
Integrating Model Checking and HCI Tools to Help
Designers Verifying User Interface Properties

Fabio Paternò, Carmen Santoro

Istituto CNUCE, Consiglio Nazionale delle Ricerche, Via V.Alfieri 1
56010 Ghezzano-Pisa, Italia

{F.Paterno, C.Santoro}@cnuce.cnr.it

Abstract. In this paper we present a method that aims to integrate the use of
formal techniques in the design process of interactive applications, with
particular attention to those applications where both usability and safety are
main concerns. The method is supported by a set of tools. We will also discuss
how the resulting environment can be helpful in reasoning about multi-user
interactions using the task model of an interactive application. Examples are
provided from a case study in the field of air traffic control.

1 Introduction

The importance of allowing an increasing number of users to access interactive
software applications has stimulated a growing interest in methods for the design and
development of effective user interfaces. The goal is to obtain applications able to
support users, in a flexible and effective way, while they are performing their
activities. Consequently, the part of an interactive software application dedicated to
the control of dialogues with users and the generation of the presentation of the
information is increasing thus raising the need for more structured methods to support
its design. For example, Myers and Rosson [10] analyzed a set of applications and
found that on average, 48% of the code, 45% of development time, 50% of
implementation time, and 37% of maintenance time was dedicated to user interface
aspects.

The fact that it is actually quite easy to develop one user interface by using one
visual environment such as Visual Basic or Visual Java may lead to misconceptions.
Thus, one question can be posed: why spend time investigating new methods for
developing user interfaces if they are already so easy to develop?

The problem is that what designers of interactive applications need is not just any
user interface able to provide access to the application’s functionality but one that can
effectively support users in interacting with it. Thus, there is a need to understand
what tasks users want to perform, to represent them in order to better analyse their
properties and interrelationships and to use this information to identify an effective
user interface. Here is where most current visual environments for user interface
development fail to provide useful support.

If we consider UML [4], we can notice a considerable effort to provide models and
representations to support the design and development of software applications.

However, despite the nine representations provided by UML, none of them is
particularly oriented to support the design of user interfaces. Of course, it is possible
to use some of them to represent aspects related to the user interface but it is clear that
this is not their main purpose.

Model-based environments for user interfaces [13, 15] is a research area that has
stimulated an increasing interest. The basic idea is to identify abstractions and related
tools that can support the work of user interface designers and developers. Particular
attention has been paid to task models that are able to represent the design of activities
that should be supported by an interactive application. Such models describe how
activities should be performed and their possible relationships by integrating both
functional and interactional aspects. They are the meeting point among all the
important views involved in the design of an interactive application. Their
development involves people with different backgrounds (software developers, user
interface designers, application domain experts, end users, managers, …). Usually,
such task models are developed after an informal phase of task analysis and scenarios
identification.

One of the advantages of using a formal approach is the possibility to rigorously
reason about properties of the specification. This can be carried out by model
checking techniques: the specification represents the model against which properties
can be checked. Formal verification has been successfully used in hardware design
where it is important to check that some properties are satisfied before implementing
the specification into hardware. The HCI field is more challenging for verification
methods and tools, since the specification of human-computer dialogues may be more
complex than the hardware specifications. The main problems in applying model
checking techniques to the design of user interfaces are:
• the identification of relevant user interface properties to check and their

formalisation;
• the development of a model of the User Interface System which is meaningful and,

at the same time, avoids the introduction of many low level details which would
increase the complexity of the model without adding important information for the
design of the user interface.

There are various motivations to carry out model checking for user interfaces:
• it is possible to test aspects of an application even if they have not been completely

implemented;
• user testing can be rather expensive, especially in fields such as ATC (Air Traffic

Control), the users (controllers in our case) are highly specialised personnel whose
time has high costs. In addition, it can be very difficult to know how many tests are
sufficient to have an exhaustive analysis. We are not proposing that users should
not be involved in testing but we are indicating that model checking can decrease
the need for empirical testing, even if it is always useful to have it.

• exhaustive analysis, the advantage of model checking is that the space of the states
reachable by the specification is completely analysed. In user testing we just
consider one of the possible sequences of actions, whereas a huge number of such
traces may exist and even extensive empirical testing can miss some of them. This
lack of completeness in empirical testing can have dangerous effects especially in
safety-critical contexts.

However, there is another difference between model checking and empirical
testing: in the former a model of the application is considered, in the latter the focus is
on the concrete implementation of the application (or part of it). This means that the
model should be a meaningful approximation of the application in order to support a
useful analysis.

In [12] there is a discussion on how to approach the verification of user interface
properties and examples of general properties are given. Other approaches to the same
type of problems can be found in [1, 2]. However, despite the number of proposals for
the use of formal methods in HCI [11], only a small number of applications to real
case studies has been developed (see [7] for one example). The main reason for these
limited results is that the use of formal methods is difficult and time-consuming. Even
tools supporting them are often difficult to use and the results that they can provide
sometimes do not justify the effort required.

Our approach aims to analyse multi-users interactive applications and how it can
be applied to a real case study where the effort of using a formal approach is justified
by the safety-critical context. To this end we have designed and developed a
prototype environment that integrates a tool for task modelling with a tool for model
checking. The overall goal is to understand how to ease the introduction of formal
methods in the design cycle and to understand to what extent formal techniques can
be useful in designing interactive applications.

In the paper, we first introduce the method that we propose and we discuss the
motivations and the results of each of its phases. Then, we describe the prototype
environment that we have developed to support the integration of task modelling with
model checking and the representations that it uses, and lastly we discuss examples of
properties that can be verified with this approach. We also discuss examples taken
from a case study that we have performed concerning the design of a new interactive
application for air traffic control in an airport.

2 Our Method

An interactive application is characterised by the dialogues it supports and the
presentations of information that it generates for communicating information to the
user. The description of both these aspects could be represented formally. However,
the introduction of a formal representation has to be motivated. The effort to
formalise presentation aspects does not seem to be justified because we obtain models
that describe features that can be easily understood by direct inspection of the
implemented user interface, as they are strictly related to how people perceive
information. Whereas in the case of user interface dialogues, there are aspects that are
more difficult to grasp in an empirical analysis because when users navigate in an
application they follow only one of the many possible paths of actions. In addition,
interactive systems are highly concurrent systems because they can support the use of
multiple interaction devices, they can be connected to multiple systems, they can
support the performance of multiple tasks, they often can support multi-user
interactions.

The current tendency is to increase such concurrency. On the one hand, this
concurrency is a source of flexibility, usability, and interactional richness but, on the
other hand, it generates a complexity that needs to be carefully considered, especially
in safety-critical contexts. Thus, formal techniques can give a useful support to better
understand dialogue models and their properties. Concerning when such a
formalisation effort should be performed, we note that if only the lowest specification
level of the task model (user actions and system feedback) was considered then many
important aspects could be overlooked. A designer needs first to understand the
logical and temporal relationships among the possible logical activities aspects (that
to some extent depend on the artefacts available) and, consequently, a representation
is required supporting such information. Formalising task models can allow designers
to reach a number of results: a better understanding of logical activities to support;
obtaining information useful for the concrete design of the user interface, the
possibility of supporting usability evaluation of the application considered, the
possibility of rigorously reasoning about properties. The last aspect has not
sufficiently been considered and will be addressed in this paper on the assumption
that the dialogue aspects should be taken into account when formalising HCI aspects
with particular attention to tasks and their performance.

Task
Modelling

CTT
Specification

LOTOS
Specification

Prototype

Finite state
Automata

General
HCI

properties

Informal
properties

Properties
Identification

 Formal
Properties

Model Checking
Results

Model-checker
Trasformation

Property
Verification

Structured
Evaluation

Formal
Evaluation

Modifying
Specification

Development
Software

Transformation

Design
Modifications

Property
Formalisation

Fig. 1. Our Method

The method that we propose for the design of user interfaces with the support of

formal methods is represented in Figure 1, where the processes are indicated with
ovals and the results with rectangles. The ovals filled by points are tool-supported and
are the phases that we mainly discuss in this paper. We have developed some of the
tools involved in the method. We use model checkers developed by other groups [6]
for the formal verification. More precisely, the method comprises the following
activities:

• Task Modelling. After a first phase gathering information on the application
domain, and an informal task analysis, designers should develop a task model that
forces them to clarify many aspects related to possible tasks and their relationships.
The task specification is obtained by first structuring the tasks in a hierarchical way
so that abstract tasks are described in terms of more refined tasks. Next, temporal
relationships among tasks are described using ConcurTaskTrees [13] which is a
graphical notation allowing designers to describe hierarchies of tasks with temporal
operators that have been identified extending the semantics of LOTOS [8]
operators. In this way, we obtain a ConcurTaskTrees specification of the
cooperative application with one task model for each role involved and one part
specifying the relationships among tasks performed by users with different roles
thus giving a clear indication of how cooperations are performed. For each task it
is also possible to provide further information concerning the objects that they
manipulate and attributes such as frequency, time requested and so on. The editor
of task models in ConcurTaskTrees is publicly available at
(http://giove.cnuce.cnr.it/ctte.html).

• ConcurTaskTrees-to-LOTOS transformation. The ConcurTaskTrees specification
can be used for two purposes. One is driving the development of a software
prototype, in particular prototype presentation, consistent with the indicated
requirements (for example, if we know that the application has to provide an
overview of some information then presentation techniques suitable to summarise
data should be considered). The other possibility is to transform the
ConcurTaskTrees model into a LOTOS specification to analyse the dialogue of the
user interface using model checking techniques. We have implemented a
transformation tool where each task specification is translated into a corresponding
LOTOS process. The motivation for this transformation is that there are various
model checking tools able to accept LOTOS specifications as input. The LOTOS
specification is the input for automatic tools (such as the CADP package [6]) that
transform it into a finite state automata or Labelled Transition System (LTS). Since
LOTOS has more expressive power than LTSs this transformation in some cases is
not possible.

• Property Formalisation. The identification of the relevant properties of the user
interface considers both general HCI properties, such as the continuous feedback
property [12], and other properties that are specific of the considered application
domain. To support user interface designers in editing formal properties we have
defined a set of templates associated to relevant properties so that the designer has
only to fill some parameters for identifying the tasks involved in the property. Such
tasks are directly selected on the graphical representation of the task model.

• Model-checking. After having formalised the identified properties with a formal
notation, these properties are checked against the LTS specification, describing the
Interactive System derived in previous steps, to verify which properties are valid in
the system. Checking that the formal specification satisfies the relevant properties
for the possible dialogues is useful to understand whether the design developed can
support usability and safety aspects. The verification is performed by a general
purpose automatic tool for formal verification and the results of the model
checking are used for formal and informal evaluations that can lead to modify the
ConcurTaskTrees specification thus re-starting the process.

3 The Case Study

The air traffic controllers' main task is to ensure flight safety and regularity: safety
means that the minimal separation has to be maintained between aircraft, regularity
means that the planes have to follow as much as possible the beforehand fixed flight
plans. Currently, the air traffic controllers perform most of their activities using the
following media and tools:
• Paper flight strips, automatically generated and printed by the system. Generally,

there is one strip for each aircraft and each of them contains flight information
(type of aircraft, planned route, etc.) and it is used by controllers to annotate the
flight's evolutions in the sector;

• Vocal communications: controllers communicate via voice by means of radio with
pilots currently in the sector, via telephone and directly with other colleagues
working respectively in other and in the same center;

• Other instruments such as the radar that allows them to monitor the current traffic
situation, especially used when it is not possible to have the complete overview of
the traffic with the naked eye.
As far as it concerns the management of the traffic in the proximity and within the

airport there are two particular types of controllers that work elbow-to-elbow in the
control tower and who communicate with pilots using the radio with two different
frequencies: the ground controller and the tower controller.

In the MEFISTO project, a new interactive prototype application for air traffic
control in the aerodrome area has been designed and developed. It uses
communication by data link, a technology allowing asynchronous exchanges of
digital data containing messages coded according to a predefined syntax. This means
that controllers can provide commands by direct manipulation, graphical user
interfaces. This type of technology is particular useful in bad atmosphere conditions
where the controllers have difficulties in observing the movements of aircraft from
the control tower.

The Ground controller has to look after movements "on ground", which are (for
departing flights) to guide planes from the departure gate until the site immediately
before the runway's starting point (holding position) and (for arriving planes) from the
end of the runway until the arrival gate. In order to perform their activity controllers
have to mentally build the current picture of traffic and decide who, when and how
can go through the taxiways (that allow movements from the various airport areas
from/to the runways), and so on, minimising the likelihood of conflicts. More
specifically, when pilots are approaching the runway, they inform the ground
controllers, then the controllers send to them the frequency for contacting the tower
controller, because at that point the flight passes under the tower controller's
regulation.

Tower controllers have to take care of maintaining the minimal separations
between aircraft thus their duty is to allocate the access to the runway and to decide
the time of departure. They receive the strip from the ground controller and, when
they receive the pilot's request for taking off they can send the relative clearance
depending on the current situation. Thus, they have to mentally calculate how to
manage the separations to ensure that no conflict could happen between departing
planes and the effects of the "wake vortex" are cancelled.

4 Task Models

4.1 Representing Task Models

The reason for introducing ConcurTaskTrees was that after first experiences with
LOTOS [14] we realised the need for a new extension that allowed designers to avoid
unnecessarily complicated expressions even for specifying small behaviours and to
focus on aspects more important for user interface design. In addition, we noted that
other notations for task models were lacking of precise semantics or missing
constructs useful for obtaining flexible descriptions.

The notation we use for representing task models allow designers to obtain a
hierarchical description of the possible activities with a rich set of operators to
describe their temporal relationships. Different icons are used to indicate how the
performance of the task is allocated. A task model of a cooperative application is
obtained by designing the task model associated with each role involved in an
application and the model related to the cooperative part. In the latter part,
cooperative tasks are considered, they are tasks that require actions from two or more
users and they are refined until we reach tasks performed by a single user. This allows
designers to define constraints among tasks performed by different users. An example
of cooperative task is driving an aircraft to the holding position as it requires actions
from the pilot, the tower controller and the ground controller.

In Figure 2 we show an excerpt of ConcurTaskTrees specification taken from our

case study. It considers the Taxi to task performed by the Ground controller when he
receives a path request from a pilot in order to reach either the assigned runway and
then take-off or to leave the runway and reach the arrival gate. The controller must
first select the corresponding interaction technique (Select taxi to task) and then (>> is
the sequential operator) choose ([] operator) between using the path automatically
suggested or building a path manually. In the former case, the controller selects a
predefined path and the system shows it graphically (the relative icon indicates a
system task). In the latter case, the controller selects manual mode. Then, an iterative
task (Building Path, * is the iterative operator) allows specifying the next position and
the system responds by graphically displaying the corresponding segment until the
controller terminates the iterative building operation ([> is the disabling operator).
Finally, the controller can choose between up-linking the path or cancelling it if he is
not satisfied.

Fig. 2. An excerpt of a ConcurTaskTrees specification.

4.2 From ConcurTaskTrees to LOTOS

The first important aspect to consider is that the translation from ConcurTaskTrees to
LOTOS is composed of two main steps: the translation of ConcurTaskTrees tasks into
LOTOS processes, and to implement the ConcurTaskTrees temporal operators by
means of the operators provided by the LOTOS language.

With regard to the former issue, for each process, its specification implies that all
the gates that are used inside the specification have to be declared in its heading. The
direct consequence is that in the specification of the root process all the gates detected
have to be listed. Whereas in the specification of a process corresponding to a leaf
task the translation is reduced to insert the associated gate and the exit action, in order
to indicate when the successful end of the process occurs.

Some of the ConcurTaskTrees operators are derived from LOTOS, other operators
(such as those for indicating optional and iterative tasks) need to be mapped onto
LOTOS expressions. An example of the latter issue is in the translation of the
ConcurTaskTrees iterative operator (*), that has not a direct correspondent in
LOTOS. Referring to Figure 2, where the Building Path task is exactly iterative, its
translation into LOTOS just requires a recursive call of the LOTOS process
associated with the task in order to simulate the behaviour of restarting an activity just
after the completion of an its previous execution.

4.3 Integration of Tools for Task Modelling and Tools for Model-Checking

The environment that we have designed to support this method allows an integrated
use of two tools:
• CTTE (ConcurTaskTrees Environment) [3] that supports editing and simulation of

task models of cooperative applications.
• A model checking tool, we have used CADP [6] for this purpose but our

environment can be easily integrated with other similar model checking tools.

In this case the designer can edit a task model and then automatically translate it
into a LOTOS specification that is the input for the model checking tool. The

integrated environment allows designers to directly access to some functionality of
the model checker (Activate Model-checking tools item in the Tools menu, see Figure
3).

Fig. 3. Activation of the model checking tools.

Then, a new window appears (see Figure 4) showing all the possible functionality
that can be accessed from the tool. The new window is mainly divided into two
panels: one includes commands used to get and handle the LOTOS specification, and
the other one provides commands to handle Labelled Transition System (LTS)
associated with the current task model. Thus, depending on the particular panel that
has been selected, the window shows different sets of commands. For example, if the
user selects the possibility to handle commands for the LOTOS specification then the
tool gives various possibilities. They are (as you can see from the picture): performing
a simulation of the LOTOS specification (Standard Simula…button); performing a
casual execution (Random execution); producing the LTS (Make LTS) or finding
deadlocks in the specification, if any, and so on.

In Figure 4 we show an example where the designer has activated the

transformation into a LTS. After that, the editor of properties has been activated. In
addition, through the Transform button appearing on the bottom of the Check Tools
window, the designer can access further information, for example to get the LOTOS
specification of the cooperative task model described in the CTT specification.

Fig. 4. Selection of the type of property to check.

It is worth noting that, besides the possibility of having the entire task model
translated into LOTOS, sometimes it could be useful to have the LOTOS expression
correspondent to some subtasks. This can be obtained by selecting the Transform
subtree to LOTOS item in the Tools menu (see Figure 3) after having selected in the
editor the task name of the root of the subtree. For example, if we select in the editor
window the Building Path task (represented in Figure 2), and then activate the
translation into LOTOS, then the CTT environment shows a window where it is
displayed the corresponding LOTOS expression (see Figure 5) that can be saved in a
file.

In addition, to facilitate the specification of the properties the tool provides
templates for predefined properties that can be filled interactively by selecting the
tasks in the task model that should be involved in the property considered. The
templates that have been selected allow designers to specify general properties such
as relative reachability (verifying if it is possible to enable the performance of task y
after having performed task x), performing a task in any state, mutual awareness, and
so on. Depending on the specific property that the user wants to verify, the user
interface provides an indication of the information that designers should fill. For
example, if the user wants to verify if it is possible to perform a specific task in any
state, then he should be able to specify exactly one task. Whereas if he wants to verify
relative reachability he has to specify two tasks to check whether it is possible to
perform the second task once the first one has been accomplished.

Fig. 5. An example of LOTOS specification automatically derived.

Templates help designers identifying the desired property while preventing them
from doing syntax errors that occur often in this kind of activity. For example, if the
user wants to verify, within the Ground controller’s task model, if it is possible to
reach the Send Apron frequency to pilot task (Send Apron freq to pilot) from the
Communicate complete path task (Comm complete path) then he has to select the
Reachability item in the property list. After that, he has to graphically select in the
task model the tasks involved in the property. In the case of reachability, two tasks
have to be selected, so the left button of mouse allows designers to specify the first
task and the right-button the second task: the associated fields are automatically filled,
together with the correspondent roles (ground controller in the example of Figure 6).

The tool is able to provide the designer with both a formal and a natural language
description of the property considered. If the designer decides to verify a property,
then its formal specification is given to the underlying model-checking in order to
verify if the specified property holds in the task model. In the negative case, the tool
shows (one) execution that provides the counter-example for this property. It is
possible to map the sequence of actions defining the counter-example given by the
model checker to the corresponding tasks in the ConcurTaskTrees task model.

Fig. 6. Interactive Composition of a Property.

5 User Interface Properties

In a highly cooperative system as that considered in our case study we can focus on
properties of the specific user interface customised for a particular user and look at
properties related to the interconnections and communications between different
users. We can consider both general properties indicated in the pre-defined templates
and specific properties of interest in the case study under consideration.

In multi-user properties we bring out other properties that regard characteristics of
the highly cooperative environment considered, such as "awareness" properties which
allow designers to reason about the possibility of checking if one user can be aware of
the results of activities performed by another user. Within the "single-user" category it
is possible to indicate the properties that are related to only one user indifferently
from the particular user we consider because they are common to more than one user's
class.

We will use an extended version of ACTL [5], which considers data values in
addition to action, to formalise examples of properties in the case study previously
introduced. This type of extension can be easily converted in an XTL [9] expression
that can be verified by the CADP tool. Some properties are instances of the general
properties that have specific templates associated with them, other properties are
specific to our case study.

5.1 Examples of Single-User Properties

We start with one example of single user property and then show other examples
involving multi-users interactions.

Warning Message for Time-Out Expired. With datalink functionality, all the
messages have a time-out indicating the time interval during which the associated
answer has to be received in order to be appropriately considered and evaluated.
When the time-out expires, an appropriate notification has to be shown on the
message originator's interface, in order to signal either that the message has to be sent
again, or that possible answers received after the time-out expiration have to be
ignored. More precisely, the property can be expressed in this way:

If there is expiration of an operational time-out without reception of the operational
datalink response message, the message originator shall be notified with an
appropriate feedback. The related ACTL-like expression is:

AG <is_sent(controller, request)> E[true{~is_received(controller, answer} U
{timeout} A[true{true} U {is_presented(controller,noanswer_feedback}true]

This means that once the controller has sent a request to a pilot, then we have a

temporal evolution during which no associated answer coming from the pilot to the
controller has been received. Finally, as a result of the expiration of the fixed time-
out, we reach a state from where for all the possible temporal evolution the desired
effect of presenting an adequate feedback to the controller's user interface of the
missed answer will be reached (noanswer_feedback in the above property).

This implies that only after the expiration of the time out we are sure that the
desired effect (warning message for time-out expired) will be reached, thus allowing
the controller to decide what is the best action to perform in order to make up for the
error.

5.2 Examples of Multi-Users Properties

In this paragraph we consider some examples of properties of multi-user interactions
that we found important to formalise for verification: awareness property, that in this
case mainly means that an action produced by one controller has to be shown to the
other sector’s controller; co-ordination properties, and mutual exclusive properties.

Mutual Awareness Property. This property means that whenever a user performs an
interaction, the associated effect has to be shown on the user interface of another user.
We can use this property in our case study to be sure that the tower controller is aware
of all the interactions (that we denote with “control_action” wording) performed by
ground controllers which can have an impact on their activity. We consider both
actions that controllers can perform directly on the system based on their decisions
(for example the ground controller can change a previously fixed flight parameter),
and actions that involve datalink dialogues with pilots. In other words, we want to pay
attention to all the actions that might cause that controllers’ activities clash each other,

thus we do not consider the actions that the ground performs in order to get
information on the system for monitoring it.

More precisely, we specify that whenever (AG operator) the ground controller
performs a modification action on the user interface then for all the possible temporal
evolutions (A operator) the event associated with the user interface modification
reception will occur on the tower controller’s user interface. The ACTL-like
expression is:

AG<executed(ground, interaction)>A[true{true}U{presented(tower, feedback)}true])

With “executed” and “presented” wordings we want to distinguish when the

system generates and undertakes the action from when the effects of the action are
presented on the user interface. Of course, the property holds for the tower controller
too. A direct consequence of the awareness is that the two controllers are more
synchronised on these actions’ sequences when (for example) a flight passes from one
controller’s handling to the other controller’s. The most intuitive example is during
the hand over from the ground controller to the tower controller for departure flights
(whenever the pilot reaches the holding position, the ground controller performs a last
contact and then the control is passed to the tower controller) and vice versa for
arrival flights. In this case, the last contact message performed by the ground
controller generates a feedback on the tower controller’s user interface, so that the
tower is aware of the performed action and he expects a pilot’s message in the near
future. In next figures we show an example of user interface in our prototype that
supports this type of property.

Fig. 7. User interface for tower controller (Left side), and for ground controller (Right side).

In Fig.7 (left-side) there is the Tower controller’s user interface (as you can see its
focus is mainly on the runway) at a certain time. The information about the flight
AZA2020 is greyed because this flight is not currently under the control of the Tower
controller. In Fig.7 (right-side) the user interface of the Ground controller is shown at
the same time. As you can see, the Ground controller (whose activities are mainly

dedicated to managing taxiways) is sending to the AZA2020 flight the frequency to
contact the Tower controller. In Fig.8 the feedback of this action on the Tower
controller’s user interface is shown. The graphical technique that has been used to
indicate that the Ground controller has sent the frequency of the tower controller to
AZA2020 is an additional bold border around the flight label.

Fig. 8. Feedback for mutual awareness.

Location-Dependent Coordination Property. Here there is another case of proper
controllers’ co-ordination. In this case, different users are enabled to perform an
interaction depending on the position of an object of interest: for example, this occurs
when a departure flight has to cross an active runway in order to reach a different
assigned runway. The ground controller gives to the flight a path on the taxiways until
the flight reaches the runway that he has to cross. Thus, on the one hand the pilot
knows that when he arrives at that point he has to wait for a message from a tower
controller (who takes on responsibility for runways). In addition, more importantly,
the tower controller knows that, when the pilot has reached the crossing he has to
provide clearance to go through the runway as soon as possible, without any explicit
request from the pilot:

AG<sent(ground, path)> A[true{true}U{received(pilot, path} E[true{true}
U{stopped(pilot, runways_crossing)} A[true{true}U{sent(tower, ok_crossing} true]

This means that once the ground controller has sent the path to a pilot in order to

reach the assigned runway, we have a temporal evolution during which the message
has been received by the pilot. Then, we reach a state, by performing the pilot’s action
of stopping at the crossing of the taxiway with the runway, from where for all the
possible temporal evolutions the desired effect (the tower controller sending the
authorisation to cross the runway) will occur.

Mutual Exclusive Control Property. The tower and ground controllers share flight
information of all the planes currently under their control (for example they can
always obtain flight data by means of datalink menus). However, in order to serialise
the control actions performed by each controller (for example sending datalink
messages to pilots), it is important to guarantee that, while the flight is under the
control of the tower controller, the ground controller can not send (voluntarily or
unintentionally) control orders to pilot until the tower controller performs a last
contact and then the flight passes under the control of the ground controller:

AG<sent(pilot, first_contact)> A[true{not (sent(ground, order) U {sent(tower,
last_contact)} true]

This property considers when an arriving pilot sends a first contact message to the

tower controller. Then, it will not be possible to have that the ground controller sends
a control order to the pilot, until (U operator) the tower controller has sent to the pilot
a last contact message.

6 Conclusions

In this paper we have presented and discussed a method that introduces the use of
formal support in the design of interactive safety-critical applications. We have
explained what the main aspects to consider in such formalisation efforts are and how
we build a formal task model of a cooperative application that is then used to reason
about single and multi-user properties. Such properties are identified through
multidisciplinary discussions that involve end users, user interface designers, and
software developers.

This approach has been applied to a case study in the Air Traffic Control field: the
management of aircraft in the aerodrome area with data link communication. Our
method is supported by a set of tools (editor of task models, translator from
ConcurTaskTrees to LOTOS, editor of formal properties of user interfaces) that can
be integrated with existing model checking tools.

Further work is planned on better integration between our tools and existing model
checking tools in order to achieve, for example, more effective user interfaces for
specifying properties and the possibility of analysing the results of the model checker
directly in the ConcurTaskTrees model.

Acknowledgements

We gratefully acknowledge support from the European Commission for the
MEFISTO Esprit LTR Project (http://giove.cnuce.cnr.it/mefisto.html) and our
colleagues in the project for useful discussions on the topics of the paper.

References

1. B.d’Ausbourg, C.Seguin, G.Durrieu, P.Rochè, Helping the Automated Validation Process
of User Interfaces Systems, Proceedings ICSE’98 pp.219-228.

2. G.Abowd, H.Wang, A.Monk, “A formal technique for automated dialogue development”,
Proceedings DIS’95, ACM Press, pp.219-226.

3. G.Ballardin, C.Mancini, F.Paternò, Computer-Aided Analysis of Cooperative
Applications, Proceedings Computer-Aided Design of User Interfaces, pp.257-270,,
Kluwer, 1999.

4. G.Booch, J.Rumbaugh, I.Jacobson, Unified Modeling Language Reference Manual,
Addison Wesley, 1999

5. R.De Nicola, A.Fantechi, S.Gnesi, and G.Ristori. An action-based framework for
verifying logical and behavioural properties of concurrent systems, Computer Network
and ISDN systems, 25, 1993, 761-778

6. H. Garavel, M. Jorgensen, R. Mateescu, Ch. Pecheur, M.Sighireanu, B.Vivien, CADP'97 -
Status, Applications and Perspectives

7. A.Hall, “Using Formal Methods to Develop an ATC Information System”, IEEE
Software, pp.66-76, March 1996.

8. ISO (1988). Information Processing Systems - Open Systems Interconnection – LOTOS -
A Formal Description Based on Temporal Ordering of Observational Behaviour. ISO/IS
8807. ISO Central Secretariat.

9. R. Mateescu and H. Garavel, XTL: A Meta-Language and Tool for Temporal Logic
Model-Checking. Proceedings of the International Workshop on Software Tools for
Technology. Transfer STTT'98 (Aalborg, Denmark), July 1998.

10. Myers, B., Rosson, M.B., “Survey on User Interface Programming”, Proceedings CHI’92,
pp. 195-202, ACM Press, 1992.

11. P.Palanque, F.Paternò (eds.), Formal Methods in Human-Computer Interaction, Springer
Verlag, 1997.

12. F.Paternò, Formal Reasoning about Dialogue Properties with Automatic Support,
Interacting with Computers, August 1997, pp.173-196, Elsevier.

13. F.Paternò, Model-Based Design and Usability Evaluation of Interactive Applications,
Springer Verlag, ISBN 1-85233-155-0, 1999.

14. F.Paterno', G.Faconti, On the Use of LOTOS to Describe Graphical Interaction, in Monk,
Diaper & Harrison eds. People and Computers VII: Proceedings of the HCI'92
Conference, pp.155-173, Cambridge University Press.

15. A.Puerta, A Model-Based Interface Development Environment, IEEE Software, pp. 40-47,
July/August 1997.

