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Abstract. Creating new services through composition of existing ones is an at-
tractive option. However, composition can be complex and service compatibility
needs to be checked. A rigorous and industrially-usable methodology is there-
fore desirable required for creating, verifying, implementing and validating com-
posed services. An explanation is given of the approach taken by CRESS (Com-
munication Representation Employing Systematic Specification). Formal veri-
fication and validation are performed through automated translation to LOTOS

(Language Of Temporal Ordering Specification). Implementation and validation
are performed through automated translation to BPEL (Business Process Execu-
tion Logic) and WSDL (Web Services Description Language). The approach is
illustrated with an application to grid service composition in e-Social Science.

1 Introduction

1.1 Motivation

Workflows have been widely adopted to create new services by composing existing
ones. Grid services are similar to web services, so it is not surprising that common
mechanisms can be used with both to combine services. Such composite services are
becoming increasingly common in commercial and scientific applications. They can
require complex logic to combine independently designed services. Compatibility with
third-party services can also be an issue.

It is therefore desirable to have a rigorous methodology for creating and analysing
composed services. However, formal approaches are mostly restricted to computer sci-
entists and are hard to sell to industry. This paper reports on work to encourage use of
formal methods in the field of grid and web services:

– an accessible graphical notation is used to describe composite services
– formal models are automatically created, validated and verified without requiring

detailed knowledge of formal methods
– implementations are automatically created and deployed once services have been

validated and verified.

1.2 Composing Services

Grid computing allows heterogeneous systems and resources to interoperate following
the paradigm of SOA (Service Oriented Architecture). New services can be created by
combining existing ones. The terms ‘composition’, ‘orchestration’ and ‘workflow’ are



all very similar, and are used interchangeably in this paper. BPEL (Business Process
Execution Language [1]) is a standardised approach for orchestrating web services. The
authors and others have investigated techniques for orchestrating grid services.

Service composition raises a number of issues. The logic that combines services can
become complex. Sophisticated error handling may also be required. Compatibility of
component services may be a concern, especially if the services are defined using only
WSDL (Web Services Description Language). Since WSDL describes just interface
syntax and not semantics, deeper issues of compatibility can arise.

A methodology is hence desirable for developing composed services. Defining com-
positions should be made straightforward since the developer may well have a limited
computing background. Verification (‘doing the thing right’) should allow the service
composition to be automatically checked against desirable properties. Once confidence
has been built in the design, implementation and deployment should be fully automatic.
Validation (‘doing the right thing’) should be possible during specification (to build con-
fidence in the design) and also after implementation (to check non-functional properties
such as performance and dependability).

Grid and web services differ in their emphasis on use of resources, e.g. for process-
ing, distributed data and specialised devices. Resources are often used by grid services
to offer stateful services to clients. It is therefore necessary to formally model interac-
tions with dynamic resources in grid service composition. For flexibility, it should also
be possible to dynamically allocate the partners that support a composite service. Part-
ners are third-party services that are combined through workflow logic to offer a new,
composite service.

1.3 Service Composition Methodology

Surprisingly little attention has been given to rigorous composition of grid services
(though more has been done on composed web services). Even where this has been
studied, formal models are usually developed separately from their implementations. In
contrast, the work reported here is a complete methodology that handles all aspects of
service creation, from initial design through to system testing. This approach is called
CRESS (Communication Representation Employing Systematic Specification, www.cs.
stir.ac.uk/~kjt/ research/cress.html). In fact, CRESS was designed for modelling many
kinds of services and has been applied in many domains. For grid and web services,
CRESS can be viewed as a workflow language for specifying composite behaviour.

Early work by the authors demonstrated that grid service composition could be
achieved by adapting BPEL. However, there were significant limitations in BPEL that
required work-arounds (e.g. for EndPoint References). Composed grid services were
also not much more than simple web services, e.g. there was no support for service
resources and dynamic partners in the style that grid services commonly use. Only for-
mal validation was supported. The new work reported in the present paper has resulted
in a rounded methodology for orchestrating services. Formalisation has been extended
to deal with full grid services. Formal verification and implementation validation have
also been added to the methodology.

There are several advantages to this approach. A composite service need be de-
scribed only once, using an accessible graphical notation. The formal specification and

2



the implementation code can then be automatically generated from this single descrip-
tion. Automatic formal verification and formal validation can be used to ensure that the
service composition is functionally correct. Errors at the design stage can be cheaply
corrected by modifying how the composition is described. Implementation and deploy-
ment are then fully automatic. Although further checking might appear unnecessary, a
range of practical issues make implementation validation desirable. For example per-
formance bottlenecks may arise, or factors such as dependability and reliability might
need attention. Although the methodology described in this paper supports all aspects
of composing services, the emphasis here is on a new and distinct facet: how formal
verification and validation can be supported.

1.4 Relationship to Other Work

Specifying Composed Services Formalising web services has been studied by the for-
mal methods community. LTSA-WS (Labelled Transition System Analyser for Web
Services [8]) is a finite state method. Abstract service scenarios and actual service im-
plementations are generated through behavioural models in the form of state transi-
tion systems. Verification and validation are performed by comparing the two systems.
The approach is limited to handling data types but not their values. This restricts the
formal analysis of service composition since data values are often used in conditions
that influence behaviour. CRESS differs in generating the formal model and the service
implementation from a single abstract description. CRESS uses LOTOS (Language Of
Temporal Ordering Specification [12]) to model service composition, and can therefore
model data types as well as their values.

Temporal business rules have been used to synthesise composite service models
[21]. The pattern-based specification language PROPOLS (Property Specification Pat-
tern Ontology Language for Service Composition) expresses these rules. Each rule has
a predefined finite state automaton to represent it. A behavioural model is then gener-
ated by composing the rules using their respective finite state automata. This can be
further iterated with additional rules until a satisfactory model is generated. The pro-
cess model can then be transformed into BPEL, although this aspect appears to be under
development. The approach does not, however, deal with data types. CRESS differs in
generating both the implementation and the formal specification from the same CRESS
description, dealing fully with data types and values.

WSAT (Web Services Analysis Tool [9]) is used to analyse and verify composite
web services, particularly focusing on asynchronous communication. Specifications can
be written bottom-up or top-down, finally being translated into Promela and model-
checked using SPIN. For composite web services that interact asynchronously, WSAT
is able to verify the concepts of synchronisability and realisability. However, the tool
does not support the full range of capabilities found in standards such as BPEL. A
composite web service specification often deals with error handling, compensation and
correlation – things that are not yet handled by WSAT.

[4, 7] use a process algebraic approach to automate translation between BPEL and
LOTOS. CRESS differs in that no specification is required of either BPEL or LOTOS.
Instead a graphical notation, accessible to the non-specialist, supports abstract service
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descriptions that are translated into BPEL and LOTOS automatically. This is an advan-
tage as the service developer may well not be familiar with either BPEL or LOTOS.

Implementing Composed Services Web service orchestration has been actively stud-
ied and supported in a number of pragmatic developments. There are several implemen-
tations for modelling and executing service workflows.

JOpera [14] is a service composition tool for building new services by combining
existing ones. It provides a visual composition language and also a run-time platform to
execute services. JOpera claims to offer greater flexibility and expressivity than BPEL.
Although JOpera initially focused on web services, support for grid service composition
has also been investigated.

Taverna [13] was developed to model web service workflows – specifically for
bioinformatics. It introduced SCUFL (Simple Conceptual Unified Flow Language) to
model grid applications in a specialised workflow language.

BPEL has been investigated by several researchers for orchestrating grid services.
[16] developed BPEL extensibility mechanisms to orchestrate services based on OGSI
(Open Grid Service Infrastructure) and WSRF (Web Services Resource Framework
[11]). [22] used specialised constructs to achieve interoperability with WSRF services.
These efforts showed that grid service orchestration was possible, but restricted.

Since web services may vary dynamically, partner services may become inconsis-
tent with respect to workflows that rely on them. ALBERT (Assertion Language for
BPEL Process Interactions [2]) is a language for expressing (non)-functional properties
of workflows. The continued validity of these properties can be monitored at run time.

OMII-BPEL (Open Middleware Infrastructure Institute BPEL [19]) aims to support
the orchestration of scientific workflows with a multitude of service processes and long-
duration process executions. It provides a customised BPEL engine, and supports a set
of constructs desirable for specification of scientific workflows.

The OMII-BPEL work is the closest to CRESS. The authors strongly believe that
implementations should be created in standard languages (BPEL, WSDL, XSD) which
are already widely used. For example, this allows the use of a variety of orchestration
engines. Where CRESS differs from similar BPEL approaches is that it takes a more ab-
stract (and even language-independent) view. Specification, implementation and analy-
sis can therefore be integrated in a single methodology.

2 Background

2.1 Service Composition and Grid Services

SOA (Service Oriented Architecture) treats capabilities or functions as individual ser-
vices. Service composition is a key feature of SOA for creating new services by com-
bining the behaviour of existing ones. BPEL (Business Process Execution Language
[1]) is one of the most popular languages for specifying composite web services. Al-
though early work on composing grid services using BPEL showed promise, this was
not straightforward. Fortunately, the latest standard for BPEL supports WSRF (Web
Services Resources Framework [11]) and is hence appropriate for grid services.
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WSRF allows a service instance to be associated with arbitrary numbers and types
of resources. ‘Resource pairs’ are identified by an EPR (EndPoint Reference [20]). Grid
services promote virtual collaboration among users of distributed systems. A grid en-
vironment can be highly dynamic, with resources, partners and services being created,
added, shared and removed over time.

Grid computing initially developed through applications in the physical sciences.
The trend is now towards use in other areas such as e-Social Science, which has been
recognised as a promising application of grid computing. The authors are formalising
support for workflows on the DAMES project (Data Management through e-Social Sci-
ence, www.dames.org.uk).

To illustrate the methodology for developing workflows, this paper tackles a com-
mon task performed by social scientists: representing occupations in different classifica-
tion schemes. Occupational data researchers are interested in analysing questions such
as how jobs affect social position, social interaction patterns, etc. There are many oc-
cupational classification schemes, some of them international standards. As each clas-
sification scheme favours certain types of analysis, occupational researchers have to
map datasets to particular schemes to perform the analysis. This might involve several
intermediate mappings to arrive at the desired encoding. As a result, translation is of-
ten performed using computer scripts or paper indexes that map between (usually) two
schemes. Sections 3 and 4 discuss how an occupational translation service was rigor-
ously developed using service composition.

2.2 CRESS

CRESS is a domain-independent graphical notation for describing services. CRESS
takes an abstract approach in which a high-level service description automatically gen-
erates a formal specification and an executable implementation. In other work, it has
been used to describe a variety of voice services and also web services. CRESS can be
used as a graphical workflow notation for grid and web services.

CRESS service descriptions are graphical, making the approach accessible to non-
specialists. The focus is on high-level description, abstracting away the technical details
required in an actual implementation. CRESS is designed as an extensible framework
where support for new domains and target languages can be added like plug-ins.

The CRESS representation for service composition is intentionally close to BPEL. A
brief description of the subset of CRESS notation used in this paper is given here. Refer
to figures 1 and 2 for the examples cited below.

A CRESS diagram typically includes a rule box, numbered nodes, and arcs that link
nodes. A rule box is a rounded rectangle which (for grid and web services) defines
variables and their types, as well as dynamic partners. Complex data structures can
be defined, e.g. ‘{...}’ for records. As an example, the following defines two variables
mapping1 and mapping2 whose type is a record with two string fields:

{ String job String scheme } mapping1:allocator, mapping2:allocator

Variables and their types are normally associated with the diagram that define them. It
is possible to be explicit about this by qualifying a variable with its owning diagram
(Allocator in the above).
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A rule box can also indicate which other services are required, e.g. ‘/ Allocator’ in
the description of the Lookup service shows it depends on the Allocator service.

The activities in a composed service are described in numbered ellipses. A typical
composition starts with Receive as an incoming request that specifies the service, port
and operation names, as well as the input variable. A typical composition ends with a
Reply as an outgoing response that returns an output variable or a fault. There can be
alternative Reply activities for one Receive, and even several Receive activities. Invoke
is used to call an external partner by service, port and operation. Invocation specifies
an output variable, an optional input variable, and optional faults that may be thrown.
Examples of all of these are:

Receive lookup.job.translate schemes (input schemes)
Reply lookup.job.translate codes (output codes)
Reply lookup.job.translate allocatorError.reason (fault allocatorError.reason)
Invoke allocator.job.translate mapping1 code1 (output mapping1, input code1)

Faults can be defined with just a name (allocatorError), with just a value (.reason), or
with both elements.

Other activities include Terminate (to end behaviour), Compensate (to undo work
following a failure), and Fork/Join (for concurrency). For the latter, a fine degree of
control over concurrency can be specified. In general, each activity may complete suc-
cessfully or may fail. A join condition such as ‘3&&4’ means that activities 3 and 4
must succeed before behaviour continues. Activities as well as arcs can contain assign-
ments such as ‘/ mapping1.job <− schemes.job’.

Branches in CRESS diagrams normally represent choices. A deterministic choice
has labels on arcs for conditions that govern which path is followed. A non-deterministic
choice has unlabelled arcs. Event choices are not made immediately, but rather when
some event happens. For example, a ‘Catch .reason’ branch is followed only when
a fault with some reason value occurs. A Compensation branch is taken only when a
Compensate activity is used to undo previous work. Typically, compensation is defined
after an Invoke since a failure may mean that changes already made have to be undone.

3 Formal Specification and Analysis of Composed Grid Services

3.1 Describing Service Composition

The service developer starts by drawing a CRESS diagram that describes the logic used
to combine the functions of external service partners. Typically these partners have
already been created by others, though new partner services might also be created for the
purposes of the orchestration. In a complex development, a number of CRESS diagrams
may be defined to realise the orchestration. CRESS also supports feature diagrams for
common functions that can be added automatically to service descriptions.

During the work reported in this paper, CRESS was extended to treat EPRs (End-
Point References) as first-class values, to support grid resources fully, to handle dy-
namic service partners, to formally verify properties, and to validate implementations.
These aspects are all illustrated using the following example.
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Fig. 1. CRESS Description of The Occupation Lookup Service

The diagrams in figures 1 and 2 show the use of CRESS to describe an e-Social Sci-
ence workflow. This supports the classification of occupations mentioned in section 2.1.
The services involved in this example are as follows:

Lookup: This is the top-level workflow that takes a request to translate a job title into
two occupational schemes. It uses the Allocator partner to perform these transla-
tions in parallel, and returns the combined result.

Allocator: This partner service is itself a workflow that takes a request to map an occu-
pation into some scheme. It uses the Factory partner to find a suitable resource (i.e.
a Mapper service) to perform this translation and then return the occupation code.

Factory: This partner service accepts a request to find an occupational classification
translator. It dynamically allocates a resource for performing this task, and returns
a reference to it. If no suitable resource can be allocated, a fault is thrown.
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Fig. 2. CRESS Description of The Occupation Allocator Service

Mapper: This partner service is selected dynamically, so it represents a class of transla-
tion services. The given job title is translated into a particular occupational scheme.

Lookup Service The service in figure 1 defines translation logic that makes use of
the partner Allocator service. Initially the service proceeds along the arc from Start
to node 1. The service then accepts a request to translate a job title into two specified
schemes (node 1). The translations may be automated (e.g. through an online service)
or may be manual (e.g. requiring a researcher to look up a classification scheme). Since
the delay in translation for each scheme is unknown, both translations are performed in
parallel (node 2 to node 5).

Both parallel branches are similar. For example, the left-hand branch copies the job
and scheme names into the mapping1 structure (arc from node 2 to node 3). The Allo-
cator service is then called to translate this into a job code (node 3). This service may
give rise to a fault if the translation cannot be performed (fault name allocatorError,
fault value reason). Both parallel branches require to complete successfully before fur-
ther action is taken, as specified by the join condition in node 5. At this point, the two
job codes are combined into a codes structure (arc from node 5 to node 6). The Lookup
service ends by sending this to its caller (node 6).

In passing, note that CRESS supports long-running transactions that are fairly com-
mon in grid computing. In the case of Lookup, the parallel invocations may take as long
as required. This is not desirable if the service instance could otherwise make progress
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on other tasks. CRESS therefore also allows a one-way Invoke that immediately returns
to the calling service. An asynchronous response is matched by a Receive.

Concurrency requires proper handling of faults. For example, if one of the parallel
branches fails then the other cannot be left hanging. The top-level error handler (arc
from Start to node 7) catches a fault from either parallel invocation. It replies to the
caller with the reason why the Allocator failed, and terminates the whole workflow.

Allocator Service The service in figure 2 initially proceeds along the arc from Start to
node 1. Here it accepts a request for a particular job mapping. The classification scheme
is extracted into scheme2 (arc from node 1 to 2). Since it is necessary to find a suitable
translation service, the Factory partner is called to find one for the particular scheme
(node 2). This returns a Mapper reference for a suitable service instance. If no suitable
service is found, a fault is thrown.

The Allocator then dynamically sets the reference for the Mapper service, and ex-
tracts the job title into job2 (arc from node 2 to node 3). When the Mapper is called to
translate the job title, this dynamic partner is used (node 3). In normal circumstances,
the Allocator replies with the job code to its caller (node 4).

Various error conditions are handled by the Allocator. If the Factory invocation in
node 2 fails, the error is caught in the local scope and returned to the caller (node 5).
A mapping failure in node 3 needs to be handled differently. Since no fault handler is
defined for this invocation, the global fault handler is used (arc from Start to node 7).
This requires compensation because simply terminating the Allocator would leave the
translation resource allocated. Compensate in node 7 requests global compensation.
All subsidiary compensation activities are then called in reverse order of completion.
In this example, there is only one such activity (arc from node 2 to node 6). The effect
is to deallocate the service instance that the Factory had allocated (node 6). Following
compensation, the Allocator returns the fault reason to its caller and terminates the
workflow (nodes 8 and 9).

Collectively, figures 1 and 2 define a composite service with four partners. However,
a client of the whole translation service sees just a single grid service; the internal design
of this is intentionally hidden, and could be changed in future.

3.2 Formalising Service Composition

A CRESS diagram is automatically translated into LOTOS (Language Of Temporal Or-
dering Specification [12]), including support for developer-defined data types and be-
haviour. (A number of formal approaches to grid or web services support only ele-
mentary data types such as booleans and integers.) Service behaviour is represented by
interacting LOTOS processes. As the focus is on service composition, CRESS fully spec-
ifies the logic that combines external partner services. CRESS does not normally have
enough information to specify these partners, and instead defines only their interfaces.
However if a partner service is itself a composition, CRESS will specify it fully.

Since partner services are usually defined by others, it is likely that no formal spec-
ification exists of them. Indeed, the design of a partner service may be proprietary and
hidden. The automated interface specifications generated by CRESS are sufficient for
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basic compatibility checks of partners. For a more thorough analysis it is desirable
to have more complete (though still abstract) specifications of partner services. These
specifications have to be created manually, by the developer of the partner service or by
the developer of the composite service. However, having a formal specification of all
services is good practice anyway.

Handling of dynamic resources in LOTOS has been added for the work reported
here. For static service partners, interactions between a composite service and a service
partner are via LOTOS events that specify the service, port and operation. For dynamic
service partners, synchronisation is specified with a resource prior any interaction. This
is reasonable as an actual implementation also does the same thing.

The Partner type in CRESS is a unique key that identifies a resource pair. An as-
signment to partner.port is performed prior to invoking a dynamic partner. In LOTOS,
this is translated as an assignment to the corresponding EPR variable. Synchronisation
with a dynamic partner specifies the EPR required. It is only after this that a dynamic
partner instance can be invoked. This approach can also be used with web services,
since dynamic web partners operate in an identical fashion.

Figure 3 shows how the various specification elements are combined in the CRESS
methodology. The generated specification of a composite service normally dominates
the specifications of the partner services. The composite LOTOS specification that re-
sults is sufficient for use with several LOTOS tools, e.g. LOLA (LOTOS Laboratory [15]).
However, some LOTOS tools such as CADP (Construction and Analysis of Distributed
Processes [10]) require the specification to be preprocessed first.

A CRESS service description is rigorously analysed through formal validation and
verification of the automatically generated LOTOS. Once the composition has been
checked to have the desired properties, an implementation can be created automatically.

3.3 Validating Service Compositions

Formal validation can be directly performed on the composite specification produced
by CRESS. This makes use of a test notation and tool called MUSTARD (Multiple Use
Scenario Test and Refusal Description [18]). Although not illustrated here, MUSTARD
can be used to test partner services as well as service compositions.

As a simple example of validation with MUSTARD, the following acceptance test
checks the translation of job title ‘nurse’ into the SOC2000 and SIC92 classifications
(codes ‘3211’ and ‘95.14’ respectively). The test succeeds if it is possible to send a
translation request and then to read the expected response. Strings in MUSTARD are
preceded by a single quote.

test(Nurse_Translation,
succeed(

send(lookup.job.translate, schemes(′Nurse,′SOC2000,′SIC92)),
read(lookup.job.translate, codes(′3211,′95.14))))

Acceptance tests check only what a system must do. MUSTARD is also used to
define refusal tests that check what a system must not do. Concurrent behaviour can be
checked as well. In the following test, parallel requests are performed to translate a job
title using different occupational schemes:
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Fig. 3. Formal Validation and Verification with CRESS

test(Parallel_Translation,
succeed(

interleave(
sequence(

send(lookup.job.translate, schemes(′Cab Driver,′SOC2000,′SIC92)),
read(lookup.job.translate, codes(′8214,′60.22))),

sequence(
send(lookup.job.translate, schemes(′Private Detective,′SIC92,′SOC2000)),
read(lookup.job.translate, codes(′74.60/1,′9241))))))

MUSTARD translates such tests into LOTOS, adds them to the composite specifica-
tion generated by CRESS, and uses the validation facilities of LOLA to formally check
that the specification passes its tests. This is achieved through abstract execution of the
specification, constrained by the test behaviours. The tests above are simple examples.
In practice, MUSTARD is used for a variety of tests that may include alternatives, con-
ditions, non-determinism, variables, wild-card values, service dependencies (whether a
particular service is deployed), fixtures (common preambles for tests), and reset actions
(to put a service into a known state). As will be seen in section 4, MUSTARD tests are
used to validate implementations as well as specifications.

Although such validation is formally based, testing is necessarily limited. Its main
advantage is that validation is practical; automated validation of even a complex service
is performed in seconds or minutes. However, formal verification is desirable as a com-

11



plement to this. Rather than showing that the specification exhibits desirable behaviour
on certain test cases, it is preferable to prove properties in general for classes of tests.

3.4 Annotating LOTOS

For formal verification of LOTOS, the toolset of choice is CADP (Construction and
Analysis of Distributed Processes [10]). However, CADP places a number of restric-
tions on the form of LOTOS that it will accept. In particular, data types need to be
extensively annotated. Verification with CRESS is performed only after a further au-
tomated stage to annotate a LOTOS specification for CADP. This requires a tool that
knows about standard LOTOS data types as well as the data types that CRESS generates.

CADP does not allow parameterised data types, so they must be instantiated first.
The authors developed a tool to ‘flatten’ and annotate data types: all data types are
collapsed into one, and CADP pragmas are created. CADP also does not support infinite
sorts. Annotations in the form of special LOTOS comments are therefore added to a
specification prior to verification, e.g. to identify constructor operations and external
implementations of data types.

CADP can verify a LOTOS specification through model checking. Abstract data
types with infinite values have to be limited to a finite range for verification. Most data
types in grid and web services have finite (although possibly large) ranges whose size
may depend on the programming language or platform. Several CRESS library data
types such as Number have an infinite range.

In previous work, finite ranges were manually specified for CRESS data types (e.g.
Char, Number, Text). In the work reported here, the automated annotation tool also
deals with restricting ranges. C implementation skeletons are created automatically for
user-defined data types (e.g. record structures in CRESS). For the occupation transla-
tion example, C skeleton files are created automatically for CRESS types like schemes
and mapping. As it happens, this particular example does not need any special imple-
mentations for data types – CADP supplies default implementations. However, specific
implementations can be created manually to replace the default ones.

Roughly speaking, each CRESS diagram node corresponds to a LOTOS process. A
LOTOS process communicates using events at gates. Processes synchronise their com-
munications at gates, which may be selectively hidden from external view. Processes
may run independently in parallel or may synchronise on specific gates.

Factory and Mapper are normal partners, and are instantiated inside the Allocator
where they are used. The Allocator is actually instantiated twice: once inside Lookup,
where it is used, and again at the global level. This is because Allocator is a compos-
ite service that can be used in its own right. A Resource partner implicitly represents
the set of dynamic resources that may be allocated by the Factory. In implementation
terms, this is called the ‘resource home’. In CRESS this is a ‘phantom partner’, and is
instantiated at the global level for use by all services.

3.5 Verifying Service Compositions

Verification allows general properties to be checked, whereas validation can check only
specific cases (though these are usually selected to be the critical ones). Model check-
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ing requires a finite (though possibly large) state space, and so will not be practicable
in some cases. Validation can deal with very large or infinite state spaces. The two
techniques are therefore complementary, and help to ensure that the methodology for
service development is both rigorous and practical.

Service properties are verified using the notation and tool called CLOVE (CRESS
Language-Oriented Verification Environment). This supports the high-level formula-
tion of properties, and provides a simple way of using the actual verification tools. To
some extent, CLOVE is oriented towards the needs of verifying grid or web services.
Verification is normally undertaken only by specialists. To fit in with the pragmatic
aims of CRESS, CLOVE is designed for use by those with limited knowledge of for-
mal methods. For example, common properties of services are automatically checked,
and property templates are also supported. This allows the domain specialist the verify
correctness of service descriptions.

The specification patterns repository (patterns.projects.cis.ksu.edu) builds on the
fact that verification properties are often common across many application domains.
This makes it possible to develop template properties that can be supported by different
formal methods [6]. CLOVE supports this approach by embedding and extending these
properties, using the LOTOS representations developed by Mateescu (www.inrialpes.
fr/vasy/cadp/resources/evaluator/rafmc.html). In addition, CLOVE supports common
properties such as freedom from deadlock and livelock, as well as specialised properties
that are appropriate for services.

As examples, the following properties are desirable for the occupational translation
service in figures 1 and 2:

– The service should always be available, i.e. free from deadlocks (a safety property).
– If the service receives a request, it must able to accept a new request at a future

point (a liveness property).
– For correct service requests, the client should receive the translated job title or a

fault due to partner failure.
– For incorrect service requests (an unknown job title or classification scheme), the

service must throw a fault to the client.
– If no translation resource exists, the service must throw a fault to the client.

As a concrete example, the following CLOVE property deals with service requests
and responses. A request to translate an occupation must always (‘global’) obtain the
translated occupation code, or else a lookup fault with a string message. ‘?’ means any
value of the given type. If this property does not hold of the service description, the
cause of the failure is analysed.

property(General_ Response,
response(global,

signal(lookup.job.translate,?schemes),
or(

signal(lookup.job.translate,?codes),
signal(lookup.job.translate,lookupError,?string))))

The Nurse_ Translation test in section 3.3 checks only one translation. The fol-
lowing CLOVE property asserts that translating job title ‘nurse’ into the SOC2000 and
SIC92 classifications should always yield the correct result.
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property(Nurse_ Response,
response(global,

signal(lookup.job.translate,schemes(’Nurse,’SOC2000,’SIC92)),
signal(lookup.job.translate,codes(’3211,’95.14))))

Common service properties are automatically verified without having to be speci-
fied explicitly. In addition, service-specific properties like the above can be formulated
by the developer. The CLOVE notation is intended to be more accessible than the un-
derlying formalism (µ-calculus). CLOVE is also designed to be similar to MUSTARD,
allowing the developer to verify and validate services in a similar way. Although these
example properties are simple, they are typical of service verification practice. CLOVE
also supports other types of property, e.g. for safety or liveness (reachability).

Behind the scenes, CLOVE automatically translates the properties into µ-calculus
[5] – a temporal logic that allows branching-time properties to be checked. CLOVE then
invokes CADP to carry out property verification. The goal for verifying CRESS service
descriptions is to make this as ‘push button’ as possible, especially since the service
developer may not be a computing specialist. In fact it is possible for the developer to
create composed services without leaving the CRESS diagram editor. A service compo-
sition can be described graphically, validated, verified, implemented and deployed from
within this graphical tool.

The CADP tools used for verification are CAESAR (behaviour compiler), CAE-
SAR.ADT (data type compiler) and Evaluator. CAESAR.ADT generates a C header file
from the LOTOS specification, including references to the C skeleton files generated by
CRESS. CAESAR is then used to generate a BCG (Boundary Components Graph) for
the specification. The Evaluator tool verifies properties of a specification in LOTOS or
BCG form. Verification steps are defined by an automated script written in SVL (Script
Verification Language). Desirable properties include deadlock freedom, consistency of
service behaviour, and reachability of service states.

The CRESS specification generated from figures 1 and 2 was verified against these
properties after some corrections. For example, the original description had deadlocks
due to an error in dealing with requests with an invalid occupational scheme. As a result
the system, could not proceed and did not respond to the client request.

4 Implementing and Deploying Composed Grid Services

The main emphasis of this paper is on formal aspects, so the automated implementation
will be described only briefly. The same CRESS description as used for specification
is automatically implemented through translation into BPEL/WSDL and is packaged
for deployment. Services that are part of the composition have their interfaces and data
types generated in WSDL and XSD respectively. The BPEL, WSDL interface, WSDL
catalogue, deployment descriptor and common definitions are automatically generated
for the composite service and its partners. CRESS generates outline implementations of
partners that are completed manually for use in the final implementation.

Service orchestration (for Lookup and Allocator in this example) is performed by
the ActiveBPEL engine (www.activebpel.org). The composed service is automatically
created and deployed as a BPEL archive. If orchestration makes use of partner web
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services, these are also deployed in ActiveBPEL. More typically, the partners are grid
services (Factory and Mapper here). These are automatically packaged and deployed
as grid service archives using the Globus Toolkit (www.globus.org).

ActiveBPEL, Globus Toolkit, the composite service and its partners can all run on
one system, though more typically they are distributed. This is defined by a CRESS
configuration diagram (not shown here) that defines the locations and deployment char-
acteristics of all services. The running implementation can then be validated again using
the same MUSTARD tests as were used for the specification (section 3.3). In particular,
this evaluates non-functional properties such as performance, dependability and relia-
bility. This time, MUSTARD is translated into an intermediate form that is suitable for
use in testing an implementation. MINT (MUSTARD interpreter) executes these tests in
a similar kind of way as LOLA does for LOTOS. However, MINT has additional capa-
bilities for evaluating an implementation. For example, it can perform stress testing by
running many tests concurrently or sequentially to check implementation performance.

5 Conclusion

The CRESS methodology for composing services has now been rounded out to handle
all the key characteristics of grid services. For example, service resources, EndPoint
References and dynamic partner assignments are now fully handled in both the specifi-
cation and implementation phases of CRESS. Formal validation of the generated LOTOS
specifications was already possible using MUSTARD. New work has added automatic
verification of desirable specification properties, allowing properties of a composite ser-
vice to be proven in general. Automatic validation of the generated implementation is
also now possible, using MINT to check (non-)functional characteristics.

Verification through model checking requires a finite state space. This is a reason-
able restriction since the data types of an actual grid service implementation are finite.
Though the state space can grow very large, the size of it can be constrained by using
subsets of data values and by choosing significant values for verification. However, val-
idation still has a useful role. For example, it can be used with infinite state spaces, can
check specific interesting cases, and can be used for stress-testing the implementation.

Support for automated formal analysis will be further improved. It is planned to
allow data types to be annotated in CRESS with regard to useful ranges and interesting
values. A possible approach here is to use PCL (Parameter Constraint Language [17])
to specify significant values for validation and verification. This would allow MUS-
TARD test cases to be automatically defined. A rigorous methodology for developing
composite grid services has been presented. This uses an accessible graphical notation
and a high degree of automation to make it attractive to industry. An occupational clas-
sification service has been used to explain how interactions with dynamic resources
and dynamic partners are supported by CRESS. Abstract CRESS descriptions are auto-
matically translated into LOTOS for formal verification of desirable properties and for
formal validation of significant test cases. These are almost ‘push button’ procedures.
The CRESS descriptions can then be automatically translated into implementations with
confidence. The same MUSTARD tests can again be used to check the characteristics of
these implementations.
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