine

A coffee machine has three states, these being, selection, payment and remove.
State selection allows a buyer to choose the type of drink, while, state payment
displays the price of a selected drink and requires payment for the drink; after
enough coins being paid, the machine goes to the state remove where the drink
is prepared and the change is returned.

Four types of drink are sold: tea, cappuccino, americano and espresso. A
buyer can select a type of drink at a machine, pays for it and takes a cup after
the drink is ready. A buyer can also cancel the current transaction where the
pre-paid coins will be returned.

Figure 9 illustrates the FSM design of the coffee machine. The program
initially sets the current state to selection.

The OTP component is then translated into µCRL, and four actions dis-
play price, pay coin, return coin and remove cup are defined in the µCRL spec-
ification where display price displays the price for a selected drink; pay coin
requires a buyer to pay coins for the drink; return coin returns the change if
more coins have been paid for the drink, or gives back the pre-paid coins if the
transaction is cancelled.

Verifying Erlang/OTP Components in µCRL 15

Fig. 9. FSM - coffee machine.

Before verifying the system’s properties, a set of verification tasks is required,
each of which consists of a set of commands to simulates the process on buying
a drink. Two sequences of external actions are constructed. The first simulates
“selecting cappuccino (£5 for a cup), paying £4 and then trying to take the
drink away”, while, the second simulates “selecting tea (£4 for a cup), paying
£5 and then taking the drink away”. The sequences are coded in the lists
[{selection, cappuccino, 5}, {pay, 4}, {cup remove}] and [{selection, tea, 4},
{pay, 5}, {cup remove}]. They are then initialized in the process CommandList
respectively.

The LTSs, derived from the CADP, are shown in Figure 10. Figure 10-A
shows that the system initially pushes s selection onto the stack. Once cappuccino
is selected, its price is displayed. When a buyer pays less coins (£4) than the
price (£5), the machine stays in payment, asking for the rest of payment (£1).
Figure 10-B shows that, after tea (£4 for a cup) is selected and more coins (£5)
are paid, the machine will prepare the drink and returns the change (£1). When
the drink is taken away, the machine moves back to selection.

System properties can then be verified by the CADP model checker. For
example, to check the property “After cappuccino is selected, its price will be
displayed.”, the property can be formulated as:

[true*. “cmd(tuple(selection,tuple(cappuccino,tuplenil (5))))” . (not “display price(5)”)*]

<true* . “display price(5)”> true

Similarly, to check the properties “When cappuccino is selected and £4 has been
paid, if the rest of payment £1 is not paid, the drink cannot be taken away.”,
and “When tea is selected and £5 has been paid, before the drink being taken
away, change must be returned.”, we formulated them as (respectively):

16 Qiang Guo

Fig. 10. LTSs derived from the coffee machine system.

[true* . (‘cmd(tuple(selection,tuple(cappuccino,tuplenil (5)))) . *’ and ‘cmd(tuple(pay,

tuplenil(4))). *’). (not “pay coin(1)”)* . “cmd(tuplenil(cup removed))”] false

[true* . (‘cmd(tuple(selection,tuple(tea,tuplenil(4)))) . *’ and ‘cmd(tuple(pay,

tuplenil(5))). *’). (not “return coin(1)”)* . “cmd(tuplenil(cup removed))”] false

We applied the translation approach to a faulty implementation to evaluate
the model’s capability for fault detection. In stead of using payment ≥ price,
the faulty Erlang program implements the logic payment > price for selling a
drink. The faulty Erlang program is then translated into µCRL.

A sequence of actions, [{selection, cappuccino, 5}, {pay, 5}, {cup remove}] is
constructed to simulate the external behaviour of “paying exactly £5 for a cup

Verifying Erlang/OTP Components in µCRL 17

of cappuccino (£5 for a cup)”. The LTS derived from the CADP toolset is shown
in Figure 11. It can be seen the machine requires additional £0 for the drink,
even though enough money has been paid.

Fig. 11. LTSs derived from the faulty Erlang program.

We then checked the derived model against the property:

[“cmd(tuple(selection,tuple(cappuccino,tuplenil(5))))”* . “cmd(tuple(pay,tuplenil(5)))”* .

(not “remove cup”)*] <true* . “remove cup”> true

stating that, when cappuccino is selected and after £5 has been paid, the drink
will be prepared. Using this property the CADP model checker can correctly
distinguish the correct and faulty implementations based upon the design we
wish to check against.

7 Conclusions and future work

In this paper we have extended work on model checking Erlang in µCRL. The
principal aim of the work is to define rules that will translate Erlang/OTP
programs (assumed to be correctly implemented) into a µCRL specification, and
then to verify properties that the system should hold with standard toolsets such
as CADP. We have extended previous work by investigated the model checking
of Erlang/OTP Finite State Machine components in the process algebra µCRL.
Specifically, a model was proposed to support the translation of an Erlang FSM
design pattern into a µCRL specification, where a stack is defined in µCRL to
simulate the management of the FSM states and the up-to-date state data.

The particular challenge is not the writing of a FSM in a process algebra,
which is, of course, trivial, but the correct translation of how Erlang treats and

18 Qiang Guo

defines FSMs, and the parameters with which it can be invoked. Furthermore, the
translation needs to be faithful to the translation of other OTP components, that
is, maintain the same design philosophy, and specifically the level of abstraction
of the mapping from Erlang to µCRL.

Here, the state function defined in the Erlang FSM is translated into two
parts in µCRL, one of which defines a µCRL state-process that can be called
or synchronised by some other µCRL processes, while, the other defines a series
of µCRL state functions determined by the patterns defined in the Erlang state
function. A sequence of actions defined in an Erlang state function and guarded
by a pattern is translated into a pre-defined action set in µCRL indexed with
a unique integer number. A µCRL state-process will receive an index number
from a µCRL state function that determines which pre-defined action set will
be triggered.

Two small examples illustrate the proposed model, one of which looked at a
door with code lock system while the other studied a coffee machine system. Both
systems were modelled by Erlang/OTP gen fsm design pattern first, and then
translated into a µCRL specification. By using a model checker such as CADP,
properties can be verified which represent an abstraction over the original Erlang
code.

The algorithm presented performs an abstraction of the Erlang code, and
is currently being implemented and integrated into the etomcrl toolset so that
complex OTP designs involving generic servers, FSMs etc can be translated.
There are a number of issues that we have not had space to discuss here. One
is correctness of the translation, which is involved as it depends on verification
against a semantics of Erlang. Such issues of correctness of the approach are
discussed in [5]. The other issue is that the model discussed in this paper does
not define rules for the translation of timeout events. However, in some real
applications, timeout events in a FSM play a significant role in the OTP design,
and there are two approaches to extending the work we have presented here.
The first is to use a timed extension to µCRL (which exist, but have limited
tool support), the second is to incorporate explicit tick events in the untimed
µCRL. We have recently experimented successfully with the second approach,
and again the translation produces tractable µCRL specifications.

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Research
Council (EPSRC) grant EP/C525000/1. We would like to thank the developers
of the tool sets of µCRL and CADP for permitting the use of tools for system
verification. Thanks also go to my supervisor, John Derrick, for his help with
this work.

References

1. J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Program-
ming in Erlang. Prentice-Hall, second edition, 1996.

Verifying Erlang/OTP Components in µCRL 19

2. T. Arts, C. Benac Earle, and J. Derrick. Verifying Erlang code: a resource locker
case-study. In Lars-Henrik Eriksson and Peter Alexander Lindsay, editors, In Proc.
Formal Methods Europe: Getting IT Right, Copenhagen, Denmark, volume 2391 of
LNCS, pages 184–203. Springer-Verlag, July 2002.

3. T. Arts, C. Benac Earle, and Juan José Sánchez Penas. Translating Erlang to
µCRL. Proceedings of the Fourth International Conference on Application of Con-
currency to System Design (ACSD’04), pages 135–144, 2004.

4. J. Blau, J. Rooth, J. Axell, F. Hellstrand, M. Buhrgard, T. Westin, and G. Wick-
lund. AXD 301: A new generation ATM switching system. Computer Networks,
31:559–582, 1999.

5. C. Benac Earle. Model check the interaction of Erlang components. PhD thesis,
The University of Kent, Canterbury, Department of Computer Science, 2006.

6. Lars-Ake Fredlund C. Benac Earle and J. Derrick. Verifying fault-tolerant Erlang
programs. In K. Sagonas and J. Armstrong, editors, Proceedings of ACM SigPlan
Erlang 2005 Workshop, pages 26–34. ACM Press, 2005.

7. CADP. http://www.inrialpes.fr/vasy/cadp/.
8. E. Clarke, O. Grumberg, and D. Long. Model Checking. MIT Press, 1999.
9. D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, 1983.

10. C. Benac Earle and Lars-Ake Fredlund. Verification of Language Based Fault-
Tolerance. In EUROCAST, pages 140–149, 2005.

11. F. Huch. Verification of Erlang programs using abstract interpretation and model
checking. ACM SIGPLAN Notices, 34(9):261–272, 1999.

12. Lars-Ake Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G. Chugunov. A
verification tool for Erlang. International Journal on Software Tools for Technology
Transfer., 4:405–420, 2003.

13. J. F. Groote and A.Ponse. The syntax and sematics of µCRL. In Algebra of
Communicating Processes 1994, Workshop in Computing, pages 26–62, 1995.

14. J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and conditions.
Report P9008, University of Amsterdam, 1990.

15. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge University Press,
1990.

16. Q. Guo and J. Derrick. Eliminating overlapping of pattern matching when verifying
Erlang programs in µCRL. In the 12th International Erlang User Conference
(EUC‘06), Stockholm, Sweden, 2006.

Appendix: The µCRL specification for code lock door

sort
Term

func
s locked, s open, abc, abb: -> Term

act
s event, r event, send event, s command, r command, cmd: Term
do lock, do unlock, warning message

comm
s event | r event = send event

20 Qiang Guo

s command | r command = cmd

map
patterns matching: Term # Term -> Term
locked: Term # Term -> Term
open: Term # Term -> Term
locked case 0 0: Term # Term # Term -> Term
locked case 0 1: Term # Term # Term -> Term

var
Command, LoopData: Term
Pattern1, Pattern2: Term

rew
locked(Command, LoopData) =

locked case 0 0(patterns matching(Command, element(int (1),LoopData)),
Command, LoopData)

locked case 0 0(true, Command, LoopData) =
tuple(s open, tuple(LoopData, tuplenil(tuplenil(int(1)))))

locked case 0 0(false, Command, LoopData) =
locked case 0 1(patterns matching(Command, do not care), Command,

LoopData)
locked case 0 1(true, Command, LoopData) =

tuple(s locked, tuple(LoopData,tuplenil(tuplenil(int(2)))))
open(Command, LoopData) =

tuple(s locked, tuple(LoopData,tuplenil(tuplenil(int(1)))))
patterns matching(Pattern1, Pattern2) = equal (Pattern1,Pattern2)

proc
write(Val:Term) =

wcallresult(Val)

read(Command:Term) =
sum(Val:Term, rcallresult(Val).
(fsm locked(Command,element(int(2),Val))

C is s locked(element(int(1),Val)) B
(fsm open(Command,element(int(2),Val))

Cis s open(element(int(1),Val)) B delta)))
fsm locked(Command:Term,LoopData:Term) =

(do unlock.
fsm next state(element(int(1),locked(Command,LoopData)),

element(int(2),locked (Command,LoopData))))
Cterm to bool(equal(element(int(1),element(int(3),

locked(Command,LoopData))),int(1)))B
(warning message.

Verifying Erlang/OTP Components in µCRL 21

fsm next state(element(int (1),locked(Command,LoopData)),
element(int (2),locked(Command,LoopData)))

C term to bool(equal (element(int(1),element(int(3),
locked (Command,LoopData))),int(2)))

B delta)
fsm open(Command:Term,LoopData:Term) =

do lock.
fsm next state(element(int(1),open(Command,LoopData)),

element(int(2),open (Command,LoopData)))
C term to bool(equal(element(int(1),element (int(3),

open(Command,LoopData))),int(1))) B delta
fsm change state =

sum(Command:Term,r event(Command).read(Command))

fsm init(S:Term, LoopData:Term) =
fsm next state(S,LoopData)

fsm next state(S:Term, LoopData:Term) =
wcallresult(tuple(S,tuplenil(LoopData))).
sum(Command:Term, r command(Command).

s event(Command).fsm change state)
fsm command(Command:Term, CmdSet:Term) =

s command(hd(CmdSet)).
fsm command(tl(CmdSet), CmdSet)

C is nil(Command) B
s command(hd(Command)).fsm command(tl(Command),

CmdSet)
init

encap({s command,r command},fsm command(nil,cons(abb, cons(abc,
nil))) ||

hide({push callstack,pop callstack},
encap (rcallvalue,wcallvalue,rcallresult,wcallresult,s event,

r event,
CallStack(empty) || fsm init(s locked, tuplenil(abc))||

fsm change state)))

	Verifying Erlang/OTP Components in CRL
	Qiang Guo
	Introduction
	Erlang and OTP
	Generic servers and supervisors
	Finite state machines
	Example - a door with code lock

	The process algebra CRL
	Related work
	Translating Erlang programs into CRL
	Overlapping in pattern matching

	Translating Erlang/OTP FSMs into CRL
	Simulating state management
	Translating the state functions

	Case studies
	A door with code lock
	Coffee machine

	Conclusions and future work

