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Abstract. Building a real-time system from reusable or COTS compo-
nents introduces several problems, mainly related to compatibility, com-
munication, and QoS issues. We propose an approach to automatically
derive adaptors in order to solve black-box integration anomalies, when
possible. We consider black-box components equipped with an expres-
sive interface that specifies the interaction behavior with the expected
environment, the component clock, as well as latency, duration, and con-
trollability of the component’s actions. The principle of adaptor synthesis
is to coordinate the interaction behavior of the components in order to
avoid possible mismatches, such as deadlocks. Each adaptor models the
correct assembly code for a set of components. Our approach is based on
labeled transition systems and Petri nets, and is implemented in a tool
called SynthesisRT. We illustrate it through a case study concerning a
remote medical care system.

1 Introduction

Due to their increasing complexity, control systems are nowadays often designed
in a modular approach by means of libraries of building blocks. This has lead
to a need of a component-based approach for building real-time systems out
of a set of already implemented components. Building a real-time system from
reusable or Commercial-Off-The-Shelf (COTS) components introduces several
problems, mainly related to compatibility, communication, and quality of service
(QoS) issues [2,10,11,12,18]. Indeed, incompatibilities between the components
may arise and make their composition impossible.

In this paper, we show how to deal with these problems within a lightweight
component model where components follow a data-flow interaction model. Each
component declares input and output ports which are the points of interaction
with other components and/or the execution environment. Input (resp., output)
ports of a component are connected to output (resp., input) ports of a different
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component through synchronous links. In our framework, a component interface
includes a formal description of the interaction protocol of the component with
its expected environment in terms of sequences of writing and reading actions to
and from ports. The interface language is expressive enough to specify QoS con-
straints such as writing and reading latency, duration, and controllability, as well
as the component’s clock (i.e., its activation frequency). In order to deal with
incompatible components (e.g., clock inconsistency, read/write latency/duration
inconsistency, mismatching interaction protocols, etc.) we synthesize component
adaptors interposed between two or more interacting components. An adaptor
is a component that mediates the interaction between the components it super-
vises, in order to harmonize their communication. Each adaptor is automatically
derived by taking into account the interface specification of the components it
supervises. The adaptor synthesis allows the developer to automatically and in-
crementally build correct-by-construction systems from third-party components,
hence reducing time-to-market and improving reusability. The space complexity
of the synthesis algorithm is exponential in the number of states of the automa-
ton modeling the interaction protocol of each component. Thus, incrementality
is crucial to manage the complexity of real systems.

We have formalized the adaptor synthesis algorithm by using Petri nets [16]
theory, and we address its correctness in a companion paper [19]. Moreover, in
order to realize the whole approach, we have implemented a tool, called Synthesis
Real Time (SynthesisRT) [19], which we have used on a case study concerning
a remote medical care system (RMCS).

The remainder of the paper is organized as follows. Section 2 introduces the
notions of latency, duration, controllability, and local/global time/clock. Sec-
tion 3 provides an informal overview of our method. Section 4 presents our com-
ponent specification formalism and its semantics in terms of Labeled Transition
Systems (LTSs). Section 5 formalizes the technical core of adaptor synthesis. Sec-
tion 6 describes our method at work on the RMCS case study. Finally, Section 7
summarizes our work and presents related work and future extensions.

2 Background

In this section, we introduce the background notions used by our framework.

2.1 Context

We want to build component-based real-time systems by assembling third-party
black-box components. Black-box means that the component source code is not
available to the system designer. Each component is equipped with a rich inter-
face that describes its behavior as well as real-time properties. According to the
“design by contract” approach [18], such an interface specification is given by
the component developer, who is aware of the information needed. An interface
includes:
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– A behavioral interface specification. This specification is given in terms of a
Labeled Transition System (LTS) that models the sequences of actions that
the component performs when it interacts with its environment. As it is
explained below, this LTS contains also timing information.

– A periodic clock that, for reuse purposes, is instantiated at assembly-time.
It specifies a sequence of instants by an infinite stream of boolean values: 1
denotes an instant where the component is enabled (it can perform an action
or let the time elapse) and 0 denotes an instant where then component is dis-
abled. A periodic clock can be finitely represented by its periodic sub-stream
(e.g., the clock (10)ω represents the infinite stream 10101010101010 . . .). The
global time is defined by the clock (1)ω that is called the base clock. The clock
of each component defines a time that is local to the component. It char-
acterizes the component speed and can be seen as a sub-clock of the base
clock. For hierarchies of components, the local clock of each component is a
sub-clock of the clock of its super-component. We refer the reader to [5] for
a comprehensive presentation of the periodic clock concept.

– A latency (a natural number) for each action. It specifies the number of global
time units that can pass before the action is performed. In other words, the
component may choose to synchronize with its environment to perform the
corresponding action any time before the latency is elapsed.

– A duration (an interval of natural numbers) for each action. It specifies the
local time units needed for the action execution. For instance, a duration
[1, 2] indicates that the action may require one or two instants where the
component is enabled to complete. Contrary to the latency, the precise du-
ration cannot be chosen. The component must synchronize correctly with its
environment for every possible execution time specified by its duration.

– A controllability tag for each action. An uncontrollable action (i.e., tagged
with u) cannot be disabled. For example, inputs coming from a sensor are
often considered as uncontrollable since they must be accepted and treated
by the component. In contrast, controllable actions (without a tag) can be
safely disabled (e.g., by a supervisor or an adaptor), for instance to prevent
a deadlock.

2.2 Architectural Model

In this section, we provide an overview of our architectural model using a small
example. Figure 1 shows the architectural specification of a black-box component
C1, with a clock port w1, which interacts with its environment through the input
port a and the output port b.

C1
a b

W1

Fig. 1. Architectural schema of component C1
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In general, a component can have several input and output ports. Components
are connected to each other through their ports and interact synchronously. An
input port of a component can be connected to an output port of a different
component. Input (resp., output) ports support a reading (resp., writing) oper-
ation. Synchronous communication implies that reading and writing operations
among connected ports are blocking actions. In other words, connected compo-
nents are forced to synchronize on complementary read/write operations. E.g.,
let the input port p1 and the output port p2 be connected: a reading from p1 has
to synchronize with a writing to p2. This style of communication is not a limita-
tion because it is well known that, with the introduction of a buffer component,
we can always simulate an asynchronous system by a synchronous one [13].

The clock port of a component can be seen as a special input port whose cur-
rent value (either 1 or 0) depends on the periodic clock that has been assigned to
the component and on the current instant of the global time. It is not connected
to other ports since it serves only to assign a periodic clock to the component
at assembly-time.

3 Overview

In this section, we informally describe the main steps of our method as illustrated
in Figure 2. Although we took inspiration from [3], our synthesis algorithm is
very different from theirs as it is discussed in Section 7.

We take as input the architectural specification of the network of components
to be composed and the component interface specifications. The behavioral mod-
els of the components are generated in form of LTSs that make the elapsing of

Fig. 2. Main steps of adaptor synthesis for real-time components
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time explicit (step 1). Connected ports with different names are renamed such
that complementary actions have the same label in the component LTSs (see
actions a and d in Figure 2). Possible mismatches/deadlocks are checked by
looking for possible sink states into the parallel composition of the LTSs. The
adaptor synthesis process starts only if such deadlocks are detected.

The synthesis first proceeds by constructing a Petri net (PN) representation
of the environment expected from a component in order to avoid deadlocks
(step 2). It consists in complementing the actions in the component LTSs that are
performed on connected ports, considering the actions performed on unconnected
ports as internal actions. A buffer storing read and written values is modeled as
a place in the environment PN for each IO action. Each such PN represents a
partial view of the adaptor to be built. It is partial since it reflects the expectation
of a single component. In particular, a write (resp. read) action gives rise to a
place (buffer) without outgoing (resp. incoming) arcs.

The partial views of the adaptor are composed together by building causal de-
pendencies between the reading/writing actions and by unifying time-elapsing
transitions (step 3). Furthermore, the places representing the same buffer are
merged in one single place. This Unification PN desynchronizes emission from
reception using buffers. However, the unification PN may include behaviors that
deadlock and/or require unbounded buffers. In order to obtain the most permis-
sive and correct adaptor, we generate an extended version of the graph usually
known in PNs theory as the coverability graph [8] (step 4).

Our method automatically restricts the behavior of the adaptor modeled by
the extended coverability graph in order to keep only the behaviors that are
deadlock-free and that use finite buffers (i.e., bounded interactions). This is
done by automatically constructing, if possible, an “instrumented” version of our
extended coverability graph, called the Controlled Coverability Graph (CCG).
The CCG is obtained by pruning from the extended coverability graph both the
sinking paths and the unbounded paths, by controller synthesis [17] (step 5).
This process also performs a backwards propagation in order to correctly take
into account the case of sinking and unbounded paths originating from the firing
of uncontrollable transitions.

If it exists, the maximal CCG generated is the LTS modeling the behavior
of the correct (i.e., deadlock-free and bounded) adaptor. This adaptor models
the correct-by-construction assembly code for the components in the specified
network. If it does not exist, a correct adaptor assembling the components given
as input to our method cannot be derived, and hence our method does not
provide any assembly code for those components.

4 The Interface Specification and Its Translation

In this section, we present the interface specification language by continuing the
small example introduced before (the component C1 described in Section 2.2).
We have defined a higher-level language, called DLiPA [19], based on process
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a1
[1,2]

b2

(A)C1 (B) <C1,(10) >

<s0,0>

a
u<s1,0> <s4,0><s3,1>

<s8,0>

<s7,1>

u
<s5,1> <s6,0>

u
ub

b

b

Fig. 3. (A) Behavioral interface of C1 and (B) its semantic model with respect to (10)ω

algebra. In this paper, we start from an LTS, a form that DLiPA processes can
be easily translated into.

Our source LTSs are labeled with actions of the form x
{u} [i,j]
l where x denotes

the action (read or write), l its allowed latency, [i, j] its duration, and u, if
present, the uncontrollability of the action.

Figure 3.(A) gives the interface specification of the component C1 as an LTS.
From its initial state (denoted by an incoming arrow without source state), C1
performs an action a (i.e., it reads from port a) followed by an action b (i.e., it
writes to port b) that returns to the initial state. All C1 actions are controllable
(no u tag). The action a has latency 1, i.e., its execution can be delayed by
one global time unit at most. Moreover, a has duration [1, 2] meaning that its
execution can take either one or two local time units. Similarly, the execution of
b can be delayed by two global time units at most and takes no time.

Figure 3.(B) presents the semantic model of C1 that has been derived by tak-
ing into account the interface specification of Figure 3.(A) and a periodic clock,
here (10)ω, which has been assigned to C1. This semantics is noted 〈C1, (10)ω〉.
It is an LTS modeling the interaction behavior of C1 with its expected envi-
ronment and making time elapsing explicit. The clock (10)ω has been assigned
by the designer of the system to be assembled and it represents the required
component activation frequency. The LTS of 〈C1, (10)ω〉 is produced by compil-
ing latency and duration information into abstract actions ε representing time
elapsing. Each state of the LTS is named by a pair made of a label (e.g., s0) and
a global time instant (e.g., 0). These instants refer to the finite representation
of the assigned periodic clock, i.e., they are the instants 0, . . . , l − 1 where l is
the length of the clock’s period. In our example, where the clock is (10)ω, the
instant 0 represents instants where C1 is enabled (i.e., it can perform some ac-
tion or let the time elapse) whereas the instant 1 represents instants where C1
is disabled (i.e., it can only let the time elapse).

A transition labeled by a concrete action (e.g., a) is instantaneous: it repre-
sents the starting point for the execution of the action. For example, the tran-
sition 〈s0, 0〉 a−→ 〈s1, 0〉 in Figure 3.(B) means that C1 starts to read from port
a. A transition labeled by an abstract action ε or εu lets the time elapse: it
represents a tick of the global clock (e.g., 〈s1, 0〉 εu

−→ 〈s3, 1〉 in Figure 3.(B)).
Latency is translated using the controllable action ε. For instance an action

x with latency 1 is translated into two sequences of transitions: one sequence
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performing x immediately and another sequence performing x after an ε-
transition. If one branch leads to a deadlock, the environment (i.e., the adaptor
to be synthesized) may choose the other one by synchronizing only with it.

Duration is translated using the uncontrollable action εu. For instance, as-
suming the clock (1)ω, an action x with duration [1, 2] is translated into the
transition x followed by the branching between one or two εu-transitions. The
uncontrollability enforces the composition with the environment to be compati-
ble with both time-elapsing possibilities. Note that, since duration refers to local
time and the semantics refers to the global time, the previous example with a
clock (10)ω would be translated into the transition x followed by the branching
between two or four εu-transitions depending on the clock instant (assuming the
action x is enabled initially).

In the LTS of Figure 3.(B) (i.e., 〈C1, (10)ω〉), a duration unit is represented by
two εu-transitions. Note also that the local clock influences the actual latency.
For instance, according to clock (10)ω, C1 either executes b immediately (from
the time it is enabled) or waits exactly two global time units to execute it: a one
time unit wait leads to a state where the component is disabled and b cannot be
performed. Analogously, in order to represent the latency of a, an ε-transition
should be produced from the initial state. However, this transition is pruned
since it is controllable and leads to a sink state (only a read from a is permitted
but it is disabled).

To define the semantics of a system (i.e., a network of components), we put in
parallel the semantic models of the components by forcing the synchronization
on complementary concrete actions and on abstract actions. Components syn-
chronize pairwise on complementary concrete actions by producing, for each syn-
chronizing pair b/b, a τ -transition at the level of the composed system, where τ
denotes an internal action. Components synchronize, altogether, on time-elapsing
transitions by producing a time-elapsing transition at the level of the system.
Whenever two or more components have a mismatching interaction due to some
behavioral inconsistency, a deadlock occurs in the composed system (i.e., a sink
state is produced in the LTS of the system). This is precisely what we avoid
thanks to our adaptor synthesis method, presented in the next section. We refer
to [19] for further details.

5 Adaptor Synthesis

In this section, we illustrate our method using another small example and for-
malize part of it. For space reasons, we focus only on the formalization of the
Unification PN (see Definition 1) and we omit other formal details that will be
illustrated through the explanatory example.

5.1 Unification PN Generation

Let us suppose that the designer wants to build an assembly S formed by two
components C1 and C2 whose semantic models are shown in Figure 4.
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(A)
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<v0,0>

<v1,0> <v2,1> <v3,0>b
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a

<v4,0> <v5,1> <v6,0>

u uc

a

Fig. 4. After step 1: (A) 〈C1, (11)ω〉; (B) 〈C2, (10)ω〉

Note that the periodic clocks of C1 and C2 have the same length. This is
required in order to perform the generation of the Unification PN. This require-
ment is not a limitation since, although the designer can specify clocks with
different length, they can be always rewritten in such a way that they have
the same length by taking the least common multiple of the different lengths. In
Figures 5.(A) and 5.(B) we show respectively the PNs modeling the environment
expected from 〈C1, (11)ω〉 and 〈C2, (10)ω〉 in order not to block.
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b2
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(B)
v5 v6

b1

a2

u
1,1

b1

a2

u
2,2

u
2,3

u
2,4

c2

Fig. 5. After step 2: Component PNs - (A) PN1; (B) PN2

For technical reasons, the actions have been relabeled. Since, now, all the
latencies and durations have been made explicit through ε-transitions, the in-
dexing that has been used for the action labels must not be confused with the
one used above to specify the latency. We recall that each environment PN is a
partial view of the adaptor to be built since it reflects the expectation of only
one component. In particular, for each state in the component LTS, there is
a place in the environment PN. The initial marking puts a token in the place
corresponding to the initial state. For each transition labeled with a concrete
action in the component LTS, there is a transition labeled with the complemen-
tary action in the environment PN. The transition label is such that it contains
the information concerning which component has performed the corresponding
action (through a suitable indexing: e.g., subscript 1 for C1 and 2 for C2).
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For each component writing action to an output port x, a place px is produced
and an arc from the corresponding transition to px is added. It corresponds to
the fact that, in order to synchronize with a component, the adaptor reads and
stores values into an internal buffer. A stored value will be written as output as
soon as the adaptor synchronizes with a component that expects to read this
value. Component reading actions are handled in a complementary way. In this
way, the adaptor desynchronizes the received events from their emission, hence
solving mismatches arising from the fact that different components perform com-
plementary actions at different instants.

For a time-elapsing transition in the component LTS, the corresponding tran-
sitions, places, and arcs are generated in the environment PN as it is shown in
Figure 5. That is, a correct environment for a component has to let the time
elapse whenever the component lets the time elapse as well.

Actions that do not force the component to synchronize with the environment
can be freely performed; the adaptor must not preempt them and produces an
internal action whenever they occur (there is no such action in our example).
We refer the reader to [19] for a formal definition of environment PN.

After the partial views of the adaptor have been built, they are composed
in order to obtain the Unification PN. In Figure 6 we show the Unification
PN (i.e., PN1,2) that has been obtained after the unification of PN1 and PN2.
The Unification PN PN1,2 is automatically derived from the union of PN1 and
PN2 plus a unification operation of their time-elapsing transitions. Informally,
casual dependencies between the reading and writing of data are generated by
performing the union of the sets of places, arcs, and transitions, except for the
arcs and transitions concerning the elapsing of time. Time-elapsing transitions
are composed using the synchronous product. Figure 6 shows the obtained time-
elapsing transitions as dashed and grey arrows. For readability issues, we have

s0

s1 s2

s3

s4
a1

pb

pc

c1

b1

b1

v0

v1 v2

v3 v4

b2

pa

u
1,1

u
2,2

c2

a2
(v6,v0)

a2

v5 v6u
1,3

u
2,4

Fig. 6. After step 3: PN1,2: the Unification PN for PN1 and PN2
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drawn only the fireable transitions. For example, the first time-elapsing transition
of PN1 composed with the first time-elapsing transition of PN2 is fireable. Note
that the first time-elapsing transition of PN1 composed with the third time-
elapsing transition of PN2 is fireable as well (after PN1 has performed one
loop). The step to derive the unification PN is formalized by Definition 1:

Definition 1 (Unification PN). Let PNi = (Pi, Ti, Fi, M
i
0) (where i =

1, . . . , n, Pi is the set of places, Ti is the set of transitions, Fi is the set of arcs,
and M i

0 is the initial marking) be the PN modeling the environment expected from
the component Ci. The Unification PN is the Petri Net UPN = (P, T, F, M0),
where:

– P =
⋃n

i=1 Pi;
– T =

⋃n
i=1 T ′

i ∪ {εu
k1,...,kn

| ∀i = 1, ..., n . εx
i,ki

∈ Ti ∧ ∃i . εu
i,ki

∈ Ti} ∪
{εk1,...,kn | ∀i = 1, ..., n . εi,ki ∈ Ti}, where T ′

i is Ti without time-elapsing
transitions and the superscript x is either equal to ‘u’ or is empty;

– F =
⋃n

i=1 F ′
i ∪

⋃
i{(p, εu

k1,...,kn
), (εu

k1,...,kn
, p′) | p, p′ ∈ Pi ∧ (p, εx

i,ki
) ∈ Fi ∧

(εx
i,ki

, p′) ∈ Fi ∧ εu
k1,...,kn

∈ T } ∪ {(p, εk1,...,kn), (εk1,...,kn , p′) | p, p′ ∈ Pi ∧
(p, εi,ki) ∈ Fi ∧ (εi,ki , p

′) ∈ Fi ∧ εk1,...,kn ∈ T }, where F ′
i is Fi without arcs

to or from time-elapsing transitions, and the superscript x is either equal to
‘u’ or is empty;

– for each p ∈ P if ∃i.M i
0(p) = 1 then M0(p) = 1, otherwise M0(p) = 0.

The following is an upper-bound estimation of the size of the Unification PN in
terms of its number of places and transitions:

|P | =
∑n

i=1 |Pi|
|T | =

∑n
i=1 |T ′

i | +
∏n

i=1 |T te
i | where T te

i is the set of time-elapsing transitions
of PNi

Note that the number of places and immediate (i.e., non time-elapsing) tran-
sitions of the Unification PN grows up linearly with respect to the number of
places and immediate transitions of the component PNs; whereas the number
of time-elapsing transitions is exponential with respect to the number of time-
elapsing transitions of the component PNs.

5.2 Controlled Coverability Graph Synthesis (CCG)

After the Unification PN has been generated, its maximal CCG is automatically
derived, if it exists. We first generate the extended coverability graph of the
Unification PN. Given a PN (P, T, F, M0), we construct the marking graph in
the standard way. From M0, we obtain as many markings as the number of the
enabled transitions. From each new marking, we can again reach more markings.
This process results in a graph representation of the markings. Nodes represent
markings generated from M0 (the initial node) and its successors, and each arc
represents a transition firing, which transforms one marking into another. How-
ever, the above representation will grow infinitely large if the PN is unbounded.
To keep it finite, we introduce a special symbol ω to indicate a possibly infinite
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number of tokens in some place. ω can be thought of as “infinity”. It has the
properties that for each integer n, ω > n, ω±n = ω, and ω ≥ ω. Given markings
M and M ′ such that: (1) M ′ is reachable from M , and (2) ∀p, M ′(p) ≥ M(p)
(i.e., M is coverable by M ′), then, for each place q such that M ′(q) > M(q) ≥ 1,
we replace M ′(q) by ω in the extended coverability graph. This is the same crite-
rion as the termination criterion used by Cortadella et al. to identify irrelevant
markings [6]. They conjecture that this criterion is complete [6], meaning that
if a bounded and non-blocking execution exists, it will be represented in the
extended coverability graph.

Fig. 7. After step 4: (A) extended coverability graph of PN1,2; After step 5: (B)
its controlled version

By continuing our example, we partially show the extended coverability graph
of PN1,2 in Figure 7.(A). The cloud-nodes are portions of the coverability graph
made only of paths whose nodes are either dead or contain unbounded markings.
Informally, a dead (resp., unbounded) marking is a node without successors
(resp., that represents a marking in which some place has stored a potentially
infinite number of tokens) or whose successors always lead to dead (resp., un-
bounded) markings. We refer to [19] for a formal definition of dead and un-
bounded markings, and of CCG.

In Figure 7.(B), we show the maximal CCG of PN1,2. The maximal CCG
is the most permissive one among all possible CCGs. Informally, it is obtained
from Figure 7.(A) by pruning the transitions that lead inevitably to cloud-nodes
and that are controllable. The pruning of controllable transitions, as well as the
“most permissive” notion, is borrowed from Discrete Controller Synthesis [17].

6 Case Study: A Remote Medical Care System

We now apply our approach to a case study, borrowed with minor modifications
from [4]: a RemoteMedical Care System (RMCS). The RMCS provides monitoring
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and assistance to disabled people. A typical service is to send relevant information
to a local phone-center so that medical or technical assistance can be timely noti-
fied of critical circumstances. The RMCS can be built from eight COTS compo-
nents (Alarm, Line, Control, RAlarm, etc.) assembled into three composite com-
ponents: User, Router, and Server (see Figure 8). Using our adaptor synthesis
method and its associated tool (SynthesisRT), it has been possible to incremen-
tally and automatically assemble a correct by construction RMCS.

ALARM

CONTROL

LINE

USER

alarm

ack

(10)

ackRU

c

r

r

ra

a

a

RALARM

RCONTROL

SLINE

ROUTER

aRS

ackSR

nofunc

sr

sr

srsa

sa

sa

SALARM

SCONTROL

SERVER

aUR

ackRU

c

aRS

ackSR

nofunc

aUR

(10)

(10)

(10)

(1)

(10)

(10)

(1)

Fig. 8. The software architecture of the RMCS

When a patient needs help (i.e., the uncontrollable signal alarm is emitted),
User sends either an alarm (aUR) or a check message (c) to Router. After
sending an alarm, User waits for an acknowledgment (ackRU) and indicates
the conclusion of the alarm dispatching to the patient (ack). Router waits for
check or alarm messages from User (c or aUR). It forwards alarm messages to
Server (aRS) and checks the state of User through the check message (c). Server
dispatches the alarm requests (aRS).

a1
2

r
(A)

r end

a c1(B)
r

alarm(C) a aUR1 ackRU1

1 1 1

acku

u

Fig. 9. Behavioral specification of (A) Line, (B) Control, and (C) Alarm

Router and Server are connected through a dedicated line (modeled by the
component SLine) that is always available. Conversely, User and Router are
connected through a usual phone line (modeled by the component Line) that
can be busy.

For space reasons, we only show the part of the case study that concerns
the assembly of the correct-by-construction version of User. We refer to [19] for
a complete description of both the case study and our SynthesisRT tool. User
models the logic of the control device provided to patients in order to dispatch
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alarms. It is an assembly of the three components Control, Alarm, and Line.
Figure 9 provides the interface specifications of these components. From these
behavioral specifications, SynthesisRT automatically derives the corresponding
LTSs. Then, the CADP toolbox [9] is used to derive the LTS representing User1.
CADP allows us to detect possible deadlocks and to exhibit deadlocking traces.
For instance, in User, an alarm request can deadlock whenever Alarm receives
an alarm request from the patient and Control gets the Line to send a check
message to Router. Figure 10 represents a deadlocking trace where, after an
alarm request, Control and Line synchronize (producing a τ) and let time elapse
(i.e., perform a and c) whereas Alarm is still waiting on action a that should be
performed immediately (no latency).

alarm cu

Fig. 10. A deadlocking trace of User

An adaptor is therefore required to avoid deadlocks in User. SynthesisRT
automatically derives the environment PNs of Line, Control, and Alarm, as well
as their Unification PN. The Unification PN is encoded in a file that can be
fed to the TINA tool [1]. TINA is used to automatically derive the extended
coverability graph of the generated Unification PN. The coverability graph is
generated in 0.061 seconds on a Macbook Pro; it is unbounded and has 348 states,
763 transitions, 197 unbounded markings/states and no dead marking/state.
This means that the message reordering has been sufficient to solve the detected
deadlock, but it can still lead to some buffer overflows.

At this point, SynthesisRT is used again to automatically derive, from the
uncontrolled coverability graph, its corresponding maximal CCG that prevents
the reaching of the unbounded states. The maximal CCG is the LTS of the
synthesized adaptor (Aduser) that allows one to correctly assemble User. In our
example, the adaptor is generated in 0.127 seconds but it is too large to be
presented here; it has 116 states and 242 transitions. The deadlock is solved by
Aduser using message buffering and reordering. More precisely, when Line and
Control perform a and c, Aduser synchronizes with Alarm on the line request
a. It stores the received request in a buffer in order to forward it when the line
is released by Control. Then, the execution of Alarm can proceed and reach a
point where it can let the time elapse, as required by Control and Line.

So, by putting Aduser in parallel with Line, Control, and Alarm, we ob-
tain the correct-by-construction version of the composite component User. We
have also used SynthesisRT to derive three other adaptors: Adrouter (inter-
posed between RAlarm, SLine, and RControl), Adrs (interposed between the
adapted router and Server) and Adrmcs (interposed between the adapted com-
posite router/server component and the adapted user component). Through the

1 Referring to Figure 2, steps 1, 3, and 5 are performed with SynthesisRT, step 2 with
CADP, and step 4 with TINA.
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synthesis of these four adaptors, we have incrementally and automatically built
a correct-by-construction RMCS.

7 Conclusion

In this paper, we have described an adaptor-based approach to assemble cor-
rect by construction real-time components that take into account interaction
protocols, timing information, and QoS constraints. Our approach focuses on
detection, correction, and prevention of deadlocks and unbounded buffers due
to mismatching protocols. The main idea is to build a model of the environment
of the component and to extract a controlled version (an adaptor) preventing
deadlocks and unbounded buffers. In the general case, the space complexity of
the synthesis algorithm is exponential in the number of states of the component
LTSs. We have validated the approach by means of a case study.

Our work is related to several techniques in different research areas. In control
theory, a related technique is discrete controller synthesis [17]. The objective is to
restrict the system behavior so that it satisfies a specification. This is achieved by
automatically synthesizing a suitable controller w.r.t. the specification. Beyond
restricting the system behavior, our approach also extends it to resolve possible
mismatches. For instance, while the approach in [17] performs only deadlock
prevention, our approach performs also deadlock correction.

Another related work in synchronous programming is the synchronizing of
different clocks. In [5], each input and output port is associated with a periodic
clock. Adaptation is performed at the level of each connection between ports
using finite buffers. It is sufficient to look at the clocks of two connected ports
and to introduce a delay by interposing a node buffer between the two ports.
In our context, adaptation must be performed at the component level by taking
into account several dimensions of the specification: the component clock, the
interaction protocol, the latency, duration, and controllability of each action.
For this reason, introducing delays is not sufficient and, e.g., the reordering or
inhibition of actions may be necessary.

Related work in interface automata theory [7] also uses LTSs to model the
input/output behavior of components. When composing two LTSs, they derive a
constraint on their environment such that deadlocks are avoided, but they do not
produce an adaptor to solve the incompatibilities between the two components.

Related work in component adaptation [3] and component interface com-
patibility [15] has shown how to automatically generate the behavioral model
of an adaptor from: (i) a partial specification of the interaction behavior of
the components and (ii) an abstract specification of the adaptor. In contrast
with our work, they do not deal with real-time attributes. Although we took
inspiration from [3] with respect to the PN encoding into the TINA tool and the
use of CADP, our synthesis algorithm is very different from theirs since they do
not have to take into account time-elapsing actions. Moreover, both techniques
in [3] and [15] consider all component actions to be controllable, and neither
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considers the problem of synthesizing an adaptor model that ensures to always
have bounded buffers.

Our approach focuses only on the automatic generation of the behavioral
model of the correct adaptor. Future work shall consider the generation of the
adaptor’s actual code using, e.g., synchronous languages such as Signal, Lustre,
or Esterel. So far, the clocks are fixed before synthesizing the adaptor. Changing
a component clock means re-executing the synthesis algorithm. An interesting
extension would be to automatically derive clock-independent adaptors. A com-
ponent clock would become a function of the adaptor clock. When the adaptor
clock is instantiated, the component clocks will be instantiated as well to obtain
a correct-by-construction assembly. Another possible future work is to study
and formalize component architectures for which incremental adaptor synthesis
is equivalent to a centralized adaptor synthesis.
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