
To appear in EPTCS.

Behavioural Verification of Distributed Components

Ludovic Henrio and Eric Madelaine
Inria Sophia-Antipolis-I3S-CNRS-University of Nice Sophia-Antipolis

ludovic.henrio@cnrs.fr,eric.madelaine@inria.fr

This paper presents a brief overview of our efforts in the behavioural specification and verification of distributed component
systems [1, 2, 4, 5]. Our objective in this work is to provide tools to help the programmer specify the behaviour of his/her
components, generate a model, and check the correctness of his/her application.

1 Introduction: The Grid Component Model (GCM)

Component models provide a structured programming paradigm, and ensure a very good re-usability of programs. Indeed in
component applications, dependencies are defined together with provided functionalities by the means of provided/required
ports; this improves the program re-usability. Some component models and their implementations additionally keep a trace at
runtime of the component structure and of their dependencies. Knowing how components are composed and being able to mod-
ify this composition at runtime provides great adaptation capabilities: the applications can adapt to evolution in the execution
environment by changing the components taking part in the composition or their dependencies. GCM [3] has been proposed
in the CoreGrid Network of Excellence, it is an extension of the Fractal component model [6] to better address large-scale
distributed computing. GCM builds above Fractal and thus inherits from fractal: its hierarchical structure, the enforcement of
separation between functional and non-functional concerns, its extensibility, and the separation between interfaces and imple-
mentation. The main extensions provided by GCM are:

• GCM supports collective communications: one-to-many, and many-to-one.
• GCM also comes with a support for autonomic aspects and better separation between functional and non-functional con-

cerns: more precisely, in GCM non-functional concerns can also be defined as a component assembly.

ProActive/GCM is a reference implementation of the GCM component model that has been implemented during the Grid-
Comp European project. It is based on the ProActive Java library and relies on the notion of active objects [9]. It is important to
note that each component corresponds at runtime to an active object and consequently each component can easily be deployed
on a separate JVM and can be migrated. Of course, this implementation relies on design and implementation choices relatively
to the purely structural definition provided by the model. Even if the programming methodology entailed by active objects and
GCM is way simpler than RMI-style of programming, bugs are still more frequent in distributed applications than in sequential
ones. Indeed, even if our programming model prevent data race-conditions, race-conditions between communications and dead-
locks can still exist. The complex interleaving of communications makes the reasoning on a distributed system difficult, even
when the system is built from well separated components.

2 Approach and contributions

In this work, we focus on the behavioural specification of active object and GCM applications in order to be able to verify their
behaviour. The behavioural model we generate is expressed in the pNets formalism1 that we designed. pNets serves as a low
level semantic framework for expressing the behaviour of various classes of distributed languages, and as a common internal

1parameterised networks of synchronous automata [2]



2 Behavioural Verification of Distributed Components

m2: Ty2 −> Ty

m1: Ty1 −> Ty

m2: Ty2 −> Ty

m1: Ty1 −> Ty

m3: Ty3 −> Ty4

m4: Ty5 −> Ty6

m0: Ty3 −> Ty4

Figure 1: A simple composite component in Vercors

format for our tools. pNets allow the specification of parameterised hierarchical labelled transition systems: classical labelled
transition systems can be combined hierarchically, and parameterised by some variables.

Our verification tool is called Vercors.2 It is a platform that assists the programmer in the specification and the verification
of his/her application. It provides tools for specifying an application behaviour: from the behaviour of each service method of
the primitive components and a description of the application architecture, the platform is able to generate the behaviour of the
whole application. We generate automatically the behaviour for asynchronous communications, queues, futures, and component
composition based on the ADL. We have shown also how to extend this approach to the modelisation of first-class futures 3 [8],
and of multicast interfaces [5]. Then, from the behavioural model of the application, we are able to verify its properties. In most
cases, we chose a finite instantiation domain for the parameters of the pNets, and generated a flat finite labelled transition system
on which we can prove the properties of the application by state-of-the art model-checkers. The properties we aim at range
from absence of deadlocks, to reachability of some actions, and to “any” temporal property (safety, liveness) specific to the
application. Our approach consists in specifying the property to be verified as regular µ-calculus formula [11], or more recently
as MCL (Model Checking Language) logics [12] formula. Currently, properties are verified using the CADP toolbox [10], but
other verification engines can be considered. In the future, we would like to specify these properties at a higher-level, which
would be subject to the same abstractions as the tools we provide to the programmer. First, this includes push-button properties
that can be verified automatically on each application like absence of dead-lock. Second, generic properties easy to generate
from our tools like reachability of an event should also be supported: the reception of a communication, the emission of a result,
. . . should also be considered. Also, we should provide support for the expression of more complex properties; they must be
expressed with the same abstractions (names, range for parameters, ...) as in the specification tools, which is not yet the case.

Figure 1 shows a composite component drawn in the Vercors platform. The component has two sub-components bound
together and to the composite component. Type annotations, attached to each interface, define the signature of each method.

3 A behavioural model for active objects

Based on pNets, we first defined a behavioural model for active objects. This model is crucial because it gives a representation,
on the form of pNets of most of the features of our programming model:

• Request queues, using Queues of pNets, and then instantiated by queues of finite length. In our verified applications, a
queue of small length (typically 1 or 2) is sufficient to verify the properties of interest; we also verify that the limit of the
queue is never reached to ensure that all the behaviours are explored.

• A body serving requests one after the other, and calling an appropriate method.

2http://www-sop.inria.fr/oasis/index.php?page=vercors
3futures are called first-class if they can be passed transparently between distributed entities.



Henrio, Madelaine 3

• Service methods are supposed to be specified by the programmer, they define the business code of the active object. Of
course, an abstract behaviour of the active object should be specified in order to limit the state-space to be explored; it
should however be precise enough to allow the verification of all the properties of interest. In particular it should at least
contain all the synchronisations between active objects, i.e. request calls and future accesses.

• Futures are encoded as proxies, and dedicated communications to return the future values are specified by the synchroni-
sation vectors. In most of our developments, first-class futures were not considered but [8] details our investigations on the
treatment of first-class futures in our tools.
For dealing with futures, we create a family of proxies synchronised first on an initialisation phase upon method call, then
with the return of the result at request completion, and finally with the access to the future value upon a wait-by-necessity.

Except for service methods, we defined formally how to generate automatically and generically those pNets. We are currently
implementing those pNet generators.

4 A behavioural model for GCM

Building models for hierarchical component systems like GCM allows us to adopt a compositional approach, at least from the
model specification point of view: we generate behavioural models hierarchically in each component. Even more, if the interface
behaviour is further specified, that is to say if the context in which the component will be used is explicitly stated, the behaviour
of each component can be generated and reduced, allowing us to envision the exhaustive verification of larger systems.

Below, we give a brief overview of our behavioural models based on our example. Figure 2 shows the pNets structure
corresponding to the composite component of Figure 1. It illustrates the structure of the pNets we generate for specifying
the behaviour of a composite component. We use it here to illustrate how we are able to generate behavioural models for
GCM components. It also shows the synchronisation occurring between different pNets (each synchronisation vector roughly
corresponds to one arrow in the drawing). The oval shape is used to represent synchronisations involving more than two
processes. This structure can be generated from the structure of the pNet, creating communication channels for requests and

A B

Composite Example2

CProxy m4[p]

?R m4(p, val)

CProxy m2[p]

CProxy m1[p]
?R m1(p, val)

?R m2(p, val)

!Q m1(p, arg)

!Q m2(p, arg)

!Q m4(p, arg)

Body

Deleg m

Deleg m0
CPM m4PMf(S)

PF1 m0[q]

!Q m1(fa, arg)
!Q m2(fa, arg)

CPM m1

CPM m2

!Activ m4(fb, p)

!Q m4(fb, arg)

!Call m0(f, arg)
!GetProxy m0(f)

Serve *(f)

!Activ m0(f, q)

!R m0(q, val)

?Q m0(f, arg)

!R m0(f, val)

!Activ m2(fa, p)

!Activ m1(fa, p)

!Q m3(arg)
?R m3(val)

∀m in {m1,m2,m4}
!GetProxy m(f)
?R GetProxy m(p)

!Call m(f, arg)
∀m in {m1,m2,m4}

!GetValue m1(fa, p, val)
!GetValue m2(fa, p, val)

!GetValue m4(fb, p, val)
Queue

Queue

!Q m0(q, arg)

!Call m0(q, arg)

?R GetProxy m0(q)

Figure 2: pNet for the composite component from Figure 1



4 Behavioural Verification of Distributed Components

futures for every method provided and required by each component.
Two sub-pNets represent the behaviour of sub-components A and B. A queue pNet receives ?Q m0(f,arg) requests where

f is the future corresponding to the request and arg the value passed as argument. Serve* communications allow the body to
retrieve those requests, which will then be treated by the Deleg m0 pNet, this pNet receives Call communications from the
body and delegates the request to an inner component (here, A); during this process, a future proxy is created by the proxy
manager PMf(S), the proxy (PF1 m0[q]) is responsible for receiving the reply when A has finished the request treatment and
for forwarding this result to the outside of the composite component: R m0(q,val) that becomes R m0(f,val). Note that this
proxy encodes some basic form of first class future: the future q corresponds to the same result as the future f.

Similarly, requests emitted by the inner components arrive in the queue, they are then delegated to the outside world by a
similar mechanism: a Deleg m pNet delegates the call, and creates a future proxy, which will be responsible for sending back
the result to the appropriate inner component. Here again the proxy manages the fact that both the future q and the future fa (or
fb) represent the same result. Finally, note the proxy structure we adopt: there is one proxy manager CPM* for each method
of each client interface (proxy managers are both indexed over interfaces and over methods). Then each of those managers
itself manages a family of proxies CProxy*. Performing model-checking on (the behaviour of) those structures then requires a
precise definition and optimisation of the number and size of those families.

All the communications expressed above, but also the communication channels between the different inner components –
requests Q m3 and the corresponding replies R m3 – can be automatically generated and correspond to synchronisation vectors
of the pNet of the composite. Different boxes are expressed as pLTSs4, except of course inner components that are pNets. Those
pLTSs are not shown here for conciseness of this section. Similarly, we are able to generate communication specific aspects:
queues, bodies, and future proxies for GCM components.

To illustrate the kind of properties we are able to verify, we proved by model-checking that a fault-tolerant application
consisting of 1 master and 4 slaves [5] behaves correctly: 1) it answers to requests: we proved both reachability and (fair)
inevitability of termination of services, 2) the answers (values returned by services) are correct. We can also check that the
assumptions we make are verified in practice. Here we have proved that a queue depth of 1 is sufficient to prove all of our
correctness properties: < true* . ’Error (Master-OutOfBounds)’> true

5 Related work

The closest work to ours are the frameworks dedicated to the verification of behavioural properties on component applications,
we focus below on a detailed comparison with two approaches: SOFA and Symbolic Transition Systems. A more exhaustive
study of related works and positioning can be found in [2].

The SOFA system [7] is a development and verification framework for large-scale distributed software systems based on
hierarchical components. It uses behaviour protocols [13] to specify interactions between components in terms of ordering
of method invocation events. The behaviour compliance and consent relations are defined on behaviour protocols based on
their trace semantics, allowing reasoning on substitutability and compositional compatibility. The frame protocol defines the
behaviour of a component. In a composite component, the behaviour is constructed from frame protocols of its subcomponents,
and checked for compliance with the composite frame protocol. For a primitive component, the Java implementation may be
checked for compliance with a model checking tool.

Symbolic Transition Systems (STS) [14], are structures akin to our pNets. In the STSLib toolset, there is a dedicated
specification language (with abstract data types) for distributed components, that are modelled by STS, themselves mapped to
LOTOS programs that can be model-checked with the CADP verification toolset [10]. STS do not use the distinction between
required and provided ports (or interfaces), whereas it is one of the main building blocks of our component systems. In fact,
communication is not based on the classic notion of method calls, but on messages in which both parties (emitter and receiver)
must agree in order to communicate. Although this adds expressivity to the language, it also has an impact on the asynchrony of

4a pLTS is a LTS with parameters and variables



Henrio, Madelaine 5

the system. In our approach, we write only synchronisation vectors corresponding to the semantics of the ProActive library. Our
specification language is more independent from the middleware, it allows us to express complex synchronisations that cannot
happen in ProActive. This allows us to reason on efficient, expressive, and proved communication mechanisms. Overall, even
if pNets formalism is approximately at the same level of abstraction as STS, in our approach, the programmer is rather exposed
to a higher-level composition framework, closer to his/her usual programming and composition concerns.

6 Conclusion

We presented an overview of the behavioural verification efforts we have been doing in the OASIS team. We now are able to
give a representation of a component system behaviour including its structural aspects, the handling of asynchronous requests
and of futures, the hierarchical composition of components, and group communications. Overall, from the specification of
service methods and the description of the component architecture, we are able to generate a pNet specifying the behaviour of
a component assembly. Then, from finite instantiation domains for future proxies, queue length, . . . we are able to generate a
finite behavioural model that can be model-checked to verify the correct behaviour of a GCM application. More details on the
size of the systems we are able to verify and the optimisation techniques we rely on can be found in [4, 5].

References

[1] Rabéa Ameur-Boulifa, Ludovic Henrio, Eric Madelaine & Alexandra Savu (2012): Behavioural Semantics for Asynchronous Compo-
nents. Rapport de recherche RR-8167, INRIA.

[2] Tomás Barros, Rabéa Boulifa, Antonio Cansado, Ludovic Henrio & Eric Madelaine (2009): Behavioural Models for Distributed
Fractal Components. Annals of Telecommunications 64(1–2). Also Research Report INRIA RR-6491.

[3] Françoise Baude, Denis Caromel, Cédric Dalmasso, Marco Danelutto, Vladimir Getov, Ludovic Henrio & Christian Pérez (2009):
GCM: A Grid Extension to Fractal for Autonomous Distributed Components. Annals of Telecommunications 64(1), pp. 5–24.

[4] Rabéa Boulifa, Ludovic Henrio & Eric Madelaine (2010): Behavioural Models for Group Communications. In: WCSI-10: Interna-
tional Workshop on Component and Service Interoperability, EPTCS 37, pp. 42–56.

[5] Rabéa Ameur Boulifa, Raluca Halalai, Ludovic Henrio & Eric Madelaine (2011): Verifying Safety of Fault-Tolerant Distributed
Components. In: International Symposium on Formal Aspects of Component Software (FACS 2011), Lecture Notes in Computer
Science, Springer, Oslo.

[6] Eric Bruneton, Thierry Coupaye, M. Leclercp, V. Quema & Jean Bernard Stefani (2004): An Open Component Model and Its Support
in Java. In: 7th Int. Symp. on Component-Based Software Engineering (CBSE-7), LNCS 3054.

[7] T. Bures, P. Hnetynka & F. Plasil (2006): Sofa 2.0: Balancing advanced features in a hierarchical component model. In: Software
Engineering Research, Management and Applications, 2006. Fourth International Conference on, IEEE, pp. 40–48.

[8] Antonio Cansado, Ludovic Henrio & Eric Madelaine (2008): Transparent First-class Futures and Distributed Component. In: Interna-
tional Workshop on Formal Aspects of Component Software (FACS’08), Electronic Notes in Theoretical Computer Science (ENTCS).

[9] Denis Caromel, Ludovic Henrio & Bernard Paul Serpette (2008): Asynchronous sequential processes. Information and Computation
Volume 207, Issue 4.

[10] H. Garavel, F. Lang & R. Mateescu (2002): An Overview of CADP 2001. European Association for Software Science and Technology
(EASST) Newsletter 4, pp. 13–24.

[11] D. Kozen (1985): Results on the Propositional Mu-Calculus. Theoretical Computer Science 40.
[12] R. Mateescu & D. Thivolle (2008): A Model Checking Language for Concurrent Value-Passing Systems. In K. Sere J. Cuellar, T. S.

E. Maibaum, editor: FM’08, LNCS 5014, Springer, Heidelberg.
[13] F. Plasil & S. Visnovsky (2002): Behavior Protocols for Software Components. IEEE Transactions on Software Engineering 28(11).
[14] P. Poizat, J.C. Royer & G. Salaun (2006): Bounded Analysis and Decomposition for Behavioural Descriptions of Components. In:

FMOODS, LNCS 4037.


	Introduction: The Grid Component Model (GCM)
	Approach and contributions
	A behavioural model for active objects
	A behavioural model for GCM
	Related work
	Conclusion

