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ABSTRACT
Explicit state model checking techniques suffer from the
state explosion problem [7]. Interfaces [6, 2] can provide a
partial solution to this problem by means of compositional
state space reduction and can thus be applied when veri-
fying interestingly large examples. Interface generation has
till now been largely a manual process, were experts in the
system or protocol to be verified describe the interface. This
can lead to errors appearing in the verification process un-
less overheads to check the correctness of the interface are
carried out. We address this issue by looking at automatic
generation of interfaces, which by the very nature of their
construction can be guaranteed to be correct. This report
outlines preliminary experiments carried out on automatic
techniques for interface generation together with their proofs
of correctness.

1. INTRODUCTION
Computer systems (both software and hardware) have over
the past few decades been introduced into almost every
piece of machinery. Real-time systems such as controllers
for avionics, cars and medical equipment have become ubiq-
uitous. Model checking techniques are used to algorithmi-
cally verify these finite state systems formally. It is becom-
ing increasingly popular by many hardware/software man-
ufacturers to verify that their systems actually implement
the required specifications. This is achieved by verifying if
the model of the system satisfies some logical specification.
Suppose we want to verify, for example, that every request
for service is eventually acknowledged, or that there are no
deadlock states in our systems. This sort of verification can
be carried out using model checking techniques.
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Processes can be described using some formal process calculi
such as CCS [8], CSP [3] or LOTOS [4]. Properties are then
expressed as temporal logic formulas. Computational Tree
Logic (CTL) [1] is one such temporal logic used to express
properties of a system in the context of formal verification.
It uses atomic propositions as its building blocks to make
statements about the states of a system. CTL then combines
these propositions into formulas using logical and temporal
operators. Referring to the previous example, one would for
example want to verify that every computation path after
a service request is met, will eventually encounter a service
acknowledgment state.

The state space explosion problem occurs with systems com-
posed of a large number of interacting components using
data structures which can potentially store many different
values. The problem is clearly that of traversing the en-
tire search space which would typically grow exponentially
with the addition of new system components. One possi-
ble solution is that of decreasing the number of states in
the computational graph while still maintaining an equiva-
lent graph. In order to do so one would need to combine
equivalent states (thus decreasing states) in the computa-
tional graph. We adopt the technique used by Krimm and
Mounier in [6], namely interfaces.

We start this report with some preliminary definitions. We
then focus on the theory behind our method of interface
generation. Two interface generators are then explained in
some detail. We conclude this report by describing how
these implementations work in the verification of a reliable
multicast protocol.

2. PRELIMINARY DEFINITIONS
The behaviour of a sequential process can be modeled by a
labeled transition system, consisting of a set of states and a
labeled transition relation between states. Each transition
describes the execution of the process from a current state
given a particular instruction (label).

In what follows A is the global set of labels, τ a particular
label representing a hidden or unobservable instruction (τ /∈



A). Given a set of labels A (A ⊆ A) we will write Aτ to
denote A∪{τ} and A∗ to represent the set of finite sequences
over A.

Definition 1 A Labeled Transition System (LTS, for short)
is a quadruplet M = (Q, A, T, q0) where Q is a finite set of
states, A ⊆ A is a finite set of actions, T ⊆ Q × Aτ × Q is
a transition relation between states in Q and q0 ∈ Q is the
initial state.

We write q
a
→ q′ to denote a transition between states q and

q′ using a ∈ A, i.e. (q, a, q′) ∈ T . We shall also use q
s
⇒ qn

(where s is a string in A∗
τ ) to indicate that there exist states

q1 . . . qn following string s.

We now define the set of possible actions from a state q ∈ Q.

Definition 2 Given an LTS M = (Q, A, T, q0) and q ∈ Q,
the actions possible from state q is defined as actions(q) =

{a : A | ∃q′ · q
a
→ q′}.

We now define the language generated by a LTS from a
particular state p ∈ Q.

Definition 3 Given an LTS M = (Q, A, T, q0) and q ∈ Q,
the (observable) language starting from q in M is defined as
follows:

LM(q) =

{σ | σ = a1a2 . . . an ∧ ∃q1, . . . , qn · q
τ∗a1⇒ q1 . . .

τ∗anτ∗

⇒ qn}

The (observable) language generated by LTS M is defined
as the language starting from the initial state of M : LM (q0).

3. REFINEMENTS OF LTSS
In this section we introduce the binary operator ⊑, that
compares two LTSes.

Definition 4 We say that M2 is refined by M1 (M2 ⊑ M1)
if for some total function eq ∈ Q1 → Q2 the following holds:

i) A1 = A2

ii) Q2 ⊆ Q1

iii) q
a
→1 q′, implies that, eq(q)

a
→2 eq(q′)

iv) q0 = eq(q0)

Lemma 1 Given two LTS Mi = (Qi, Ai, Ti, q0i), where i ∈

{1, 2}, related with a function eq, then q
s
⇒1 q′ implies that

eq(q)
s
⇒2 eq(q′)

Proof: We prove this lemma by string induction over s.

The base case, taking s to be the empty string is trivially
true.

For the inductive case, we start by assuming that: ∀q, q′ ·

q
t
⇒1 q′ implies that eq(q)

t
⇒2 eq(q′).

We now need to prove that:

∀q, q′ · q
at
⇒1 q′ implies that eq(q)

at
⇒2 eq(q′)

But, if q
at
⇒1 q′ then ∃q′′ · q

a
→1 q′′ ∧ q′′

t
⇒1 q′.

By the inductive hypothesis, it follows that ∃q′′ · q
a
→1

q′′ ∧ eq(q′′)
t
⇒2 eq(q′).

Since we know that every transition in M1 is mirrored in
M2 on equivalent states, then we know that ∃q′′ · eq(q)

a
→2

eq(q′′) ∧ eq(q′′)
t
⇒2 eq(q′).

Hence, we conclude that:

eq(q)
at
⇒2 eq(q′)

The result follows by string induction.

Theorem 1 Given two LTSs Mi = (Qi, Ai, Ti, q0i), with
i ∈ {1, 2}, if M2 is refined by M1 (M2 ⊑M1), then the lan-
guage generated by M1, L(M1), is a subset of the language
generated by M2, L(M2).

Proof: To require to show that if s ∈ L(M1) then s ∈
L(M2).

If s ∈ L(M1), then, by definition of L(M):

∃q1 : Q1 · q01
s
⇒1 q1

By applying lemma 1, we can conclude that eq(q01)
s
⇒2

eq(q1). But since, we know that q02 = eq(q01), it follows
that s ∈ L(M2).

4. INTERFACES
Interfaces [6] exploit the use of a compositional approach for
state space generation. Essentially an interface represents
the envorinment of a sub-expression E′ in E. This interface,
usually a LTS, represents the set of authorised execution
sequences that can be performed by E′ within the context of
E. Using a projector operator one can generate a restricted
LTS of E′ such that useless execution sequences are cut off
according to the corresponding interface.

In [6] a new projection operator is defined. This is the semi-
composition operator which ensures that :

1. it restricts the behaviour of E′ according to its envi-
ronment



2. it preserves the behaviour of the initial expression when
a sub-expression E′ is replaced by its corresponing re-
duced expression.

3. it can be computed on-the-fly, i.e. can be obtained
without generating the LTS of E′ first.

The definition of the semi-composition operator is given in
[6]. M1 ⌉|G M2 denotes the LTS resulting from the semi-
composition of M1 by M2. M2 is the interface with which
M1 is semi-composed. One should note that if M2 is man-
ually generated by an expert of the system or protocol be-
ing verified then semi-composition is probably going to be
much more effective in reducing the states of S1. Our work
explores the possibility of automatically creating effective
interfaces. We can then guarantee their correctness by con-
struction.

If M1 is composed with M2 (not necessarily locally) and M ′
2

is an LTS such that L(M2) ⊆ L(M ′
2), then we can reduce

M1 to M1 ⌉|G M ′
2 without altering the overall behaviour of

the overall system. We would clearly be altering the behav-
iour of M1 but this is exactly what we want in terms of state
reduction. Since the complexity of the semi-composition op-
erator increases as the the number of states of the interface
increases, sometimes being impossible to calculate due to
the size of the interface, our aim is to balance these require-
ments — taking an LTS M we want to produce a smaller
LTS M ′ satisfying L(M) ⊆ L(M ′). Clearly, many solutions
exist satisfying this loose requirement. In this paper we
present two initial experiments in this direction.

5. AUTOMATIC GENERATION OF INTER-
FACES

We have so far implemented two interface generators. This
section describes these algorithms. In what follows we refer
to the original LTS as M1 and its reduced LTS, the interface,
as M2

5.1 Chaos State Partition
The first interface implementation is the chaos state parti-
tion interface. The main idea is that we keep a number of
states from M1, collapsing the rest into a chaos state. So
for example if we have M1 with 20 states and we want to
generate an interface taking in consideration only the first
10 states (traversing the LTS in breadth-first order, start-
ing from the inital state), its reduced version M2 would have
10+1 states. The extra state is the chaos state (we call χ) in
which all the other states are grouped. Figure 1 illustrates
this reduction.

Let Q̄ be a subset of states of M1 which will be kept in M2.
M2 is the LTS resulting from the reduction of M1. Q̄ =
{0,1,2,3,4,5,6,7,8,9} in the example given here.

Definition 5 Given an LTS M = (Q, A, T, q0) and Q̄ ⊆ Q,
we define the reduction of M to states Q̄ to be M � Q̄ =
(Q′, A′, T ′, q′0) such that Q′ = Q̄ ∪ {chaos}, A′ = A, q′0 =

chaosQ̄
χ (q0) and T ′ = {(chaosQ̄

χ (q), a, chaosQ̄
χ (q′)) | (q, a, q′) ∈

T1} ∪ {(χ, a, χ) | a ∈ A}, where chaos is defined as follows:

chaosQ
χ (q) =

 
q if q ∈ Q
χ otherwise

This construction yields an LTS M ′ which is refined by the
original LTS M .

Proposition 1 M � Q̄ ⊑M

This can be shown by taking eq(q) to be chaosQ̄
χ (q).

By theorem 1 we are guaranteed that M � Q̄ accepts a su-
perset of the language accepted by M , and hence can be
used as a replacement interface.

The Chaos Partition algorithm has been implemented using
the CADP toolkit [5] traversing the LTS in breadth-first
order, starting from the inital state.

Algorithm 1 Calculate M2 = M1 ⊲ Q̄

Require: m ≤ n
n ← number of states in M1

m ← depth in breath first order of last state in M1 to
keep before chaos
for i = 0 to n do

if i < m then
copy state Qi from M1 to M2

copy outgoing tranisitions of state Qi from M1 to M2

else
join state Qi to the chaos state in M2

copy outgoing transitions of Qi in M1 to M2

end if
end for

5.2 Node Behaviour State Partition
Our second implementation abandons the idea of creating a
chaos state and instead moves in the direction of creating a
set partition which groups together states in M1 which can
perform exactly the same set of strings of length n. With,
for example, the length being 1, and there two states in M1

which can only perform actions a and b then these two states
are grouped together in one state in M2. We currently cater
only for length 1 but will deal with the general case in future
work. Figure 2 illustrates the same LTS shown earlier on but
this time reduced with the Node Behaviour state partition.

The state partitions created with this reduction are the fol-
lowing:
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Figure 1: State reduction of a 20 state LTS using the chaos state partition

State Actions State Partition
a,b {0,1,10,18}
a {2,8,9,13,15,16,19}
b {3,4,5,12,17}

b,c {6}
a,c {7}

a,b,c {11}
c {14}

The partitions created will form the new states in M2.

Definition 6 Given an LTS M = (Q, A, T, q0), the reduc-

tion of M looking at trails of length 1 is defined to be M [1] =
(Q′, A′, T ′, q′0) where Q′ = 2A, A′ = A, q′0 = actions(q0) and
T ′ = {actions(q), a, actions(q′)) | (q, a, q′) ∈ T}.

This construction yields an LTS M ′ which is refined by the
original LTS M .

Proposition 2 M [1] ⊑ M

With depth = 1 the possible states of M2 is equal to the
powerset of A. Hence function eq is defined as follows:

eq(q) = actions(q)

Interface generation using the Node Behaviour partition al-
gorithm has also been implemented within the CADP toolkit
[5]. As explained in algorithm 2 we first go through all the
states in M1 and group them in state partitions accord-
ing to their outgoing transitions. These state partitions be-
come the new states in M2. We then create the transitions
between the new state partitions to reflect the transitions
present in M1. The number of states and number of tran-
sitions in M2 is clearly always smaller or equal to that in
M1.

6. CASE STUDIES OF COMPOSITIONAL
VERIFICATION

In this section we describe some experiments carried out
with the automatically generated interfaces. In order to
come up with a good comparison of how these interfaces
work we make use of an example listed as demo of the CADP
toolkit which uses the projector operator discussed earlier.

We first give a very brief introduction to the CADP toolkit,
then describe the rel/REL multicast protocol. We illustrate
the results achieved when the sub-expressions of the protocol
are restricted with our automatically generated interfaces.

6.1 Construction and Analysis of Distributed
Processes (CADP)
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Figure 2: State reduction of a 20 state LTS when n=1

Algorithm 2 Calculate M2 = M
[1]
1

n ← number of states in M1

for i = 0 to n do
if state partition already exists which maps the behav-
iour of Qi then

add Qi from M1 to this state partition
else

create new state partition
add Qi from M1 to the newly created state partition

end if
end for
X,Y ← set of state partitions in M2

for all partitions Xj in X do
for all partitions Yk in Y do

if there are states in Xj and Yk such that these states
were connected in M1 then

connect with the same transition as in M1 parti-
tions Xj and Yk

end if
end for

end for

The CADP toolkit [5] consists of a set of verification tools
developed by the VASY research group1. The toolkit is
especially useful in the design of communication protocols
and distributed systems. Processes are specified in LOTOS
[4] which is essentially a language for specifying CCS and
CSP like processes. CADP contains amongst other tools,
compilers for translating LOTOS descriptions into C code
and LTSs which is then used for simulation, verification and
testing purposes. The implementation of our interfaces was
carried out using the CADP tools for explicit state manipu-
lation, namely the BCG. Binary Coded Graphs (BCG) is a
package which uses highly optimised representation of LTSs
together with various other tools for the manipulation of
these LTSs. Further information on CADP can be obtained
by visiting the VASY website.

The projector operator within CADP implements the semi-
composition operator defined in [6]. This operator is used to
constrain processes within their environment. We make use
this semi-composition operator to contrain processes with
our automatically generated interfaces before actually ap-
plying the parallel composition on them.

6.2 The rel/REL Multicast Protocol
The rel/REL protocol [9] provides a reliable atomic multi-
cast service between stations connected by a network. The

1http://www.inrialpes.fr/vasy/cadp/



LOTOS specification of the multicast protocol can be found
in [6]. The rel/REL multicast service should ensure that a
message sent by a transmitter is appropriately broadcasted
to all receivers taking in consideration the fact that these
stations may suffer from failures (i.e., they can crash).

In this paper we do not give details of how the rel/REL
protocol works. We are only interested in the service pro-
vided by the protocol which need to be verified. The first
property is atomicity, meaning that either all receivers get
the message, or none of them will. This property is verified
using temporal logic. The second property is that of causal-
ity meaning that the order of messages is preserved. This
property is verified using comparison modulo safety equiva-
lences. By using our automatically generated interfaces we
would like to observe a decrease in the number of states in
the intermediate LTSs composing the whole protocol.

The example considered here is composed of one transmit-
ting station (Trans) and three receiver stations (Rec). Their
parallel composition denoted by expression E (without using
interfaces) is as follows:

((Rec2||ARec3)||BRec1)||CTrans

where A = {R23, R32}
B = {R12, R13, R21, R31}
C = {RT1, RT2, RT3}

In [6] manually generated interfaces I are used to restrict
the receiver nodes. The transmitter LTS is then used to
further restrict the composed receiver stations. Figure 6.2
shows how the projector operator is used when generating
the LTS of the whole system. Note that the symbol −|| in
figure 6.2 refers to the projector opertor.

In order to calculate the decrease in number of states im-
posed by our interfaces we need to split up expression E in
various sub-expressions. [6] splits expression E listed above
in the following intermediate LTSs each of which correspond-
ing to a generation step. Here we add S0 as a further inter-
mediate step to analyse.

S1i = sem(Reci)⌉|Ii

S0 = S12‖{R23,R32}S13

S2 = S0⌉|{RT2,RT3}sem(Tx)
S3 = (S11‖{R12,R21,R13,R31}S2) ⌉|{RTn} sem(Tx)
sem(E) = S3‖{RTn}sem(Tx)

The following table illustrates the various reductions ob-
tained when using our interfaces. Each row indicates the
number of states of the subexpression together with the
number of states remaining when the subexpression is re-
duced up to strong bisimulation [8].

The first column shows the reductions when manually gener-
ated interfaces are used. The reductions obtained with this

||

-||

Rec1 IRec1

-||

Trans||

-||-||

Rec2 Rec3IRec2 IRec3

||

-|| Trans 

Trans

Figure 3: Computational tree of the rel/REL pro-
tocol using interfaces

method are clearly the best possible. The second column
shows the sizes of the intermediate LTSs when no interfaces
are used. We could only generated S0 in this case since the
composition of S2 with S1i could not be generated due to
the exponential growth of the composed LTSs. The third
and fourth column illustrate the reductions obtained when
BFReduction (Chaos State Partition implementation) and
TEReduction (Node Behaviour n=1) were used.

The first row is indicative of the reductions obtained by the
interfaces. When using a manually generated interface (user
written) the receiver node is reduced to 1086 states. The
original size of the receive node LTS is 2882 as indicated in
the second column. Both BFReduction and TEReduction
exploit the Transmitter LTS which is eventually composed
with the Receiver nodes. An interface is generated out of
this LTS and immediately applied to the Receiver node.

Both interfaces obtain a reduction in state space of the re-
ceiver node. When the receiver LTS is projected with the
interface created by the BFReduction algorithm the receiver
node is reduced to 2106 states. With the TEReduction al-
gorithm we only manage to reduce the receiver LTS to 2700.
It is interesting to note however that when both LTSs are
reduced up to strong bisimulation both interface reduced
receiver nodes get much smaller. Further work needs to be
carried out in order to understand why this is the case.

The composition of two receiver nodes yields an LTS of
3,789,678 states when no interfaces are used. When using
our interfaces we manage to get a reduction to 1,621,640
states with the BFReduction interface and a reduction to



Expression Manual Interfaces No Interfaces BFReduction TEReduction

S12 1086/369 2882/127 2106/149 2700/127
S0 229767/31020 3789768/15139 1621640/20939 3313694/15139
S2 149366/30171 na 1621640/20939 3313694/15139

3,313,694 states with the TEReduction interface. The com-
position if the receiver nodes on which the manual inter-
face was used goes up only to 229,676 states. This clearly
shows the difference a manually generated interface has on
the composition of these LTS.

With these interfaces we can only generate up to S2. With-
out interfaces not even S2 could be generated. We are cur-
rently investigating some of the results obtained with these
interfaces, whilst trying to improve on their implementa-
tions. The two implementations which we curently have
serve only as proof of concept for our work. We clearly need
to come up with more ‘intelligent’ interface generators.

7. FUTURE RESEARCH
This paper discusses only our initial attempts at interface
generation. Through these interface we want to reduce the
intermediate state space needed for the verification of sys-
tems. So far we have implemented two interface generators
which only give us some indications on the way forward.
The current interfaces have some pitfalls which we shall be
addressing shortly. For example, TEReduction with a depth
of 1, groups together in one state all those states which are
able to perform only the internal action τ . This can be par-
tially avoided simply by increasing the depth to some other
value greater than 1.

Further experiments also need to be carried out in order to
better asses the behaviour of the current interfaces. We shall
be working on the verification of various other protocols us-
ing interfaces. Ultimately we would like to obtain a general
purpose interface generator which is able to effectively re-
duce the number of intermediate states necessary.
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