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Abstract. This paper investigates specification, verification and test generation
for synchronous and asynchronous circuits. The approach is called DILL (Digital
Logic in LOTOS). DILL models are discussed for synchronous and asynchronous
circuits. Relations for (strong) conformance are defined for verifying a design
specification against a high-level specification. An algorithm is also outlined for
generating and applying implementation tests based on a specification. Tools have
been developed for automated test generation and verification of conformance
between an implementation and its specification. The approach is illustrated with
various benchmark circuits as case studies.
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1 Introduction

DILL (Digital Logic in LOTOS [7–13, 19]) is an approach for specifying digital circuits
using LOTOS (Language Of Temporal Ordering Specification [6]). DILL has been de-
veloped over six years to allow formal specification of hardware designs, represented
using LOTOS at various levels of abstraction. DILL addresses functional and timing
aspects, synchronous and asynchronous design. There is support from a library of com-
mon components and circuit designs. Analysis uses standard LOTOS tools.

LOTOS is a formal language standardised for use with communications systems.
DILL, which is realised through translation to LOTOS, is a substantially different appli-
cation area for this language. Since the readers of this paper are unlikely to be familiar
with LOTOS or its communications origins, much of the technical detail has been omit-
ted. However the articles on DILL referenced above can provide additional background.

LOTOS can be used to support rigorous specification and analysis of hardware. LO-
TOS is neutral with respect to whether a specification is to be realised in hardware or
software, allowing hardware-software co-design. LOTOS inherits a well-developed ver-
ification theory from the field of process algebra, and has a theory for testing and test
generation. There is good support from general-purpose LOTOS toolsets such as CADP
(Cæsar Aldébaran Development Package [3]).

Languages such as VHDL (VHSIC Hardware Description Language), Verilog and
ELLA are commonly used in industry. These languages are semi-formal because their
semantics is based on simulation models. Other languages do have formal semantics,
e.g. CIRCAL (Circuit Calculus), HOL (Higher Order Logic) and Ruby. DILL most
closely resembles CIRCAL in that both have a behavioural basis in process algebra.
At a low level of specification, the true concurrency semantics of CIRCAL are perhaps
more appropriate than the interleaving semantics of LOTOS. However, the integrated



data typing in LOTOS makes it much more expressive than CIRCAL. In the authors’ ex-
perience, DILL can be used successfully at a variety of abstraction levels where CIRCAL

appears to be less effective.

The present paper synthesises several aspects of DILL for modelling and verify-
ing synchronous and asynchronous circuits. Synchronous design is important as it is
the main approach for digital technology. Control by clock signals makes it easier
to abstract away from timing information. The current standard for LOTOS does not
support quantified timing, although the authors have developed Timed DILL [10] for
hardware timing analysis using ET-LOTOS (Enhanced Timed LOTOS [15]). However,
asynchronous circuits are also interesting as they operate at the speed of individual com-
ponents. Unfortunately asynchronous circuits are much harder to design and to analyse.

Much of the early work on hardware verification used theorem-proving. The trend is
now to combine theorem-proving and model-based approaches so as to achieve general-
ity as well as automated support. LOTOS verification approaches tend to be state-based
using an LTS (Labelled Transition System). Current LOTOS tools offer model checking
and reachability analysis, together with equivalence or preorder checking. DILL can
thus exploit a range of verification techniques.

Verification of asynchronous circuits, especially those that are speed-independent
or delay-insensitive, has been a research topic for some years [1, 2]. Rigorous testing
of asynchronous circuits is still in its infancy. Like DILL, other asynchronous verifica-
tion approaches define relations that judge correctness of a circuit design. The relations
confor and strongconfor defined in this paper resemble those introduced by others, e.g.
conformance [1], decomposition [2] and strong conformance [4]. It is not possible to
detect deadlocks and livelocks with conformance and decomposition. Although strong
conformance can do this, it does not work for non-deterministic specifications.

For validating hardware designs, test cases are in practice manually defined or are
randomly generated. More rigorous approaches use traditional software testing tech-
niques or state machine representations. In DILL, tests are derived from higher-level
specifications in a novel adaptation of protocol conformance testing theory.

2 Modelling Approach

DILL supports logic designs at different levels of abstraction, with formal comparison of
higher level and more detailed design specifications. DILL does not provide guidelines
for refinement, since design is presumed to follow conventional engineering practice.
DILL supports behavioural as well as structural specification.

Wires or tracks between components are not normally represented explicitly in
DILL. A component’s ports (e.g. its pins) are represented by LOTOS event gates. To
‘wire up’ two ports, their LOTOS gates are merely synchronised. Since LOTOS allows
multi-way synchronisation, it is easy to connect one output to several inputs. In high-
speed circuits, the transmission time over a wire may be modelled as a delay. It may
also be necessary to model wires in asynchronous designs.
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2.1 Synchronous Circuits

LOTOS, like most specification languages, deals only with discrete events. In syn-
chronous circuits, changes in signal level are controlled by clock pulses (except for
components such as level-triggered flip-flops). Signal levels can thus be treated as main-
tained during a clock cycle, i.e. one LOTOS event per clock cycle.

The classical synchronous circuit model has combinational logic to provide the pri-
mary outputs and the internal outputs according to the primary inputs and the internal
inputs. Internal outputs are then fed into state hold components to produce the internal
inputs. Changes of the internal inputs are synchronised with the clock, in other words
they are changed only at a particular moment of the clock cycle (usually its transition)..
The primary inputs are usually synchronised with the clock signal. This makes design-
ing and analysing synchronous circuits much easier. DILL incorporates this practice
into its synchronous circuit model, assuming that the primary inputs have already been
synchronised with the clock signal.

For a synchronous circuit, designers must ensure that the clock cycle is slower than
the slowest stage in a circuit. This can be done by analysing the timing characteristics of
components used in the circuit. The untimed version of DILL cannot of course confirm
if the clock constraint is met. However as discussed elsewhere [10], Timed DILL can
specify such constraints. Properly modelling the storage components and environment
can ensure that the clock constraint is always fulfilled by a DILL specification.

The fundamental DILL model always allows an input or output port to offer an event
corresponding to a signal change. This model is generally applicable, but may lead to
non-determinism due to the lack of quantified timing [11]. The model therefore has to
be constrained according to the environment in which it operates. If the clock is slow
enough to let every signal settle down, it is reasonable to allow the value of each signal
to change just once per clock cycle.

The DILL synchronous model imposes further two restrictions. It is important that
there is no cyclic connection within a stage, and storage components have to be specified
in the behavioural style. These restrictions are related to the component model, for
otherwise a DILL specification might deadlock where a real circuit could still work.

2.2 Asynchronous Circuits

In asynchronous DILL, it is only signal changes that are modelled. Asynchronous cir-
cuits exhibit a variety of forms due to the different delay and environment assumptions
made. An asynchronous circuit can behave correctly only when these assumptions are
met. Some of the better-known design methods handle delay-insensitive, quasi delay-
insensitive or speed-independent circuits.

Bounded delays need a formalism that can specify quantitative timing. DILL deals
with (quasi) delay-insensitive and speed-independent circuits since they assume un-
bounded delays that are appropriate for LOTOS. (Quasi) delay-insensitive designs can
be easily changed to speed-independent circuits by inserting artificial delay compo-
nents. Most wire delays can in fact be absorbed into the preceding components. Only
components with more than one output need special treatment.
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Asynchronous DILL concentrates mainly on speed-independent design. Happily
this is a good match to the DILL approach since component delays are unbounded,
just like the interval between consecutive LOTOS events. In DILL, component ports are
connected by synchronising their LOTOS events. This actually assumes that delay on the
connecting wires is negligible, an assumption that is also adopted by speed-independent
circuits. If new inputs cannot change any pending outputs, the design is termed semi-
modular. Semi-modularity is often used as a correctness criterion for speed indepen-
dence, since the violation of semi-modularity causes speed-dependent behaviour.

In LOTOS, communication between processes is based on symmetric synchronisa-
tion at a gate. However, digital hardware has a clear distinction between inputs and
outputs. A hardware component can never refuse inputs, while its outputs can never be
blocked by other components. A specification is said to be input-receptive if every input
is allowed in every state. In such a case, the DILL model represents the real circuit faith-
fully. However input-receptive specifications cannot be written for most asynchronous
circuit components since unexpected inputs are not permitted. One way to address this
is by explicit deadlock if unexpected inputs arrive. If more accurate analysis is required,
input quasi-receptive specifications should be written. Informally, a specification is in-
put quasi-receptive if it can always participate in input events except when deadlocked.
An input quasi-receptive specification can be obtained by adding a choice when there
is a potential output.

It is not straightforward to transform a LOTOS specification with more than just se-
quence and choice operators into input quasi-receptive form. In such a case, a partial
specification can be used to generate the corresponding LTS (Labelled Transition Sys-
tem). An input quasi-receptive specification can be obtained by modifying the LTS. For
a state that cannot participate in all input events, outgoing edges leading to deadlock are
added for missed inputs.

This method works very well for LTSs without internal events. But subtle prob-
lems can arise for those containing internal events. Internal events are less meaningful
when considering input receptiveness as they mean the environment has no effect on
choices. For this reason, LTSs with internal events are first determinised (internal non-
determinism is removed). Outgoing edges are then added to create input quasi-receptive
specifications. An LTS is input quasi-receptive if, after determinisation, all states except
terminal ones can accept all inputs.

As it is more difficult to specify components in an input (quasi-)receptive manner,
verification may be based on components that are not input-receptive. The verification
may, however, not be exact in that some problems may not be discovered. Input quasi-
receptive specifications result in a larger state space, making verification more difficult.

Assumptions about the environment of an asynchronous circuit often have to be
made. When an environment is not explicit, many methods simply assume the mirror
of a specification as the environment of its implementations [1]. This assumes that the
environment does not provide extra inputs, so inputs that are accepted only by an im-
plementation are ignored when verifying the joint behaviour. This is reasonable, but
permits an implementation to produce more outputs than a specification. This is un-
desirable since an implementation producing unexpected output for legitimate input is

4



normally erroneous. Moreover when a specification is non-deterministic, this method
may exclude correct deterministic implementations.

When an implementation is specified in an input (quasi-)receptive way, a distinction
is made between inputs and outputs. If its environment is also receptive, it will deadlock
on unexpected outputs from an implementation. However, it is very hard to extract an
input quasi-receptive environment from a behavioural specification – especially if this is
complicated or contains internal events. An alternative method is therefore used when
verifying asynchronous circuits. Relations are defined that respect the difference be-
tween input and output. These relations do not require a (quasi-)receptive environment
or implementation, and are natural criteria for asynchronous circuit correctness.

3 Conformance Testing and Verification

Conformance testing is a term drawn from communications systems to mean evaluat-
ing the correctness of an implementation against its specification. To formally define
an implementation relation, a test hypothesis is needed that implementations can be
expressed by a formal model. In traditional conformance testing theories for LTSs (La-
belled Transition Systems), both the specification and the IUT (Implementation Under
Test) are modelled as LTSs. An IUT communicates with its environment through sym-
metric interactions, so its environment as expressed by tests is also modelled as an LTS.

Many real-world systems communicate with their environment in a different way
from an LTS, with a clear distinction between inputs and outputs. The inputs of a system
are always enabled and cannot refuse the actions offered by the environment. After the
system consumes an input and produces its outputs, the environment has to accept the
outputs. In other words, such a system will never reject inputs and its environment will
never block outputs. Communication is thus no longer symmetric. In [18] this kind of
behaviour is modelled as an IOLTS (Input-Output Labelled Transition System), which
is a special kind of LTS. In an IOLTS, the set of actions is partitioned into inputs and
outputs. Intuitively this means that input actions are always enabled in any state.

The DILL approach allows conformance of an implementation to be verified against
its specification. More precisely, a design specification is formally checked against an
abstract specification. The same approach also allows test suites for an implementation
to be rigorously derived from its specification. This allows the actual implementation
to be checked for correctness. Since implementations are not usually formally derived
from specifications, rigorously derived tests are an important solution to formal gaps in
the design process.

3.1 Conformance Testing

In the DILL approach to conformance testing, a circuit is specified in LOTOS (whose
semantics is given by an LTS). The implementation of the same circuit is described by
VHDL. The behaviour of a VHDL program is presumed to be modelled by an IOLTS
that need not be known explicitly.

To support the checking of conformance, an intermediate LTS termed a suspension
automaton is built from the specification LTS. The suspension automaton of an LTS
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is obtained by adding self-loops for all quiescent states (where no output is pending).
The resulting automaton is then determinised. The important properties of a suspension
automaton are that it is deterministic and that it respects the outputs of the original
LTS. Checking conformance can be easily reduced to checking trace inclusion on the
suspension automaton.

A test case is an LTS with finite deterministic behaviour. A test case ends with states
labelled Pass or Fail to indicate the verdict of conformance. The test cases generated
by DILL have the form of traces rather than trees. This allows easy measurement of test
coverage and automatic execution of test cases. A test suite cannot usually cover the
entire behaviour of a specification as this is normally infinite. The strategy is therefore
to cover all transitions in a transition tour that addresses the Chinese Postman problem.
As a suspension automaton may not be strongly connected, it is not possible to make
direct use of conventional transition tour algorithms. Instead the approach of [5] is used
because it is suitable for all kinds of directed graphs. Depth-first search is used until
an unvisited edge cannot be reached. Breadth-first search is then employed to find an
unvisited edge, and then depth-first search recommences.

Tests are generated from a suspension automaton by an algorithm that offers three
choices in each iteration. The first choice terminates test generation. Since specifications
usually have infinite behaviour, test generation has to be stopped at some point. The sec-
ond choice gives the next input to the implementation. Since inputs are always enabled,
this step will never result in deadlock when an input is applied. It is therefore not possi-
ble to reach a terminal Pass or Fail state. To avoid unnecessary non-determinism during
testing, only one input is applied each time. The third choice checks each possible next
output of the implementation. Any implementation producing an unexpected output
will result in a Fail terminal state, indicating a non-conforming implementation. For all
other outputs, test generation may continue. This test generation algorithm guarantees
sound test cases for ioconf (input-output conformance). An exhaustive set of test cases
is also guaranteed.

This method works well with deterministic specifications. However when the spec-
ification has non-deterministic behaviour, simply generating traces from a tree raises
problems. The problem is that an implementation has to pass all the test cases in a test
suite before it is regarded as correct. This problem is solved by marking outputs at a
contradictory branch to indicate that the corresponding test is inconclusive when the
marked output is not matched during testing.

The CADP toolset for LOTOS supports an application programming interface that
allows user-written programs to manipulate the state space of a given LOTOS spec-
ification. The authors have developed the TestGen tool to realise the test generation
algorithm. Each generated transition tour is a test case and is saved in a test file. The
accumulated test cases are passed to a VHDL simulator that handles a lower-level im-
plementation of the circuit. A VHDL testbench was designed to allow the test cases to
be applied and executed against the VHDL description of the circuit.

The testbench mainly consists of two processes that are executed concurrently. The
first process generates clock signals for the circuit under test. The second process reads
the test suite file and generates signal stimuli according to the inputs of each test case.
It also compares the outputs generated by the VHDL simulator with the output values
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specified by test cases. A Fail verdict is given and the simulation is aborted if these
outputs are not the same. This needs some knowledge of the circuit realisation, such as
the propagation delays of components in the circuit. Between two test cases of a test
suite, a reset signal is generated by the testbench to re-initialise the circuit under test.
(It is assumed that a circuit can always be reset.)

An inconclusive point may be met during testing because there are alternative imple-
mentations. In such a case the testbench may have to search forward or backward to find
a matching alternative. This means that loops can arise during testing, so the testbench
operates a strategy to avoid endless repetition. The testbench also needs to maintain a
timer. If there is no output within a certain period, the circuit must be assumed quiescent
(waiting for input). A failure verdict must be given if output was required at this point.

3.2 Conformance Verification

Several implementation relations have been defined to express conformance of an im-
plementation to its specification. In these relations, specifications are modelled as LTSs
and implementations are modelled as IOLTSs. This is because an LTS can give a more
abstract view of a system, while an IOLTS is closer to reality. The specification LTS
can be regarded as a partially specified IOLTS in the sense that there are some states in
the specification that can refuse input actions. There are two reasons for writing such
kinds of specifications. One is that it does not matter how implementations respond to
unspecified inputs. The other is that the environment is assumed not to offer such inputs,
so there is no need to specify them.

To define the implementation relation ioconf (input-output conformance), several
other definitions have to be introduced. A quiescent state is one that cannot perform any
output transitions or an internal transition. An implementation has input-output confor-
mance to its specification if, after every trace of the specification, the implementation
outputs can also be produced by the specification. An implementation cannot produce
outputs which are not expected by the specification. Since this also holds for a quiescent
state, the implementation may not output if the specification cannot do so. As for test
generation, a suspension automaton is created as a step towards verifying conformance.

Suppose Spec is an abstract specification of a circuit and Impl is its implementation
specification. Spec may be partial in the sense that in some states it does not accept
some inputs, i.e. it is not input-receptive. An input is absent if the environment of a
circuit does not provide it, if the behaviour of the circuit upon receiving the input is not
of interest, or if the behaviour is undefined. Although a circuit may accept all inputs at
any time, most specifications are partial to avoid detail. Impl may be partial or total in
the sense of input receptiveness.

Suppose that sp is a state of Spec and that im is the corresponding state in Impl. To
define the implementation relation confor (conformance), consider the input transitions
of sp and im. If input ip is accepted by sp, it is reasonable that ip also be accepted by
im. But if im accepts an input that is not accepted by sp, this input and all the behaviour
afterwards can be ignored. Since the environment will never provide such an input, or
even if it is provided, such behaviour is not of interest. In short, the inputs acceptable in
sp should be a subset of those acceptable in im.
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If sp can produce output op, a correct implementation should also produce it. If sp
cannot produce a certain output, neither should its implementation. However when a
specification is allowed to be non-deterministic, it is too strong to require im to produce
exactly the same outputs as sp. A deterministic implementation could produce a subset
of the outputs. A suitable relation should thus require output inclusion instead of output
equality. Unfortunately a circuit that accepts everything but outputs nothing may also
be qualified as a correct implementation. The overcome this problem, a special ‘action’
δ is introduced for quiescence, meaning the absence of output. Like any other output,
if δ is in the output set of im it must be in the output set of sp for conformance to hold.
That is, im can produce nothing only if sp can do nothing.

The confor relation requires that, after a suspension trace of Spec, the outputs that
an implementation Impl can produce are included in what Spec can produce. If Impl can
follow the suspension trace, the inputs that Spec can accept are also accepted by Impl.
A second implementation relation strongconfor (strong conformance) is also defined.
This is similar except that output inclusion is replaced by output equality. Normally
confor is used for a deterministic specification and implementation, while strongconfor
is used when an implementation is more deterministic than a specification.

To check these relations, a specification LTS is first transformed into a suspension
automaton. This is part of the verification tool VeriConf developed by the authors to
check the (strong)confor relations. Briefly, CADP is exploited to generate LTSs of both
specification and implementation. Then the verifier is used to produce the suspension
automata from the LTSs and to compare the automata according to the relations.

4 Case Studies

This section illustrates the DILL approach to conformance testing and verification using
various benchmark circuits. By choosing examples defined by others, the authors have
avoided biasing the illustrations in favour of their method. A selection has been made
from case studies by the authors to illustrate larger and smaller circuits, synchronous
and asynchronous designs, testing and verification.

4.1 Bus Arbiter

The Bus Arbiter is a benchmark circuit using to check hardware verifiers [17]. It is a
synchronous circuit that grants access on each clock cycle to a single client among a
number of clients requesting use of a bus. The inputs to the arbiter are a set of request
signals from clients. The outputs are a set of acknowledge signals that indicate which
client is granted access during a clock cycle. For brevity the specifications and formal
analysis are not given here, but can be found in [11, 13].

The arbitration algorithm embodied in the design is a round-robin token scheme
with priority override. Normally the arbiter grants access to the highest priority client:
the one with the lowest index number among all the requesting clients. However as
requests become more frequent, the arbiter is designed to fall back on a round-robin
scheme so that every requester is eventually acknowledged. This is done by circulating
a token in a ring of arbiter cells, with one cell per client. The token moves once every

8



clock cycle. If a client’s request persists for the time it takes for the token to make a
complete circuit, that client is granted immediate access to the bus.

LOTOS supports specification at various levels of abstraction. Although the Bus
Arbiter has been studied by many researchers, as far as the authors know there has not
been a formal specification of the arbitration algorithm used in the design. With LOTOS,
it is possible to provide such a higher-level specification. Translating the algorithm to
LOTOS is quite straightforward. For an arbiter with three cells, the LOTOS specification
has 79 lines (including comments) for the behavioural specification.

The design of the arbiter consists of repeated cells. Each cell is in charge of ac-
cepting request signals from a client, and sending back acknowledgements to the same
client. The first cell is slightly different because it is assumed that the token is initially in
the first cell. Because the components of each cell are in the DILL library, it is very easy
to specify the process describing a cell. The specification of an arbiter with three cells
is obtained by connecting three such processes. There is also an environment constraint
in the structural specification of the arbiter to meet the conditions of the synchronous
circuit model (section 2.1).

The formulation of properties with the CADP tool uses action-based temporal logic,
namely ACTL (Action-based Computational Tree Logic [16]) and HML (Hennessy-
Milner Logic). The following three properties have to be proved for the circuit: no two
acknowledge outputs are asserted in the same clock cycle (safety); every persistent re-
quest is eventually acknowledged (liveness); and acknowledge is not asserted without
request (safety). To verify the higher-level specification against the temporal logic for-
mulae, the LTS of the specification was produced first. CADP generates an LTS with
3649 states and 7918 transitions. This is reduced to 379 states and 828 transitions with
respect to strong bisimulation. Both generation and reduction take a few seconds on
a 300 MHz Sun. The temporal logic formulae are then verified against the minimised
LTS within a minute.

The real challenge comes when the lower-level design specification is verified. The
state space is so large that direct generation of the LTS from the LOTOS specification
is impractical. Compositional generation was therefore used to verify the arbiter. The
specification is divided into several smaller specifications to make sure that it is possible
to generate an LTS for each of them. Then these are reduced with respect to a suitable
equivalence relation.

In order to get valid verification results, special attention must be given to the equiv-
alence relation that is used. Safety equivalence preserves all safety properties, while
branching bisimulation equivalence preserves liveness properties when there are no
livelocks in specifications. Both of these equivalences are congruences with respect
to the LOTOS parallel and hide operators. These two equivalences are thus appropriate
to compositional generation.

The design of the arbiter was divided into three pieces, one per cell of the arbiter. An
LTS which is safety equivalent to the LOTOS specification of the design was generated
in about seven minutes. The two safety properties were verified to be true against this
LTS, implying that the design also satisfies these properties. Verification of the formulae
took just seconds. However generating an LTS that is branching equivalent to the design
took almost one day, after which the liveness property was also verified to be true.
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For checking equivalence between the higher-level algorithm and the lower-level
design, compositional generation was exploited to generate the LTS for the design.
This time each cell was reduced with respect to observational equivalence since it is
a congruence for the LOTOS parallel and hide operators. The LTS was generated in
about eight minutes. It was expected that this LTS would be observationally equivalent
to the one representing the higher-level specification. However CADP discovered that
they are not! The tool provides a counter-example in which client 0 requests the bus
during the first three cycles. The high-level and low-level specifications both grant ac-
cess to this client. In the fourth cycle, client 0 cancels its request but client 1 begins to
request access. At this point the two levels of specifications are different: the low-level
specification offers 0 for Ack1, whereas the high-level specification offers 1 for Ack1.

After step-by-step simulation of the counter-example, it was soon discovered that
the circuit does not properly reset the override out signal. This is a fault in the sup-
posedly proven benchmark circuit. The design was modified and then verified to be
observationally equivalent to the higher-level algorithmic specification. The corrected
circuit diagram appears in [11].

4.2 Black-Jack Dealer

The Black-Jack Dealer is another verification benchmark circuit [17], also discussed in
[20]. Black-Jack is a card game also known as Pontoon or Vingt-et-Un. For brevity the
specifications and formal analysis are not given here, but can be found in [11, 12].

The Black-Jack Dealer is a synchronous circuit whose inputs are Card Ready and
Card Value (Ace..King, Clubs..Spades). Its outputs are boolean: Hit (card needed),
Stand (stay with current cards) and Broke (total exceeds 21). The Card Ready and
Hit signals are used for a handshake with a human user. Aces have value 1 or 11 at the
choice of the player. Numbered cards have values from 2 to 10. Jack, Queen and King
count as 10. The Black-Jack dealer is repeatedly presented with cards. It must assert
Stand (when its score is 17 to 21) or Broke (when its score exceeds 21). In either case
the next card starts a new game.

In the LOTOS specification of the Black-Jack Dealer, a new data type Value is de-
fined to represent the card value. Although the standard LOTOS data type NaturalNum-
ber might appear suitable, CADP cannot generate the corresponding LTS for an infinite
data type like this. The key point in the specification is how to handle the ambiguous
value of an Ace. To solve the problem, the specification uses the method given by [20].
Specification behaviour occupies about 80 lines including comments. (The circuit dia-
gram is also about a page.)

Using CADP and the authors’ TestGen program, a test suite for the Black-Jack
Dealer was derived. The test suite is able to test 181 different hands of cards that a
dealer may hold. The VHDL implementation given in [20] was evaluated against this
test suite.

Although the circuit was expected to pass the test suite, a Fail verdict was recorded
after the dealer was given the following cards: 5, 5, 3, 2, 1, 10. In this case the dealer
should be Broke because the sum of the cards is 26. However the circuit outputs neither
Stand nor Broke since it considers the total to be just 16. The same problem was found
with other card combinations including an Ace that should cause Broke.
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Fig. 1. Implementation of A Two-Stage FIFO from Individual Cells

The circuit should initially take an Ace as 11. It should be re-valued as 1 (subtract-
ing 10 from the sum) the first time the result would be Broke. If the following cards
would make the sum exceed 21, there should be no re-valuation as no Ace is 11. But
the given design still re-values the Ace card, so the circuit is not Broke in this case.
Carefully simulating the circuit discovered a problem in the benchmark with one of the
flag registers that indicates an Ace should be 11. The register is not reset to zero prop-
erly because the effective duration of the signal used to reset it is too short. By slightly
modifying the circuit to remove the cause of this short duration, the circuit was able to
pass the test suite successfully. Again, the authors had discovered a flaw in a supposedly
verified design.

4.3 Asynchronous FIFO

As a typical asynchronous circuit, an asynchronous FIFO buffer was specified and anal-
ysed. For brevity the specifications and formal analysis are not given here, but can be
found in [7, 8, 14].

The FIFO has two inputs InT, InF and two outputs OutT, OutF. Its inputs and outputs
use dual-rail encoding in which one bit needs two signal lines. A possible implemen-
tation for a FIFO stage is given in figure 1 (a). Apart from the data path, there are two
lines that control data transmission. Req comes from the environment of a stage, indi-
cating that environment has valid data to transfer. The Ack line goes to the environment,
indicating that the stage is empty and is thus ready to receive new data. Both of these
control signals are active when 1. The implementation uses two C-Elements (transition
synchronisers used in asynchronous circuits).

To ensure a FIFO works correctly, the environment has to be coordinated. For ex-
ample, it should provide correct input data according to the dual rail encoding. To make
things easier, it is convenient to think about the environment in two parts: EnvF (front-
end) is a provider that is always ready to produce data, while EnvB (back-end) is a
consumer that can always accept data. A two-stage FIFO can then be implemented as
in figure 1 (b).

The specification should exhibit liveness. Using CADP, it was verified that the spec-
ification satisfies the following property: if there is an input of 1, then the output will
eventually become 1. The property for input of 0 is similar and was also shown to be
true. It was verified that Spec ≈ Impl || (EnvB |[· · ·]| EnvF), where ≈ denotes observa-
tional equivalence.
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Fig. 2. LTS, Suspension Automaton and Several Tests of FIFO

When speed independence needs to be verified, each building block (including the
environment) should be specified in the input quasi-receptive style. Impl QR is the
implementation specification in quasi-receptive style. It uses the corresponding DILL

library components. The corresponding quasi-receptive specifications EnvF QR and
EnvB QR also have to be written. EnvF has no inputs and so is identical to EnvF QR.

To check speed independence, the input quasi-receptive specifications were used.
It was also verified that Spec ≈ Impl QR || (EnvB QR |[· · ·]| EnvF QR), which gives
more confidence in the design of the FIFO. The liveness property is also satisfied by the
implementation Impl QR || (EnvB QR |[· · ·]| EnvF QR).

Figure 2 gives the LTS for the FIFO (minimised with respect to observational equiv-
alence), the suspension automaton for the LTS, and several tests. Because the LTS is
deterministic, the suspension automaton has almost the same structure except for the
δ (quiescent) transitions, which appear as circles in the figure. Test T1 provides two
inputs and then checks the output of an implementation. If output OutF changes, the
implementation passes the test. However if OutT changes or if there is no output, the
implementation fails the test. Similarly, test T2 checks output after one input is pro-
vided. Test T3 checks output right away. For this test, an output from the initial state
is incorrect and results in a fail. Only after δ, meaning that no output is produced, can
testing continue.

It was shown that Impl QR || (EnvB QR |[· · ·]| EnvF QR) strongconfor Spec using
the VeriConf tool. The TestGen tool builds a single test case of length 28:
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InF !1 InF !0 OutF !1 InF !1 OutF !0 OutF !1 InF !0
InT !1 OutF !0 InT !0 OutT !1 InT !1 OutT !0 OutF !1
δ InF !0 OutF !0 InT !1 OutT !1 InT !0 InT !1
OutT !0 OutT !1 δ InT !0 OutT !0 δ Pass

4.4 Selector

A selector (an asynchronous design component) allows non-deterministic choice of out-
put. For brevity the specifications and formal analysis are not given here, but can be
found in [7, 8, 14].

After a change on input Ip, either Op1 or Op2 may change depending on the im-
plementation. Figure 3 gives its LTS (minimised with respect to observational equiva-
lence), the suspension automaton of the LTS, and one of the test cases. Sample test T4
shows that after input Ip !1, an implementation producing either Op1 !1 or Op2 !1 will
pass the test.

i i

Op1 !1 Op2 !1

Ip !0

i i

Op2 !0Op1 !0
Op1 !1

Op2 !1

Selector_SusSelector

Ip !1

Ip !0

Ip !1

Pass Fail Pass

T4

Op1 !1 Op2 !1
Op2 !0Op1 !0

Ip !1
S1

S2

δ

Fig. 3. LTS, Suspension Automaton and One Test of Selector

The TestGen tool produces a single test case of length 11 for the selector. This
example shows how contradictory branches are marked. After Ip !1, the output Op1 !1
is marked with the current state (?S1) since an implementation may also do Op2 !1. A
selector that insists on sending its input to Op1 can follow the first row of steps in the
test case below. After the sixth step (Ip !1), it cycles back to the second step (Op !1) – a
loop that the testbench must break.

Ip !1 Op1 !1 (?S1) Ip !0 Op1 !0 (?S2) δ Ip ! 1
Op2 !1 (?S1) δ Ip !0 Op2 !0 (?S2) Pass
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5 Conclusion

An approach to specifying synchronous circuits has been presented. This has allowed
standard hardware benchmarks to be verified – the Bus Arbiter and the Black-Jack
Dealer in this paper. The authors were pleasantly surprised to find that their approach
discovered previously unknown flaws in these circuit designs.

An approach to specifying asynchronous circuits has also been presented. (Quasi)
delay-insensitive circuits are transformed into speed-independent designs. Violations
of speed-independence (or rather of semi-modularity) are checked using specifications
that are input (quasi-)receptive. The (strong)confor relations have been defined to assess
the implementation of an asynchronous circuit against its specification.

In comparison to other techniques applied to the same case studies, e.g. COSPAN

and CIRCAL, DILL is much more convenient for giving a higher-level specification.
CIRCAL gives an abstract view of a synchronous circuit by directly specifying its cor-
responding finite state machine, but this is not always a natural representation of circuit
behaviour.

Being based on process algebra, DILL specifications can be verified by equivalence
and preorder checking. This is distinctive in that most hardware verification systems
are based on theorem proving or model checking. Equivalence or preorder checking
makes it possible to write the specification in the same formalism as the implementation,
here DILL (or really, LOTOS). The correctness of a DILL specification can be easily
checked by simulation tools. The TestGen tool generates test suites using transition tours
of automata. This allows automatic generation of test suites for reasonable coverage,
and also allows testing of non-deterministic implementations. The VeriConf tool was
developed to support the (strong)confor relations.

However, the size of the circuit that can be effectively verified is small compared to
that handled by other mature hardware verification tools. There are two main reasons
for this performance limitation. One comes from the modelling language LOTOS, and
the other comes from the CADP tool. For synchronous circuits, the order in which sig-
nals occur during a clock cycle is not so important. So it is reasonable to imagine that
the inputs happen together and then output occurs. But when modelling such circuits
in DILL, independent (interleaved) inputs are allowed so the state space is considerably
enlarged. CADP is still under development, and most of its features are currently based
on explicit state exploration. On-the-fly observational equivalence checking is not cur-
rently supported by CADP. A BDD representation of LOTOS specifications is still being
developed for CADP, although BDDs are used to represent intermediate data types in
some algorithms. With tool improvements, the verification performance reported in this
paper can be expected to improve.

References

1. D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Cir-
cuits. ACM Distinguished Dissertations. MIT Press, 1989.

2. J. C. Ebergen, J. Segers, and I. Benko. Parallel program and asynchronous circuit design.
In G. Birtwistle and A. Davis, editors, Asynchronous Digital Circuit Design, Workshops in
Computing, pages 51–103. Springer-Verlag, 1995.

14



3. J.-C. Fernández, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu. CADP
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