
Verification and prototyping of distributed dataspace
applications ?

Simona Orzan1,2 and Jaco van de Pol1

1 Centrum voor Wiskunde en Informatica,
P.O.Box 94079, 1090 GB, Amsterdam, The Netherlands

simona,vdpol@cwi.nl
2 “A.I.Cuza” University, Iasi, Romania

Abstract. The space calculus is introduced as a language to model distributed
dataspace systems, i.e. distributed applications that use a shared (but possibly dis-
tributed) dataspace to coordinate. The publish-subscribe and the global dataspace
are particular instances of our model. We give the syntax and operational seman-
tics of this language and provide tool support for functional and performance
analysis of its expressions. Functional behaviour can be checked by an automatic
translation to µCRL and the use of a model checker. Performance analysis can be
done using an automatically generated distributed C prototype.

1 Introduction

A distributed system is generally seen as a number of single-threaded applications to-
gether with a distributed communication layer that coordinates them. Various shared
dataspace models have been proposed to solve the task of coordination: Linda [8],
Splice [3], JavaSpaces [14]), Gamma [1], WCL [21].

A shared dataspace (or tuple space) architecture is a distributed storage of informa-
tion, viewed as an abstract global store, where applications read/write/delete pieces of
data. In this paper, we focus on the problem of designing, verifying and prototyping
distributed shared dataspace systems. Building correct distributed systems is a diffi-
cult task. Typical required properties include transparent data distribution and fault-
tolerance (by application replication and data replication), which are usually ensured at
the price of giving up some performance. Many questions occur when deciding on the
exact shape of the distributed dataspace. For instance: what data should be replicated (in
order to prevent single points of failure)? should the local storages be kept synchronized
or should they be allowed to have different views on the global space? the migration of
data between local storages should be on a subscription basis or rather “on demand”?

The space calculus, introduced in this paper, is an experimental framework in
which verification and simulation techniques can be applied to the design of distributed
systems that use a shared dataspace to coordinate their components. Tool support for the

? Partially supported by PROGRESS, the embedded systems research program of the Dutch
organisation for Scientific Research NWO, the Dutch Ministry of Economic Affairs and the
Technology Foundation STW, grant CES.5009.

space calculus can be used to analyze concrete systems, with respect to their functional
behaviour, as well as their performance.

We model the shared space as a graph with atomic spaces as nodes (See Figure 1).
We consider two types of links between spaces: eager and lazy. When elements are
written in a local space, they are asynchronously transferred over all eager links that
start in this local space. Eager links can be used to model subscription and notification
mechanisms. Lazy links, on the other hand, are demand driven. Only when a data item
is requested in some atomic space, it is transferred via a lazy link from one of the
neigbouring spaces.

GDEL p
LDEL p

READ p
READE p

WRITE a

atomic dataspace

resource
information

lazy link
eager link

distributed dataspace

application

Fig. 1. A distributed dataspace architecture

Besides modelling the shared space, the space calculus provides a coordination lan-
guage to represent the applications. This language contains various communication
primitives, such as write, blocking and non-blocking read, local and global take op-
erations, and static publish and subscribe marks. Applications are loosely coupled in
the sense that they cannot directly address other applications. The precise behaviour of
a system (space + applications) is given by an operational semantics.

We provide a tool that translates a space calculus specification into a µCRL specifi-
cation [15]. From this code a state space graph can be generated and analyzed by means
of the model checker CADP [13]. A second tool generates distributed C code to sim-
ulate the system. System designers may use the automatic verification and simulation
possibilities provided by the µCRL toolset [2] to verify properties of their architecture.
Complementary, the distributed C prototype can be used for testing purposes, and to
get an indication about the performance (e.g. number of messages, used bandwidth,
bottlenecks). Several design choices can be rapidly investigated in this way. Ultimately,
the prototype C implementation could even be used as a starting point for building a
production version.

The operational semantics provides the formal ground for algebraic reasoning on
architectures. Despite its apparent simplicity, our calculus has powerful modelling ca-
pabilities. By restricting the allowed space-connectives and the allowed coordination
primitives, we obtain well known instances, such as the kernels of Splice (a publish-
subscribe architecture), and JavaSpaces (global space). Thus, the properties of various

dataspace architectures can be studied in our uniform framework. The verification tool
will help getting fast insights in the replication and distribution behaviour of certain
architectures, for instance. The simulation tool can help identifying the classes of ap-
plications appropriate to each architecture.

Related work. An overview of shared dataspace coordination models is given in
[22]. Some work that studies different semantics has been done in [4, 5, 7, 6], on which
we based the style of our operational semantics. [7] compares the publish/subscribe
with the shared dataspace architectural style by giving a formal operational semantics
to each of them. We also aim at being able to compare the two paradigms, but we take
a more unifying perspective: we consider both as being particular instances of the more
general distributed dataspace model and express them in the same framework.

[10] was the first attempt to use a Unity-like logic to reason on a shared datas-
pace coordination model (Swarm). [18] has similar goals. It provides a framework for
describing software architectures in the theorem prover PVS. However, it seems that
the verification of functional behaviour is out of the scope of that paper. In [9], a lan-
guage for specification and reasoning (with TLA) about software architectures based
on hyerarchical multiple spaces is presented. The focus there is on the design of the
coordination infrastructure, rather than on the behaviour of systems using it. In [16],
a translator from the design language VPL to distributed C++ code is presented. VPL
specifications can be verified using the CWB-NC toolset. Compared to that approach,
our work is more specific. We concentrate on shared dataspace architectures and define
a “library” of carefully chosen set of primitives that are both handy and expressive. In
[12], scenario-based verification is introduced as an useful technique in between verifi-
cation and testing. Our language also supports that.

Organization of the paper. In section 2, we present the syntax and semantics of
our calculus, we comment its main characteristics and we briefly introduce the tools
that support the space calculus. Then (section 3) we try to give an idea, through some
examples, about the applications of this framework. Finally, section 4 contains some
concluding remarks.

2 The Space Calculus

2.1 Informal view

The most important goal of our work was to define a language that is both small and
expressive. With so many existing shared dataspace models, it is difficult to decide what
features are the most representative. Some of the choices that we are faced to are:
− atomic spaces can be sets or multisets;
− when transfering data items between different spaces, they could be replicated or
moved;
− the primitives can be location-aware or location-independent
− the retrieve operation can be destructive or nondestructive
− global and local primitives
The answers depend of course on the specific application or on the purpose of the ar-
chitecture. In order to allow the modelling of as many situations as possible, we choose

to let the user make the distinction between data items that should be treated as infor-
mation (e.g. data from a sensor), for which multiplicity is not relevant, and data items
that should be treated as resource (e.g. numbers to be added, jobs to be executed), for
which multiplicity is very important. When handling elements, the space takes into ac-
count their type. The transfer between spaces means “copy” for information items and
“move” for resources. Similarly, the lookups requested by applications are destructive
for resources and non-destructive for information items.

The atomic spaces are multisets in which the elements tagged as information are
allowed to randomly increase their multiplicity. As for the question whether to give to
applications the possibility to directly address atomic spaces by using handles, like in
[?], we have chosen not to, in order to keep the application layer and the coordination
layer as separated as possible. The advantage of a clear separation is that the exact
distribution of the space is transparent to the applications.

2.2 Syntax and semantics

As mentioned before, a system description consists in our view from a number of pro-
gram applications and a number of connected atomic spaces. To bind the applications
to the atomic spaces we use (abstract) locations, denoted by i, j, ... The data items in the
distributed space come from a set D of values, ranged over by a, b, ... Furthermore, we
assume a set of patterns Pat(D), i.e. properties that describe subsets of D. We assume
that D ⊆ Pat(D). p, q.. denote patterns. We also postulate two predicates on patterns:
match : Pat(D) × D → {>,⊥} to test if a given pattern matches a given value, and
inf : Pat(D) → {>,⊥} to specify whether a given pattern should be treated as infor-
mation or as resource. The predicate res : Pat(D) will be used as the complementary
of inf .

A program (Proc) is a program expression P residing at a location (i). A program
expression is a sequence of coordination primitives. Formal parameters in programs are
denoted by x, y... ε denotes the empty program, and ⊥ denotes a special error value.

Prim ::= write(a) | read(p, x) | read∃(p, x) | ldel(p) | gdel(p)
P ::= ε | Prim.P

Proc ::= [P]
i

The lazy and eager behaviours of the connections between atomic spaces are specified
as special marks: Pubi

p, Subi
p, LLij . If Pubi

p and Subj
q are present, then all data match-

ing p ∧ q written in the space i by an application will be asynchronously forwarded to
the space j. Thus, there is an eager link from i to j. The presence of LLij indicates that
there is a (symmetric) lazy link from space i to j. That is, all data items of i are visible
for retrieve operations addressed to j by an application.

For administrative reasons, the set of data items (a) is extended with buffered items
that have to be sent (!aj), pending request patterns (?p) and subscription policies (©p, k,
©p, k, t). Subscription policies are inspired by Splice and their function is to filter the
data coming into a space as consequence of a subscription. Based on keys and times-
tamps, some of the data in the space will be replaced (overwritten) by the newly arrived
element. The parameters k, t are functions on data k : D → Keys(D), t : D → N

that dictate how should the keys and the timestamps be extracted from data items. If
the newly arrived element a, matching p, meets the filter ©p, k, then a will overwrite
all data matching p with the key equal to that of a. If it meets the filter ©p, k, t, it will
overwrite all data matching p with the key equal to that of a and timestamp not fresher
than that of a. With this second filter, it is also possible that a drops out, if its timestamp
is too big.

A configuration (C) then consists of a number of atomic dataspaces and applications,
each bound to a location, and a number of links:

data ::= a | !aj | ?p | ©p, k | ©p, k, t

Data ::= 〈D〉i, where D is a finite set over data

Link ::= pji |↑
i
p|↓

i
p

Conf ::= Data | Proc | Link | Conf || Conf

The operational semantics of the space calculus is defined as a labeled transition relation
C

a
−→ C′, meaning that if the system is in configuration C then it can do an a-step to

configuration C′. The transition relation is defined inductively in Figure 2. Note that the
OS rules don’t explicitely reflect the dual information/resource structure of the systems.
This unitary appearance is possible due to a few operators on data, the definition of
which (below) encapsulates this distinction. D, B are multisets, − and + denote the
usual difference and union of multisets and d is a data (a or !aj or ?p or ©p, k or
©p, k, t). We will use the notation inf(d) to express the value of the predicate inf for
the pattern occuring in d. That is, inf(!aj) = inf(a) and inf(?p) = inf(©p, k) =
inf(©p, k, t) = inf(p). The same holds for res.

D]
p

a = D − [b ∈ D | match(p, b)] + [a]

D]
p,k

a = D − [b ∈ D | match(p, b) ∧ k(b) = k(a)] + [a]

D]
p,k,t

a = D − [b ∈ D | match(p, b) ∧ k(b) = k(a) ∧ t(b) ≤ t(a)] + [a]

D]
d

d = D − [d ∈ D] + [d]

D ⊕ d =

{

D]
d

d if inf(d)

D + [d] if res(d)
D 	 a =

{

D if inf(a)
D − [a] if res(a)

D ⊕ [d1 · · · dn] = D ⊕ d1 ⊕ · · · ⊕ dn

D] a =

D]
p,k

a if © p, k ∈ D ∧ match(p, a)

D]
p,k,t

a if © p, k, t ∈ D ∧ match(p, a)

D ⊕ a if @ © p, k,©p, k, t ∈ D s.t. match(p, a)

B � d =

{

B]
d

d if inf(d)

[d] if res(d)

We now explain the intuitive semantics of the coordination primitives and how this
semantics is modeled by the rules.

write(a): write data item a into the local dataspace, to be automatically forwarded
to all subscribed spaces. a is added to the local dataspace (W1) and an auxiliary w(i, a)

(W1) 〈D〉i || [write(a).P]i
w(i,a,[a])
−→ 〈D〉i || [P]i

(W2)
C || 〈D〉i w(i,a,B)

−→ C′ || 〈D〉i

C || 〈D〉i ||↓i
p||↑

j
q

w(i,a,B � !aj)
−→ C′ || 〈D〉i ||↓i

p||↑
j
q

match(p, a) ∧ p ∩ q 6= ∅

(W3)
C

w(i,a,B)
−→ C′

C || X
w(i,a,B)
−→ C′ || X

X ∈ {pkj , [P]j , 〈D〉j , ↓j
q, ↑

l
p}, p : not match(p, a)∨ ↓i

p /∈ C

(W4)
C

w(i,a,B)
−→ C′

C
w(i,a,B � a)

−→ C′

(W5)
〈D〉i || C

w(i,a,B)
−→ 〈D〉i || C′

〈D〉i || C
write(a)
−→ 〈D ⊕ B〉i || C′

(W6) 〈D + [!aj]〉
i
|| 〈D′〉

j τ
−→ 〈D〉i || 〈D′] {a}〉

j

(Rτ) 〈D〉i || [read(p, x).P]i
τ

−→ 〈D + [?p]〉i || [read(p, x).P]i ?p /∈ D

(R) 〈D + [?p]〉i || [read(p, x).P]i
read(p,a)
−→ 〈D − [?p] 	 a〉i || [P [x := a]]i

a ∈ D ∧ match(p, a)

(R∃1) 〈D〉i || [read∃(p, x).P]i
read∃(p,a)

−→ 〈D 	 a〉i || [P [x := a]]i

a ∈ D ∧ match(p, a)

(R∃2) 〈D〉i || [read∃(p, x).P]i
read∃(p,⊥)

−→ 〈D〉i || [P [x := ⊥]]i

@a ∈ D match(p, a)

(LD) 〈D〉i || [ldel(p).P]i
ldel(p)
−→ 〈D − [a ∈ D | match(p, a)]〉i || [P]i

(GD1) [gdel(p).P]i || ||j 〈Dj〉
j gdel(p)

−→ [P]i || ||j 〈Dj − [a ∈ Dj | match(p, a)]〉j

(GD2)
C

gdel(p)
−→ C′

C || X
gdel(p)
−→ C′ || X

X 6= 〈D〉i

(TAU) 〈D + [?p]〉i ||pji || 〈D
′〉

j τ
−→ 〈D − [?p] ⊕ a〉i ||pji || 〈D

′ 	 a〉
j

a ∈ D′ ∧ match(p, a)

(act)
C

act
−→ C′

C || C′′ act
−→ C′ || C′′

act 6∈ {gdel(p), write(a), w(i, a)}

Fig. 2. Operational semantics of the space calculus

step is introduced. When pushing w(i, a) to the top level, if a matches a pattern pub-
lished by i, then !aj items are introduced for all subscriptions Subj

p matching a (rule
W2, W3). At top level, the auxiliary w(i, a) step can be promoted to a write(a) step
(W4). Finally, the a items are sent to the subscribed spaces asynchronously (W5). The
operator] in the righthand side of rule (W5) states that the freshly received data item
should be added to the local database taking into account the local subscription policies.

read(p, x): blocking test for presence, in the local space and its lazy linked neig-
bouring spaces, of some item a matching p; x will be bound to a. This results in gen-
erating a ?p request, keeping the application blocked (Rτ). If a matching a has been
found, it is returned and the application is unblocked (R). Meanwhile, the lazy linked
neighbours of the local space asynchronously respond to the request ?p, if they have an
item matching p (TAU).

read∃(p, x) : non-blocking test for presence in the local space. If some item a

matching p exists in the local space, it is bound to x; otherwise a special error value
⊥ is returned. Delivers a matching a from the local space, if it exists (R∃1). Otherwise
an error value is returned (R∃2).

ldel(p) : local delete. This atomically removes all elements matching p from the
local space (LD).

gdel(p) : this is the global remove primitive. It attomically deletes all items match-
ing p, in all atomic spaces. Note that due to its global synchronous nature, gdel can not
be lifted over atomic spaces (GD2).

Finally, the general parallel rule (act) defines parallelism by interleaving, except for
write and gdel which have their own parallel rules to ensure synchronization.

The kernels of some well-known dataspace paradigms can be obtained by restricting
the allowed configurations and primitives.

Splice [3] implements a publish-subscribe paradigm. It has a loose semantics, re-
flecting the unstable nature of a distributed network. Applications announce themselves
as publishers or subscribers of data sorts. Publishers may write data items to their local
agents, which are automatically forwarded to the interested subscribers. Typically, the
Splice primitives are optimized for real-time performance, and don’t guarantee global
consistency. The space calculus fragment without lazy links and restricted to the coordi-
nation primitives write, read, ldel corresponds to the reliable kernel of Splice. Network
searches (modeled by the lazy links) and global deletion (gdel) are typically absent. In
Splice, data sorts have keys, and data elements with the same key may overwrite each
other – namely at the subscriber’s location, the “fresh” data overwrites the “old” one.
The order is given by implicit timestamps that elements get in the moment when they
are published. The overwriting is expressible in our calculus, by using the eager links
with subscribe policies. The Splice’s timestamps mechanism is not present, but some
timestamping behaviour can be mimicked by explicitely writing and modifying an extra
field in the tuples that models the data.

JavaSpaces [14] on the contrary can be viewed as a global dataspace. It typically
has a centralized implementation, and provides a strongly consistent view to the appli-
cations, that can write, read, and take elements from the shared dataspace. The space
calculus fragment restricted to a single atomic space to which all coordination prim-
itives are attached, and with the primitives write, read, read∃ forms a fragment of

JavaSpaces. Transactions and leasing are not dealt with in our model. Note that with
the mechanism of marking the data “information” or “resource”, we get the behaviour
of both destructive and non-destructive JavaSpaces lookup primitives: our read, readE

works, when used for information, like read and readIfExists from JavaSpaces, and
like take and takeIfExists when called for resources.

So, interesting parts of different shared dataspace models are expressible in this
framework. A thorough study on how to improve this calculus so that it becomes a real
comparison instrument remains to be done.

2.3 Verifying and prototyping

We defined a mapping from every configuration in the operational semantics to a pro-
cess in the µCRL specification language [15]. A short description of this mapping is
given in appendix A. We claim (proof pending) that any configuration of space calcu-
lus is weakly bisimilar to its µCRL image. The generation of the corresponding µCRL
specification is automated. Therefore, the µCRL toolset [2] can be immediately used to
simulate the behaviour of a configuration. This toolset is connected to the CADP [13]
model checker, so that temporal properties on systems in the space calculus can be auto-
matically verified by model checking. Typical verified properties are deadlock freeness,
soundness, weak completeness, equivalence of different specifications.

Another tool translates space-calculus specifications to a distributed implementation
in C that uses MPI (Message-Passing Interface) [?] for process communication. This
automatically generated implementation has one process for each atomic space and one
for each application. Different machines can be specified for different locations, thus
getting a real distribution of spaces and applications. Typical performance measures are
throughput, latency.

3 Applications of the space calculus

In order to make the space-calculus usable as specification language, the tools support-
ing the space calculus work with a more concrete syntax. The data universe considered
is tuples of naturals and the patterns are incomplete tuples. Apart from the syntacti-
cal constructions already defined, we allow assignment of data variables, assignment
of tuple variables and if and while with standard semantics. The examples below use
this “tool language”. A description of it, including a precise syntax written in a slightly
simplified YACC format, is given in appendix B.

3.1 Towards distributed JavaSpaces

One of the initial motivations of our work was to model a distributed implementation of
JavaSpaces, still providing the same strongly consistent view to the applications. This
is the reason that we introduced the relatively expensive global delete. The expression

〈∅〉0 || 〈∅〉1 ||↓0

?||↑
0

?||↓
1

?||↑
1

?

nfields = 1
upbound = 2
res <*>

space JS

app Ping@JS {
write <1>; EXTping; read <0> x;
write <1>; EXTping; read <0> x;

}
app Pong@JS {

read <1> x; write <0>; EXTpong;
read <1> x; write <0>; EXTpong;

}

nfields = 1
upbound = 2
res <*>

space JS
space JSbis
JS -> <*>
JS <- <*>
JSbis -> <*>
JSbis <- <*>

app Ping@JS {
write <1>; EXTping; read <0> x;
write <1>; EXTping; read <0> x;

}
app Pong@JSbis {
read <1> x; write <0>; EXTpong;
read <1> x; write <0>; EXTpong;

}

Fig. 3. A Ping-Pong application on one Javaspace (left) and on two (right)

models a distributed JavaSpaces implementation, which should be robust against the
crash of one space. Both spaces are eagerly linked by a subscription matching any
item. In this context, distribution of the space should be completely transparent for the
application processes.

Two rounds of the Ping-Pong game ([14], [20]) can be written in the space calculus
as follows:

Ping = write(1).read(0, x).write(1).read(0, x)
Pong = read(1, x).write(0).read(1, x).write(0)

(with D = {0, 1} and inf(x) = ⊥, ∀x). And we wish that they run on one Javaspace
exactly the same as they run on two:

[Ping]0 || [Pong]0 || 〈∅〉0 = [Ping]0 || [Pong]1 || 〈∅〉0 || 〈∅〉1 ||↓0
?||↑

0
?||↓

1
?||↑

1
?

To check this equality, we only need to write the two specifications of the Ping-Pong
game (with a single, respectively replicated space) in the “tool syntax” (Figure 3), gen-
erate the two statespaces and use the model checker to verify that they satisfy the safety
equivalence relation.

3.2 Transparent replication of some Splice applications

Some of the most interesting problems in a system with components are associated with
replication: what components can be replicated, and at what costs? We claim that the
space calculus is a good framework for studying this type of questions. In the sequel
we give an example of how our space calculus can be used to rapidly check transparent
replication of some application components of Splice.

Consider a simple Splice system, composed of three applications: a Producer that
writes data to the Splice network, based on observations that it makes on the environ-
ment; a Transformer that reads the data, applies some transformations on it and writes
it back; and a Consumer that reads the transformed data items and uses it further, for in-
stance by displaying it on a screen. The producer and the consumer are the components

nfields = 3
upbound = 3
space A1
space A2
space A3
A1 -> <1,*,*>
A2 -> <2,*,*>
A2 <- <1,*,*> 1 3
A3 <- <2,*,*> 1 3

app Producer@A1
{

itsp := 0;
EXTin;
write <1,0,itsp>;
itsp := itsp + 1;
write <1,1,itsp>;

}
app Transformer@A2
{

while (true) {
read <1,*,*> x;
ivx := x/2+1;
itx := x/3;
write <2,ivx,itx>;

};
}

app Consumer@A3 {
while (true) {
read <2,*,*> x;
EXTout;

};
}

nfields = 3
upbound = 3
space A1
space A2
space A3
space A4
A1 -> <1,*,*>
A2 -> <2,*,*>
A2 <- <1,*,*> 1 3
A3 <- <2,*,*> 1 3
A4 -> <2,*,*>
A4 <- <1,*,*> 1 3

app Producer@A1
{

itsp := 0;
EXTin;
write <1,0,itsp>;
itsp := itsp + 1;
write <1,1,itsp>;

}
app Transformer@A2
{

while (true) {
read <1,*,*> x;
ivx := x/2+1;
itx := x/3;
write <2,ivx,itx>;

};
}

app Transformer@A4
{

while (true) {
read <1,*,*> x;
ivx := x/2+1;
itx := x/3;
write <2,ivx,itx>;

};
}

app Consumer@A3 {
while (true) {
read <2,*,*> x;
EXTout;

};
}

Fig. 4. The Producer/Transformer/Consumer example

that interact with the environment, while the transformer works “under water”. There-
fore it is reasonable to ask whether it is possible to replicate the transformer without
affecting the (external) behaviour of the system.

This producer-transformer-consumer example illustrates a specific pattern in Splice
systems. The transparent replication of the middle component was extensively studied
in [17], using both µCRL and PV S. We show how to model the problem in space-
calculus (Figure 4), for the specific instance when two data items are produced, with
values 0 and 1. The itsp variable models the local clock. The two specifications are
safety equivalent.

4 Conclusion

This paper presents our initial research in a unifying framework for various dataspace
paradigms. We introduced the space calculus, in which various paradigms can be mod-
eled. A formal syntax and operational semantics provides a rigorous basis to this calcu-
lus.

We aim at two goals: comparing the various paradigms with respect to their meta-
properties and facilitating the analysis of individual systems based on shared dataspace
architectures.

For the first goal, we view a particular dataspace paradigm as a fragment of the space
calculus. Questions to be addressed are: does a fragment admit transparent replication of
data/processes, what are the costs of a distributed implementation, what are the typical
applications for certain fragments. An answer to the last question would facilitate early
architectural design decisions. A number of these questions have been answered for
Splice fragments already [11, 17, 19].

The second goal is supported by a translation to µCRL, of which we presented a
fragment. A prototype automatic translator to µCRL exists. The resulting µCRL spec-
ifications can be used as an input to a model checker, thus formally establishing the
functional correctness of a system. The approach follows a previous successful attempt
for JavaSpaces [20].

Another tool generates distributed C-code from a system described in the space cal-
culus. We have experimented with an implementation on top of the MPI-library (Mes-
sage Passing Interface). The simulator thus obtained can be used to find performance
bottlenecks in the high-level architecture. These could be solved by transforming the
space calculus expression to a functionally equivalent one with a better performance.

As future work, we plan to investigate meta-properties for (fragments) of the space
calculus and identify behaviour-preserving transformation rules. Also, we intend to
study more examples, in order to establish the validity of our framework and to im-
prove it where necessary. An interesting extension might be to allow dynamic creation
of spaces and applications or the dynamic change of the inf predicate.

We like to acknowledge Michel Chaudron for initiating our quest for a unifying
dataspace framework.

References

1. J.P. Banâtre and D. Le Métayer. The GAMMA model and its discipline of programming.
Science of Computer Programming, 15:55–77, November 1990.

2. S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. Langevelde, B. Lisser, and J.C. van de Pol.
µCRL: a toolset for analysing algebraic specifications. In G. Berry, H. Comon, and A. Finkel,
editors, Proc. of 13th conference on Computer Aided Verification (CAV), pages 250–254,
2001. LNCS 2102.

3. M. Boasson. Control systems software. IEEE Transactions on Automatic Control,
38(7):1094–1106, July 1993.

4. M.M. Bonsangue, J.N. Kok, and G. Zavattaro. Comparing coordination models based on
shared distributed replicated data. In J. Carroll, H. Haddad, D. Oppenheim, B. Bryant, and
G.B. Lamont, editors, Proceedings of the 1999 ACM Symposium on Applied Computing (SAC
’99), pages 146 – 155, San Antonio, Texas, USA, February 1999. ACM press.

5. N. Busi, R. Gorrieri, and G. Zavattaro. Process calculi for coordination: From Linda to
JavaSpaces. In T. Rus, editor, 8th International Conference on Algebraic Methodology and
Software Technology, number 1816 in LNCS, Iowa, USA, 2000. Springer-Verlag.

6. N. Busi, C. Manfredini, A. Montresor, and G. Zavattaro. Towards a data-driven coordination
infrastructure for peer-to-peer systems. In Proc. of Workshop on Peer-to-Peer Computing,
number 2376 in LNCS. Springer-Verlag, May 2002.

7. N. Busi and G. Zavattaro. Publish/subscribe vs. shared dataspace coordination infrastruc-
tures. In Proc. of WETICE’01. IEEE Press, 2001.

8. N. Carriero and D. Gelernter. How to Write Parallel Programs: A First Course. MIT Press,
1990.

9. P. Ciancarini, M. Mazza, and L. Pazzaglia. A logic for a coordination model with multiple
spaces. Science of Computer Programming, 31(2–3):231–261, 1998.

10. H. Cunningham and G.-C. Roman. A unity-style programming logic for shared dataspace
programs. IEEE Transactions on Parallel and Distributed Systems, 1(3):365–376, July 1990.

11. P.F.G. Dechering and E. de Jong. Transparent object replication: A formal model. In
Fifth Workshop on Object-oriented Real-Time Dependable Systems (WORDS’99F), Mon-
terey, California, USA, 2000. IEEE Computer Society.

12. P.F.G. Dechering and I.A. van Langevelde. Towards automated verification of Splice in mu-
CRL. Report SEN-R0015, CWI, Amsterdam, 2000.

13. J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighireanu. CADP
– a protocol validation and verification toolbox. In Proc. 8th Conference on Computer-Aided
Verification, number 1102 in LNCS, pages 437–440. Springer, 1996.

14. E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces principles, patterns, and practice. Addi-
son-Wesley, Reading, MA, USA, 1999.

15. J.F. Groote and M.A. Reniers. Algebraic process verification. In J.A. Bergstra, A. Ponse,
and S.A. Smolka, editors, Handbook of Process Algebra, chapter 17. Elsevier, 2001.

16. D. Hansel, R. Cleaveland, and S. Smolka. Distributed prototyping from validated specifica-
tions. In 12th IEEE International Workshop on Rapid System Prototyping, pages 97–102.
IEEE Computer Society Press, June 2001.

17. J.M.M. Hooman and J.C. van de Pol. Formal verification of replication on a distributed data
space architecture. In Proceedings of SAC 2002 (Madrid), pages 351–358. ACM, 2002.

18. K. Lichtner, P. Alencar, and D. Cowan. A framework for software architecture verification. In
Proc. of 12th Australian Software Engineering Conference, pages 149–158. IEEE Computer
Society, 2000.

19. S.M. Orzan and J.C. van de Pol. Distribution of a simple shared dataspace architecture.
In Proc. of first Int. Workshop on Foundations of Coordination Languages, and Software
Architectures, Brno, 2002. To appear in ENTCS 68(3).

20. J.C. van de Pol and M. Valero Espada. Formal specification of JavaSpacesTM architecture
using µCRL. In F. Arbab and C. Talcott, editors, Proc. of COORDINATION, number 2315
in LNCS, pages 274–290. Springer, 2002.

21. Antony I. T. Rowstron. WCL: A co-ordination language for geographically distributed
agents. World Wide Web, 1(3):167–179, 1998.

22. Robert Tolksdorf and Gregor Rojec-Goldmann. The SPACETUB models and framework. In
Coordination Models and Languages, pages 348–363, 2002.

A The mapping to µCRL

The state of a µCRL system is the parallel composition of a number of processes. A
process is built from atomic actions by sequential composition (.), choice (+,sum), con-
ditionals (· / · . ·) and recursive definitions.

For our purpose, we introduce processes for each atomic space and for each appli-
cation. An additional process, called the TokenManager, has to ensure that operations
requiring global synchronization (gdel) don’t block each other, thus don’t introduce
deadlocks. Before initiating a global delete operation, a space has to first request and
get the token from the manager. When it has finished, it has to return the token to
the manager, therefore allowing other spaces to execute their gdels. A second addi-
tional process, SubscriptionsManager, manages the list (multiset) of current sub-
scriptions. When an item a is written to an atomic space, that space synchronizes with
the SubscriptionsManager in order to get the list of the other atomic spaces where
the new item should be replicated or moved. For simplicity, we model the data items as

Atomic (id:Nat, D:TupleSet, Req: TupleSet,
ToSend: NatTupleSet, todel:Tuple,
LL: NatSet, PL: TupleSet, SL: SubscriptionList) =

% W
sum(v:Tuple,

W(v). sum(NewToSend: NatTupleSet,
sum(NewD: TupleSet,

getToSend(v, ToSend, NewToSend, D, NewD).
Atomic(id, NewD, Req, NewToSend,

todel, LL, PL, SL)))
<| and(isData(v), match(v, PL)) |> delta)

+ sum(v:Tuple,
W(v).
Atomic(id, a(v,D), Req, ToSend, todel, LL, PL, SL)
<| and(isData(v), not(match(v,PL)))|> delta)

% async send
+ sum(x:Nat, sum(y:Tuple,

el_send(x,y).
Atomic(id, D, Req, r(x,y,ToSend), todel, LL, PL, SL)
<| in(x,y,ToSend) |> delta))

% async receive
+ sum(x:Tuple,

el_recv(id,x).
Atomic(id, add(x,D,SL), Req, ToSend, todel, LL, PL, SL))

...

Fig. 5. Fragment from a µCRL specification of an atomic space

tuples of natural numbers – fields are modelled by the µCRL datasort Nat, tuples by
Tuple. A short overview of the most important datasorts:
- Bool - true, false
- Nat- models the ids of atomic spaces and the fields of the tuples
- Natset- models the set of lazy links of a space
- Tuple- models the data items (a) and the patterns (p)
- TupleSet- models the as in an atomic space, the set of requests (?ps), and the set
of published patterns.
- NattupleSet- is a set of pairs (Nat, Tuple); models sets of !ai

- SubscriptionList- models the ©p, k, ©p, k, t

In Figure ??, the µCRL specification of the space’s write behaviour is shown. An
atomic space has two interfaces: one to the application processes, and one to the other
atomic spaces. In µCRL calls between processes are modeled as synchronization be-
tween atomic actions. The primitives of the space calculus correspond to the following
atomic actions of Atomic: {W, R, RE, Ldel, Togdel, Gdel}. The interface to the other
atomic processes is used to send/receive data items and patterns for read requests.

The application programs are also mapped to µCRL processes. Execution of coordi-
nation primitives is modeled as atomic actions, that synchronize with the corresponding
local space’s pair actions. The synchronization with the space is described by the fol-
lowing communication function (the left column contains the actions of the space, the
right one those of the application):

W | write = w Ldel | ldel = ld

R | read = r Togdel | togdel = τ

RE | readE = re Toread | toread = τ

Gdel | gdel = gd

B The space-calculus tool language

Since we allow exactly one space per location, it is nice to give names to spaces and
to say, instead of saying that a program stays at location i, that the program runs at the
space <name>. A specification of a configuration consists of:
- (optional) fixing the tuple size (nfields) and the first natural value strictly greater
than any field of any tuple(upbound). The default values are nfields=1, upbound=2.
- (optional) define the inf /res predicates, by mentioning the patterns for which res

should be > . Any pattern p not included by the res declaration has inf(p) = >. -
describing the spaces, by giving each space a name and, optionally, the machine where
it’s supposed to live. The default machine is “localhost”.
- describing the applications, by specifing for each application its name, the name
of the space with which it shares the location (the physical location as well) and its
program.

Apart from the primitives read, readE, write, ldel, gdel, the actual language in-
cludes some extra constructions to provide easy data manipulation and control possi-
bilities: natural variable names and expressions, projection of a tuple on a field, assign-
ments, if, while, external actions that can be specified as strings.

EXTCOMMAND means [E][X][T][a− zA − Z]+
INTID means [i][a − zA − Z0 − 9]?

ID means [a − zA − Z][a − zA − Z0 − 9]? (that is not INTID)
INT means [0 − 9]+

configuration : settings declarations
settings :

| setting settings

setting : nfields = INT
| upbound = INT
| res pattern

declarations : space declarations
| link declarations
| application declarations

space : space ID (ID)
| space ID

link : LL (ID , ID)
| ID − > pattern
| ID < − pattern | ID < − pattern intlist | ID < − pattern intlist INT

pattern : < tuple >

tuple : datum
| tuple , datum

datum : * | INT | INTID
intlist : INT | intlist , INT
intexpression : INT | INTID | projection | intexpression + intexpression
projection : pattern / INTID | ID / INTID
application : app ID @ ID { program }

program :
| command ; program

command : write pattern
| write ID
| read pattern ID
| readE pattern ID
| ID := pattern
| INTID := intexpression
| ldel pattern
| gdel pattern
| publish pattern
| subscribe pattern | subscribe pattern intlist | subscribe pattern intlist INT
| if condition { program }
| while condition { program }
| EXTCOMMAND

condition : ID | not(ID) | true | false

Fig. 6. The YACC style syntax definition

The condition of if and while is very simple: a standard boolean value or a vari-
able name that gets tested for correctness. Namely, “if x” means “if x is not error”.
Extending the conditions is further work.

