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Abstract

CRrREss (Communication Representation Employing Systematic @pation) is
introduced as notation, a methodology and a toolset foricemevelopment. The
article focuses on rigorous development of composite geidises, with particular
emphasis on the principles behind the methodology. A stthigvard graphical nota-
tion is used to describe grid services. These are then atitaiaspecified, analysed
and implemented. Analysis includes formal verification e$idable service properties,
formal validation of test scenarios, testing of impleméntafunctionality, and evalu-
ation of implementation performance. The case study thadtibtes the approach is
document content analysis to compare two pieces of texk iftidlves two composite
services supported by two partner services. The usabilitysoservice design notation
is assessed, and a comparison is made of the approach withrsimes. These show
that the GREssapproach to developing services is usable and more conphei®ther
comparable approaches.
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1. Introduction

1.1. Objectives

The overall goal of this work is an integrated methodologydeveloping a wide
variety of services. A case study is presented of developimgposite grid services,
but the approach has also been used to create telephongeseiiviteractive voice ser-
vices, device services and composite web services. ThegIftjchas emerged as an
important approach to distributed computing. Much like #hectricity grid, a com-
puting grid provides computational capacity on demand.d Gérvices can be seen
as an extension of web services, with features such as dgrsemiice selection and
distributed resource access.
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Communications services are of increasing importancedastry and are there-
fore becoming quality-critical. The authors believe thiatgpical formal methods such
as described in this paper will make a useful contributiosetwice quality. The metho-
dology described in this article covers service descnipdad specification, verifica-
tion and validation, implementation, testing and perfanoeevaluation. In industrial
practice, service development tends to be pragmatic: @esare designed, coded and
tested using traditional (and manual) software engingaeichniques. However, online
services are becoming increasingly mission-critical imynapplications. Services are
often combined with others for B2B communication (Busires8usiness). The ser-
vices can be complex, concurrent, and risk unexpectedéngarce. There is a strong
need for techniques that deliver dependable servicesiéirigibesired properties, cou-
pled with automatic code generation to turn these intoteali

Formal approaches are not so common in industry, except awaspecialised
application areas such as safety-critical systems. Thmagihave tried to automate the
methodology as far as possible and to make it accessiblentspecialists. Although
researchers have aimed at improving service developnm&ythiave generally tackled
only certain aspects of design and in ways that requirelddtéchnical knowledge.

This article describes REss(Communication Representation Employing System-
atic Specification). @Essoffers a notation for services, a methodology for service
development, and a comprehensive toolset. Currertig<shandles services in seven
different domains, and supports code generation for fiferdint languages. The foun-
dational work in [33] introduced a notation for telephonwtigres. This was subse-
quently adapted in [34] to describe web services and in [@tlescribe grid services.
The service development methodology has recently beerszbout with capabilities
for convenient formal verification and implementation exdion. Relative to previous
publications on ®Ess this article covers the complete methodology, grid appiins,
development principles, and practical formal verificatéoml validation.

1.2. Structure of The Article

Section 2 gives the technical background to the work, ptaRGRESSIn context.
Related work is described on specifying, implementing &sting composite web and
grid services.

Section 3 explains service development witRESs The methodology is illus-
trated with respect to grid service development, includirgsubset of EEssused in
this article. The techniques for formal verification andhfai validation are discussed.

Section 4 describes a case study that makes use of grid egrvis document
matching service makes use of a scoring service to compstefte similarity. The
diagrammatic service descriptions are automaticallyifipdc¢ verified and validated.
Once confidence has been built in the service design, it enzatically implemented
and deployed. In a final step, the implementation is autaralliyievaluated for correct
functional behaviour and adequate performance.

Section 5 evaluates usability of th&Essnotation and comparesRE ssto similar
approaches. Section 6 rounds off the article with a summityecapproach.



2. Background

2.1. Modelling Services withKESS

A service is an abstraction of the functionality providedayapplication. SOA
(Service Oriented Architecture) has become popular as asnefcreating systems
from loosely coupled components. A service offers a blagk:tbnterface-oriented
view of application functionality. As well as dealing withdividual services, SOA also
supports composing services into new ones. This offers neimeéss opportunities, but
with the added complexity of having to integrate a numbeleofises seamlessly.

Service composition is also called service orchestrationarkflow definition. A
survey of workflow languages and an assessment of standettls area are given by
[28]. WS-BPEL (Web Services Business Process Execution Logic [2]) is @lyidsed
standard for achieving this. EEL provides the logic that links calls of individual ser-
vices. Service choreography, e.g. WSCDL (Web Services &igyaphy Description
Language), is a complementary approach that describesdroigas interact with each
other rather than how their combined execution is achieved.

A composite service is a ‘business process’ that exchangssages with partner
services. A business process is itself a service with ré¢péts users. Services have
communication ports where operations are invoked. An uressful operation gives
rise to a fault that may need compensation to undo prior work.

BPMN (Business Process Modeling Notation [4]) is a graphicdation for de-
scribing business processes in general. It is relevantezause it can be mapped to
BPEL and thus to web service composition. Compared RE€5 BPMN supports a
wider range of capabilities. However, this means that BPKBIN imnuch more complex
notation. It also lacks the capabilities of formal analysisferred by @ess Fur-
thermore, modelling composite services is only one of maplieations of RESS
whereas BPMN is specialised for business processes.

The original grid architecture was OGSI (Open Grid Servitfeastructure), with
extensions to WSDL (Web Services Description Languageld &arvices now make
use of resources through WSRF (Web Services Resource Frakjeund also employ
GSI (Grid Security Infrastructure). Many researchers havestigatedvebservices,
but CREssis one of few methodologies that supporid services.

CREssrespects the principles of SOA and service composition. efhphasis of
this article is on formal aspects, here usingTios (Language Of Temporal Ordering
Specification [17]). loTosis a standardised formal language that was originally de-
signed for specifying networked and distributed systemashhls found application in
many other areas.@Tosis a process algebra combined with algebraic data types that
supports concurrency, verification, validation and agian-defined data types.

CRESsis appropriate for domains that can be modelled as a flow ofities; this
encompasses a broad range of applicationee<S3is not particularly designed for
real-time aspects, though there is some support for timéiargds. This potential lim-
itation mainly depends on the underlying formalism usedweleer, the loTostools
used with GRESSsupport timing and stochastic extensions. Where the imghtaa
tion language supports time directlyrREsscan make use of this. RESsis also not
strongly oriented towards performance evaluation. Ststihaspects (e.g. probabilis-
tic behaviour) are not supported.



CRrREesssupports formal verification (i.e. proof) and formal valida (i.e. rigorous
testing). Formal verification requires a finite state spadeetpracticable, often requir-
ing data type values to be constrained in some way. Formalatain does not have
this limitation.

Cressdiffers from other approaches in a number of respects:

e Most approaches deal with the design of just one kind of ser¢.g. voice,
web). (QRESsuses a common set of techniques and tools to support thendesig
of many different kinds of services.

e Most approaches handle only part of service developmegtdealysis or test-
ing). CRessprovides a complete methodology that covers service g
specification, analysis, implementation, testing andqrernce.

e Other approaches typically need expert knowledge (e.gndbmethods, spe-
cialised software). Thanks to a high degree of automati®g<Scovers many
aspects of development with minimal effort by the servicsigiger.

e Comparable approaches often use non-standard techniGressemphasises
the use of standards, with the advantages of wide acceptama#ability of
reference and tutorial material, tool support, and atiraness to industry.

e Although many approaches support the desigweliservices, RESssupports
the design ofjrid services as well.

e Formal approaches often abstract services to make thetatttachandling only
simple types such as booleans and integere $3supports a full range of data
types and data structures that are likely to be requiredaliste&e services.

2.2. Specifying Composite Services

The ENSORIAproject (Software Engineering for Service-Oriented CaeCom-
puters [27]) has studied a number of aspects of service mesigiuding larger case
studies using web service orchestration. UML (Unified ModgNotation) is used
to describe service structure, evolution and activitiesnulnber of process calculi
were created for modelling web services [38]. These areledupith techniques for
functional or performance analysis. UML has also been beed in [18] to describe
web services at a high level, e.g. using activity diagramstate diagrams. These are
translated into FSP (Finite State Processes) for modekefgeto find deadlocks or
problems with synchronisation. Although the use of UML &grevith the authors’
preference for standards, the above formalisms for arsabr& not standard (unlike
LoTo9). CrRESsalso tries to support a methodology, techniques and contpalset
that do not require specialised knowledge.

LTSA-WS (Labelled Transition System Analyser for Web Seegi[10]) is a finite
state approach to specifying web services. Abstract sesdenarios and actual service
implementations are generated through behavioural mad#ie form of state transi-
tion systems. Verification and validation are performeddyparing the two systems.
The approach is restricted in its handling of data typere £ differs in generating
the formal model and the implementation from a single absuascription, and in
allowing arbitrary data types.



PropPoLs(Property Specification Pattern Ontology Language for i8er€ompo-
sition [39]) is a pattern-based specification language dargoral business rules. A
behavioural model combines rules using their respectiveefgtate automata. The
process model can then, in principle, be transformed irkaB The approach does
not, however, deal with data typesrREssdiffers in generating both the specification
and the implementation from the same description, dealiltgith data.

WSAT (Web Services Analysis Tool [12]) is used to analyse arify composite
web services, particularly focusing on asynchronous conication. Specifications
are translated into Promela and model checked using SPIMTVisSable to verify
synchronisability and realisability. However, the tookedmot support the full range of
capabilities found in BEL (e.qg. error handling and compensation).

[7, 9] automate translation betweerrBL and LoTos CRrEessdiffers in that no
specification is required of either&L or LOTOS. Instead a graphical notation, acces-
sible to the non-specialist, supports abstract serviceriggions that are translated into
BpPEL and LoTosautomatically.

JABC (Java Application Building Center [29]) allows sere&to be created with re-
usable building blocks. The approach supports automagesfgation and verification.
Mapping to BPMN and BPEL is also possible, including suppartveb services.

StAC (Structured Activity Compensation [6]) is a procesgesra that has been
used to specify the orchestration of long-running traneast This can be used with
the B notation to allow specification of data types. Most eER can be translated into
StaC, but the emphasis is on reasoning about transactitmes than support for BEL.
[20] also focuses on verifying web transactions, but is duether from BPEL.

2.3. Implementing Composite Services

Pragmatic aspects of web service implementation are wefiated through pack-
ages such as Active®:L [1] and Oracle BEL Process Manager. Grid services are
implemented by Globus [14], OMII (Open Middleware Infrastiure Institute), etc.
The OMII-BPEL project [37] support scientific workflows using an adaptatd Ac-
tiveBPEL. Distinctive features include support for security andléorg-running pro-
cesses.

JOpera [24] was conceived mainly for orchestrating webisesy though its appli-
cability for grid services has also been investigated. d®pkims greater flexibility
and convenience thanfBL. Taverna [23] was developed for web services, particularly
for workflows in bioinformatics. The underlying languagel\$&L. (Simple Concep-
tual Unified Flow Language) is intended to be multi-purpdseluding applications in
grid computing. However, the authors believe that confaroedo the widely accepted
BPEL standard is desirable for acceptance.

2.4. Testing Composite Services

[3] gives a comprehensive overview of techniques for tgstweb services. Some
aspects of this derive from work on test case generatior aadn protocol confor-
mance testing. Model-based testing uses some kind of farrodkl of the system to
derive rigorous tests. Of particular relevance to thishertre techniques based ool
TOS (e.g. [32]). Because others have worked on test case gamer@Resscan build
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Figure 1: REssMethodology

on this. That is, @essfocuses on convenient representation and execution of test
cases. ®essalso offer a unique advantage: the same scenarios are uselitkate a
specificatiorandits implementation.

[22] maps BrEL to PePA (Performance Evaluation Process Algebra). Stochastic
aspects are not defined by BL and have to be added manually. The approach extends
WSDL with estimated latency attributes for each operatidime PEPA workbench
then calculates the throughout of the model. Fault handnmgpt addressed by the
approach, and factors such as communication cost and leatbaconsidered.

3. CrEssApproach

3.1. Service Development witlRESS

Figure 1 shows the overall methodology forEss(Communication Representa-
tion Employing Systematic Specification [36]). All the maglements in the metho-
dology are due to the authors, though use is made of thiny-paols for BPEL and
LoTos lItis not feasible in this article to give a full descriptiofthe methodology
and its applications. Interested readers can find a mordetetiscussion in [30].

Services are described manually using tiee€sgraphical notation. Several gra-
phical editors are supported, but the preferred onedis/€ (CRESSHome-Grown In-
teractive Visual Editorwww.cs.stir.ac.uk/~kjt/ software/ graph/chive.qQtribiagrams
are automatically translated into a formal specificatiaat thescribes one or more ser-
vices. The core €Essnotation is independent of the application domain and the
verification language. In this article, grid services aem$iated to brosfor formal
analysis. The meaning of aREssdiagram is given denotationally through its repre-
sentation in loTos(which has a formal semantics).

Business processes are automatically specified in full tteeiv CRESSdiagrams,
but only outline specifications can be generated of pargmices. This is sufficient to
prove useful properties of a service design, such as carsecdf interfaces. However,
for fuller analysis it is desirable for the developer to gdw/complete specifications of
partner services. These are automatically imported Rgssand combined with the
process specifications.



Properties a specification should respect are defined mgrinaCLove. Cer-
tain properties such as deadlock freedom, livelock freedathguaranteed termina-
tion are automatically handled and do not need explicit d&fim Application-specific
properties have to be specified by hand, though it will be seanQ_ove simplifies
the process for non-technical users. Additional work isunesgl prior to verification
with the CADP toolset (Construction and Analysis of Distitikd Programs [13, 16]).
For example, CADP does not handle parameterised (‘forntgbgs in LoTos and
needs annotations to specify how data types should beedall$ie lLoTOSgenerated
by CrEssis automatically annotated for CADP, allowing automatedfioation of
CLOVE properties.

CLoVE is independent of how exactly properties are checked. matticle, grid
service properties are automatically translated jptmalculus [5] and model checked.
The meaning of a COVE property is given denotationally by its representatiopin
calculus (which has a formal semantics). Results from watifon are presented in a
way that is meaningful to the non-technical user. Although procedure makes use
of techniques such as on-the-fly and compositional verifinastate space explosion
often limits what is practical (a common issue with all medeécking techniques).

For this reason, formal validation is also supported aspesawith large (even in-
finite) state spaces. As a form of testing, validation is seagly incomplete — but it
complements what is possible through verification. Tl @s specifications gener-
ated by Resscan be used immediately for formal validation of test scesawith the
LoLA tool (LoTosLaboratory [25]).

Test scenarios are created manually usingsVARD (Multiple-Use Scenario Test
and Refusal Description [35ww.cs.stir.ac.uk/~kjt/ research/ mustard.htinlthis ar-
ticle, test scenarios for grid services are automaticaflgdlated into btosand for-
mally validated. The meaning of a4 TARD test is given by its denotation indTos.

The result of verification and validation is a service dgsarh in which the de-
veloper can have a high degree of confidence. The penultistepds automatic gen-
eration and deployment of operational code. For grid sesyithis involves creating
BPEL, WSDL and deployment descriptors. It would seem that therags methodo-
logy oughtto deliver dependable implementations. Howexsious issues can arise in
deployment. For example, performance limitations may iregmplementation tun-
ing, and the implementation may not operate as expectedaduesburce conflicts.
The methodology therefore has a final step to evaluate pedioce of the actual im-
plementation. This re-uses the test scenarios that weneaftyr validated against the
specification, giving a confidence check on functionalitg performance under load.

3.2. Notation for Grid Services

A CrEssdiagram is a directed graph that shows the flow of activitgmbered
nodes in a @essdiagram define inputs and outputs (communication with oseer
vices) or actions (internal to the service). In an orchéstrgervice, an activity can
terminate successfully or can fail (due to a fault). Brarscimea GRESSdiagram nor-
mally reflect alternatives, but parallel paths can also bmeé. Although B EL has
separate constructs for sequence, iteration and grapliliilvs, GRESsmodels these
in a uniform way.



Construct

Meaning |

(diagrant)?name

a variable or fault name defined by a particular
diagram (the current diagram if no prefix is given)

serviceport.operation

an operation for the given service and port

namé.variable)? |

a fault name with optional variable or just a fault

.variable variable

[/ variable <— value an assignment associated with an arc or node

Catch fault how to handle a fault; a fault unmatched in the curre
scope is sought in higher-level scopes

Compensate used after a fault to undo previous work by calling

compensation handlers in reverse order of activitieg

Compensation

undoes work due to a fault; enabled once the
corresponding activity completes successfully

Fork introduces parallel paths; may be nested to any def
Invoke operation output| one-way for output, or two-way for output and input
(input faultg)? potential faults are declared statically (but happen

dynamically)

Join condition

matches d&ork; an explicit join condition refers to
termination of prior activities, e.g. ‘1 && (2 3)’

Receiveoperation input

an initial Receivecreates a new process instance,
being matched by Reply for the same operation

Reply operation typically provides an output response at the end of
(output| fault) business process, though a fault may also be signa
Terminate ends a process abruptly

Table 1: Summary of €essConstructs used in Article (‘*?" optional, “*’ zero or mord; thoice)

The subset of €essactivities appearing in this article is explained in tablevith

nt

h

—
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concrete examples appearing in sections 4.4 and 4.Be$€supports a wider range
of constructs than is described here.)
In a CRESSservice diagram, arcs (service flow) join nodes (activitEsown as
ellipses. ®Ressarcs and nodes may have associated assignments. Arcs nadogbed
with expression guards (alternative choices) or eventdgiéronditional on events

occurring).

As an example, figure 2 shows part of an online loan servicedeNbperforms
a Receivefor servicelender, portloan, operationquote and inputrequest If the
requested amount is 10000 or more, the request is copiedaniableproposal(arc
from node 1 to 2). Thepproverservice is then asked to approve the loan request,
resulting in the loamate or arefusalwith someerror value (node 2). Otherwise, the
assessoservice is asked to perform a full assessment of the loarestgresulting in
arisk assessment (node 3).

A CREessrule box is shown as a rounded rectangle. It defines (amorg thtimgs)
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Figure 2: GRessNotation Example

simple variables, structured variables and their typed, sasidiary diagrams. The
format isUsesdeclarations / diagramsA type name precedes the variable(s) of that
type. Simple variables have the types used in XML.

As an example, figure 3 shows some of the definitions for a deotircontent
analysis service.Float length and String reasonare simple variablesReference
wordsis an endpoint reference to a service resource (a list ofaedlwords). RESS
can also define structured types. Hesegresis a structure containing langthfield
(a float) and drequencyfield (an array of string elements callewrd). These fields
might be accessed asores.lengtior scores.frequency|[3]

. N
Uses

Float length
Reference words
String reason

{
Float length
[ String word ] frequency
} scores
\ J

Figure 3: ®REsSsRule Box Example

A BPEL handler deals with faults and events. IRB. a handler may be defined
inside any scope of a process, but iRE3sthe scopes are implicit. As a consequence,
event handlers may only be global or associated withngoke. (This is a small
restriction that accords with commorpBL practice anyway.)

3.3. Formal Verification

CLovE (CrRessLanguage Oriented Verification Environmeniyww.cs.stir.ac.uk/
~kjt/research/clove.htrls a language for expressing desirable system propedies f
any application domain or specification language. Progeitan be translated into
multiple languages(-calculus in this article). The Patterns project has cagiatol
common verification properties; an online repository [2&6g example mappings to
several temporal logics. Most properties apply to five ssoglbal (always applies),
before (some event)after (some event)between(always applies), andfter until



| Construct | Meaning |
'string a literal string
2Aype a wild card for any value of the given type
\pattern a regular expression) ?type’ prefixes a pattern

value that is later referenced by numben”

serviceport.operation a grid service operation
alwayqbehaviouy all specification paths respect the behaviour
choicgbehaviour.) alternative choices among behaviours
existgbehaviouy some specification path respects the behaviour

property (name,behaviogr | a property to be verified

responséscope,behavio)r | aresponse to some request, e.glabal one that
applies to all behaviours

signal(operation,parametejs| an input or output action

Table 2: Summary of Cove Constructs used in Article

(from one event to another). Pattern mappings have beetedréa ;i-calculus (www.
inrialpes.fr/vasy/ cadp/resources/evaluator/rafmmht The subset of CovE con-
structs used in this article is summarised in table 2 andtiifted concretely in sec-
tion 4.6.2.

Verification checks that desired properties are respecteddpecification. Coun-
terexamples that contradict a property can be generatedebgrtalysis. Verification
can analyse the entire behaviour, whereas validation $sgeseral. A model is auto-
matically generated from the specification as an LTS (Lakleliransition System) that
is then checked against the desired properties.

As an example, figure 4 defines a property to be satisfied byettdel service.
The property describes a global service response (i.el mralimstances). If a loan
quotation request is made with any proposal details, thécgemust give one of two
quotation responses: a number as the loan rate, or a refudahith some reason as a
string.

property (Any_ Loan_ Response,
responséglobal,
signal(lender.loan.quote,?Proposal),
choicq
signal(lender.loan.quote,?Number),
signal(lender.loan.quote,Refusal, ?String))))

Figure 4: G ove Example

The CADP toolset (Construction and Analysis of Distribut@grams [13, 16])
uses finite-state model checking to verify specificationsL @ros specification is
automatically translated by CADP into C code that is exettiegenerate the system
LTS. CREssautomates the annotation of data types for CADP to gendratmbdel.
CADP verifies properties specified in RAFMC (Regular Altéioa-Free Mu Calculus

10



[21]), a logic that expresses temporal properties inclgdiata values and also supports
regular expressions.

Properties are automatically verified under control of the>= tool. The auto-
mated translation turns data value enumerations into C sspkpties intqu-calculus.
CADP supports on-the-fly verification with thevkL UATOR tool, managing systems
with a large state space by constructing and exploring e Sfpace incrementally.
CLOVE uses EALUATOR to verify the translated:-calculus properties, with the C
code and annotateddTosas inputs. For the non-specialist, verification outcomes ar
shown in QoVE terms. If a property does not hold, counterexamples areigedv
Common properties (e.g. deadlock, livelock, terminatianmg) automatically checked.

Compositional verification is used to avoid state spaceasiph through divide-
and-conquer. A large specification is automatically didideo smaller behaviours that
are then composed. The CADP language SVL (Script Verifindtimnguage) is used
by CLovE for compositional verification tasks. This is automated3aessgenerated
specifications by identifying behavioural units. A compebservice is divided into its
service partners (recursively if they are business presesemselves).

3.4. Formal Validation

MusTARD (Multiple-Use Scenario Test and Refusal Description [88jw.cs.stir.
ac.uk/~kjt/research/ mustard.htni$ a language for expressing test scenarios for any
application domain or specification language. The sams t=81 be translated into
multiple languages (@Tosand BPEL in this article). MUSTARD supports acceptance
tests (the system behaves as expected) and refusal tessygtem refuses undesirable
behaviour). MUSTARD also supports a variety of test behaviours: sequentialmcus
rent, deterministic or non-deterministic, modular, cdiodial or dependent on certain
features, and using test fixtures (putting the system intacavk state).

The subset of MISTARD constructs used in this article is summarised in table 3
and illustrated concretely in section 4.6.3.UBITARD is intentionally similar in style
to CLOVE in order to facilitate learning and usage. A complete teshado is defined
recursively by combining simpler behaviours. The mostdbshaviours areead and
send with most other constructs being combinators that builthese.

As an example, figure 5 gives a test to be satisfied by the lesateice. The test
must successfully be able to make a loan quotation request fraarticular person,
address and loan amount. However, as the amount is too largki$ applicant, the
response must be a refusal with reason ‘loan unacceptable’.

test(Lots_ Exceeds_ 15000,
succeed
sendlender.loan.quote,Proposadn Carey,Croydon England,15000.)),
read(lender.loan.quote,Refusdhan unacceptable)))

Figure 5: MUSTARD Example

MUSTARD scenarios are validated by translating them into a targefdage (e.g.
LoTos) and then combining them with the specification to be vadidatA language-
specific tool (LoLA for LOTOS) then explores the state space of this test composition.

11



| Construct | Meaning
'string a literal string
2Aype a wild card for any value of the given type

serviceport.operation a grid service operation

interleave(behaviour,.). | concurrent execution of behaviours
offer(behaviour,.). the system offers a choice of alternative behaviourg

read(signal,parametes | inputs a signal from the system

sendsignal,parametefs | outputs a signal to the system

sequencébehaviour,.) | sequential behaviour with abrupt termination

succeeg@behaviour,.) sequential behaviour with successful termination
test(name,behavioQr a test scenario for the given name and behaviour

Table 3: Summary of MSTARD Constructs used in This Article

Since scenarios always have finite behaviour, a scenaribeamlidated efficiently.
Tests that fail are diagnosed and presented for the nonadigem MUSTARD terms.
Much as for verification, specifications can be shown throvgidation to have
desirable properties. Particular properties can be v&ij&.g. the specification reacts
in thisway tothatinput. However, properties cannot be validated in generailasses
of inputs. Properties like safety, liveness and starvdtieadom also cannot be proven.
However, validation is practicable when verification is doé to state space explosion.

4. Case Study — Document Content Analysis

This section presents a case study that uses grid servigesrfiarm document
content analysis. Development begins with graphical detson of the services. A
formal specification is then automatically generated fiegtiand validated. Finally, a
running implementation is automatically generated, dggdicand evaluated.

4.1. Support for Grid Services

Grid services are an extension of web services. Differemzdgde the following.
CRrREsssupports all these aspects, and so is appropriate for gnites.

e Although both kinds of service have interfaces defined by W8Neb Services
Description Language), grid services use extensions sudefvices properties.
These are required for the grid service partners in the d¢adg sf this section.

e Grid services typically make use of resources through WSRED( Services
Resource Framework [15]). These are identified throughendpeferences and
a particular addressing standard. Resources and endpfentmces are used in
this case study.

e Grid services can use dynamic partner binding. This meaatsatipartner of a
business process need not be fixed at design time. Rath@arttmer is selected
at run time (perhaps in response to selection criteria sadbaation, cost and
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reputation). Although dynamic partners do not appear is tlaise study, they
have been used by the authors for other serviceseSS handles these quite
simply: a dynamic partner instance is an endpoint referématas assigned to a
Partner variable.

e Grid services often make use of GSI (Grid Security Infragtite) to ensure that
communication and access are secured. Grid security i®quoired in this case
study, but has been used by the authors for other services CRass config-
uration diagram (not illustrated in this article) defines key characteristics of
services. For a secure service, this gives the necessaigntials (typically user-
name and password).RESsalso supportEertificate variables corresponding
to the X.509 certificates that are widely used for securityeSe can be passed
to a service for authentication or for credential delegatio

4.2. Content Analysis

Document content analysis (e.g. [19]) is used for many pggpcuch as investi-
gating disputed authorship of a document, analysing @iffeversions of a document,
or comparing two documents for plagiarism. This is a rictdfiglo only a simplified
version is given to illustrate how orchestrated grid sexgican be used. In this article,
documents are compared for similarity using the followiwg metrics that lie in the
range [0, 1]. For both of these, identical documents havéstaidce’ of 0. Documents
with a ‘distance’ of 1 are maximally different.

Clause Length:The average number of words per clause is computed for eazth do
ment. Suppose the numbers are 6 and 8. The ‘distance’ betweelocuments
is the difference between these divided by the larger valgé; i.e. 0.25.

Word Frequency:Instances of each word are counted (disregarding commodsjyor
and the words are placed in order of decreasing frequenéy.giles an ordered
list for each document (truncated to some practical limitsas 50 words). The
‘distance’ between the two word lists is then computed froerelative positions
of each word in the two lists (counting the first as 0). Suppgsé’ is the second
most frequent word in one list (i.e. position 1) but the fburtost frequent in the
other (i.e. position 3). The distance for this word is théad#nce between their
positions:3 — 1, i.e. 2. If a word in one list does not appear in the other iist,
position is considered to be at the end of that list. Thusriti'gvere in position 1
of one list but not in the other list (of size 50), the distamaaild be50 — 1 or
49. The total distance between two word vectors is the sutheflistances for
all the individual words, normalised to yield a value betw@eand 1.

Figure 6 shows the call structure for this example. The usarkies the matcher
with two documents to be compared. This calls the parserrgeghe documents, the
scorer to compare them, and the counter to compute the siyitaetrics.

4.3. Partner Services

The main services use external partner grid services thdtl @xist already, or
should be developed separately because they are genesefiy:u
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Parser
p

| User |—}| Matcher | Scorer |

Figure 6: Call Structure for Document Content Analysis

Counter: This calculates the two metrics that compare documents.clehseoper-
ation computes the average clause length. Wwhed operation determines the
words in decreasing frequency. Thestanceoperation computes the metrics
explained above from the raw clause and word information.

Parser: This handles word lists for a document. Terseoperation takes a document
as a string of text and splits it up into words (consecutiveete and possibly
digits), disregarding white space. Consecutive punatnatiarks (e.g. :-") are
also grouped as ‘words’. Like many grid services, the panséis its results in
persistent storage and just returns an endpoint referemabd word list. The
deleteoperation removes a stored word list.

4.4. Scorer Service

The scorer is a composite service that supports the maiectaalysis; its EESS
description appears in figure 7. The rule-box to the bottahtrof the figure defines
types and variables. The raw datanierds(a reference to the documents being anal-
ysed). The result iscores(a structure containing the clause and frequency metrics).
These variables are supplementedieguencyan ordered word listyength(average
clause length) antbason(for a fault).

Initially the scorer receives a request to perforstareoperation on the words list
(node 1). Since calculating the two distance metrics mayrbe-tonsuming, each is
computed concurrently (node 2). In one parallel branchgthater service is invoked
to calculate the average clause length (node 3). In anotratlel branch, a different
instance of the counter service is invoked to determine wordlecreasing order of
frequency (node 4). Where both paths converge at node 5srbdad 4 must have
produced a successful result (‘3 && 4’). The two metrics asenbined into one record
(arc leading to node 6). Finally, the scores are returnechbystorer to its caller
(node 6).

The scorer must allow for the counter process faulting. karmgple, the word list
may be empty or may contain only spaces. Both invocatione@tbunter statically
state that @ounterErrormay occur (node 3 and 4). If this happens, the fault is caught
(arc leading to node 7). The scorer then returns the faalionto its caller (node 7)
and terminates (node 8).

4.5. Matcher Service

The matcher offers the primary content analysis servicé¢ouser. Its BESS
description appears in figure 8. The rule-box at the bott@htragain defines types
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words

Catch counterError.reason

scorer.text.score scorer.text.score

7 Reply

scorerError.reason

( 8 Terminate

4 Invoke
counter.textword
words frequency
counterError.reason

3 Invoke
counter.text.clause
words length
counterError.reason

(- A
Uses
! [ String word ] frequency
| scores.length <- length Float length
| scores.frequency <- frequency String reason
_ Float length
6Reply T\ [ String word ] frequency
scorer.text.score } scores

scores L Reference words )

Figure 7: GRessDescription of The Scorer Service

and variables. The raw datatexts(text strings containing the two documents). The
analysis yieldsnetrics(clause length and word frequency distances). These Vasiab
are supplemented bgsults(metric scores for the two documentsjprdslandwords?2
(references to the two word lists). The final entry in the Hladex ‘/ scoref indicates
that the matcher depends on the scorer diagram; depend@mcpartner services are
not shown as they are automatically inferred G S

Initially the matcher receives a request to performrtretchoperation on the texts
(node 1). Since the documents are independent and may ke thmir metrics are
computed separately on two parallel paths (node 2). Forlgiitythe similar parallel
code is repeated explicitly, but could be commoned up. Egatissby setting the
relevant text fextl/text2on the arc leading to node 3/4). The parser is invoked to
create a word list from a document (node 3/4). The word listsheeld by the parser,
and returned as endpoint referencesrdsl/wordsp The scorer is then invoked to
compute the metricss¢oresl/scoresi node 6/7). The word lists have now served
their purpose and are deleted (node 9/10). The convergitits ffisom nodes 9 and
10 must both be successful (‘9 && 10’ in node 11). The sep&ratemputed scores
are combined (arc leading to node 12) and passed to the cdarmempute distances
(node 12). The matcher returns the resulting metrics taiterc(node 13).
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/ Catch .reason

1 Receive
matcher.textmatch
texts
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15 Reply
matcher.textmatch
matcherError.reason
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parser.textparse parser.textparse —
text! words1 text2 words2 16 Terminate
parserError.reason

parserError.reason

Compensation Compensation

7 6 Invoke 7

7 Invoke 7

textdelet scorer.textscore scorer.textscore 8Irtw°tlt1el }
parser.ex delete words1 scores1 words? scores?2 parser.textdelete
words1 words2

scorerError.reason

scorerError.reason

_— — _— — ‘. N
9 Invoke 10 Invoke Uses
parser.textdelete parser.textdelete
words1 words2 Float clause,occurrence
} metrics
a4 {{
11 Join 98&10 Float length
— [String word ] frequency
/ results.scores? <- scores } scorer:scores1, scorer:scores2
| results.scores?2 <- scores2 Jresults

_ ___ Float length

~ 12 Invoke [ String word ] frequency
countertextdistance } scorer:scores1, scorer:scores2
results metrics String text1 text2
= {
String text1 text2
_— — }Hexts
13 Reply Reference words1,words2
matcher.textmatch
metrics | scorer
— _ J

Figure 8: QREssDescription of The Matcher service

The matcher allows for faults in the services it calls: arooation of the parser or
the scorer may fail. Any such fault is caught (arc leadingdden14). The use of a fault
variable ¢easor) without a fault name means that only a fault value is reghissther
parserErroror scorerErroris caught. Compensation is invoked by the fault handler to
undo any actions that have been taken (node 14). The mattuens the fault to its
caller (node 15) and terminates (node 16).

Compensation may be needed after invoking an externalgragimce this is of-
ten where work needs to be undone after a fault. The parsecétions to store data
(node 3/4) make permanent changes and so have associatpdreation: the corre-
sponding word list is deleted (node 5/8). A compensatiordiearis enabled once its
associated activity completes. If compensation is invokétiout an explicit scope
(node 14), compensation handlers are invoked in reversa ¢nabst recent first). If
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property (Any_ Metric_ Response,
responséglobal,
signal(matcher.text.match,?Texts),
choicq
signal(matcher.text.match,?Metrics),
signal(matcher.text.match,MatcherError,?String))))

property (Specific_ Texts,
responséglobal,
signal(matcher.text.match,
Texts(Let sleeping dogs li€At night all cats are gray)),
signal(matcher.text.match,Metrics(0.333333,1.0))))

property (Same_ Texts,
existy
signal(matcher.text.match, Text{String\ 1)),
alwayqsignal(matcher.text. match,Metrics(0.0,0.0)))))

Figure 9: Example CoVE Verification Properties

one parser invocation succeeds but the other fails, onlffotineer will be compensated.

The matcher service orchestrates the use of two externagraservices (counter
and parser) as well as the scorer service (figure 7). In thenstorer service orches-
trates further operations of the counter partner. Althofgyhr services now have to
cooperate, the user of the matcher service sees it as a Wliodeis a major advantage,
because the detailed design of the service is then hidden.

A key question is whether the services work together smgotinlwhether there
are interoperability problems. Even though this is a corapaely small example, it
will be appreciated that there are many possibilities foorerlt is very easy to make
a mistake when calling a service, for example supplying aegier where a float is
expected. With more complex data types as in this examplepipatibility is a bigger
issue. Deadlock is a risk, as are more subtle problems deertargtic incompatibilities
among the services. For these reasons, it is highly desitabémbed grid service
development within a rigorous methodology.

4.6. Specification and Analysis

4.6.1. Automated Formalisation

The diagrams in figures 7 and 8 are automatically combinedrandlated into a
LoTos specification; the translation strategy is described inetady work of [34].
The details are not given here as they are likely to intenelst boTOS experts. How-
ever, the case study files can be foundvatw.cs.stir.ac.uk/~kjt/ software/ download/
gs-examples.zip

The service designer choosesios as the target language and clidRealisein
the QRESSsdiagram editor. This generates 1339 lines offioscode: 21 processes and
24 data types, not including the library of data types fod gervices.
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4.6.2. Automated Verification

The Q.ovE notation and approach for formal verification were desclilesec-
tion 3.3. Figure 9 (explained below) gives examples aOCE properties that are
verified against the case study services. The service das@iooses bTos as the
target language and clickeerify in the OQRessdiagram editor. The following is an
extract of verification results:

Generating properties for SCORER ... CPU Time (Real Time)
Generating graph for SCORER ... 22.1 secs (57.0 secs)
Verifying SCORER Livelock Freedom ... 6.2 secs (10.0 secs)
Verifying SCORER Initials Safety ... 6.2 secs (7.0 secs)
Verifying SCORER Always Exit ... 6.0 secs (7.0 secs)
Generating properties for MATCHER ... CPU Time (Real Time)
Generating graph for MATCHER ... 22.4 secs (1.7 mins)
Verifying MATCHER Any Metric Response ... 6.4 secs (7.0 3ecs
Verifying MATCHER Specific Texts ... 6.3 secs (8.0 secs)
Verifying MATCHER Same Texts ... 6.3 secs (7.0 secs)

Since verification requires a finite and manageable stateesfigee values in the
specification must be constrained (typically those prodiole the user to the system).
The following Q_.oVE defines values of th8tringtype used for document contents:

literals(strings,

'A stitch in time saves ninéAt night all cats are grayBarking dogs seldom bite, ...)
These are, of course, just small pieces of text used to chechioperties of the spec-
ification. In practice, document comparison is performethwiuch larger texts. Al-
though not required in this case study, data is often defiyagd¢ular expressions to
allow a compact representation of a wide range of valuese Okess CLOVE also
supports values of structured types — though enumeratsettistes do not happen to be
required in this case study. Values are automatically taded by GREsSsinto C to save
manual coding (which is tedious for complex data types). ®ABes the enumerated
values when generating the state space.

In figure 9, Any_Metric_ Responseerifies a global response property: all be-
haviours of the service must result in a given response toes@qguest. Here, the
request asks for a match of some unspecified pair of téXiex{3. The response
must be a choice of some metriédetricy or a matcher fault with some string value
(MatcherError, ?String. The following exampleSpecific_ Texids again a global re-
sponse property. This states that the service will givei@dar results (clause metric
0.333333, word metric 1.0) for a certain pair of texts. Hyn&ame_ Textgerifies that
the same pair of texts will give a clause metric of 0.0 and adwoetric of 0.0 (indicat-
ing identical texts). This makes use of the regular expoestiat is saved for the first
text (\?String and then re-used for the second teéxt);

As an example, thAny Metric_ Respong®operty is automatically translated into
the following u-calculus:

[ true* . '"MATCHER ITEXT IMATCH ITEXTS (.*)']
mu X. (<true> true and [not((('MATCHER ITEXT IMATCH IMETRICS (.*)’) or
((MATCHER !TEXT !MATCH IMATCHERERROR
" —a—zA-Z0-9%"&*=+{}@ ~#\\<>.\1*"")))) ] X)
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test(No_ Clauses,
succeed
sendmatcher.text. matctEach day we se9,
offer(
read(matcher.text.match,matcherErfblp Clauses),
read(matcher.text.match,matcherErfdlp Words))))

test(All_Shared,
succeed
sendmatcher.text.match,
Texts(Sator Arepo Tenet Opera Rotasepo Sator Opera Rotas Tenet)),
read(matcher.text.match,Metrics(0.0,0.4))))

test(Concurrent_ Use,
succeed
interleave(

sequencé
sendmatcher.text.match, Text§o West,West Side Story)),
read(matcher.text.match,Metrics(0.333,0.727))),

sequencé
sendmatcher.text.match,

Texts(Each day we se&ound our ship terns and sea swallows)),

read(matcher.text.match,Metrics(0.428,1.0)))))

Figure 10: Example MSTARD Validation Scenarios

A typical formal approach to verification requires the dasigto write properties like
this. Evidently,u-calculus is much more impenetrable than thed@e syntax, hence
the value of higher-level property description usingo@E.

If a property does not hold, a counter-example is automitidsplayed in GQ.OVE
form. This helps the designer to see why the specificatios doebehave as expected
and to correct the problem.

Compositional verification (i.e. proving things in smalf@eces) is desirable for
larger specifications such as the case study in this artitleve automatically gener-
ates a script to perform compositional verification of thecehar. This is broken down
into the scorer (composed in turn with the counter and theguarThe script generates
the state space against which the translatedlculus properties are verified.

4.6.3. Automated Validation

The MUSTARD notation and approach for formal validation were describesic-
tion 3.4. Figure 10 (explained below) gives examples afMARD scenarios to be
validated against the case study services. The servicgragsithooses @Tosas the
target language and clickéalidatein the GREssdiagram editor. The following is an
extract of validation results:

Test MATCHER No Clauses ... Pass 0.7 secs
Test MATCHER All Shared ... Pass 0.6 secs
Test MATCHER Concurrent Use ... Pass 1.5 secs
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In figure 10,No_ Clauseshecks for correct error handling behaviour. If the second
text is empty, the matcher should report an error (eithesaeaNo Clauses’ or ‘No
Words’). All_ Sharedchecks for the case of two texts with the same words in a éiffier
order. The clause metric should be 0.0, while the frequeratyioshould be 0.4 due to
the different orderingConcurrent_ Usexercises two concurrent calls of the matcher.

If a scenario fails its test, the behaviour up to the poin&dlfife is displayed. This
helps the designer to see why the specification does not bedmexpected and to
correct the problem.

4.7. Implementation and Evaluation
4.7.1. Automated Implementation and Deployment

Once verification and/or validation have been completedgh Hegree of confi-
dence has been obtained in the service design. The diagrafiguies 7 and 8 are
then automatically combined, translated into ReB implementation, and deployed.
The translation strategy is described in [34]. The detaidsrat given here as they are
likely to interest only B EL experts, but the case study files can be foundwaiv.cs.
stir.ac.uk/~kjt/ software/ download/gs-examples.zip

The service designer chooseBmB as the target language and clidRealisen the
CRressdiagram editor. For the implementationREssgenerates 9031 lines of source
code and 68 source files. The large amount of code reflect®thplexity of creating
grid services, which need interface definitions and catadegdeployment descriptors,
property files, type classes, service and partner codeTé& matcher and scorer are
automatically compiled and deployed to ActiveB. [1] as the engine used to execute
orchestrated grid services, while the counter and parsengomatically compiled and
deployed to Globus [14] as the container for grid partnevises.

4.7.2. Automated Implementation Evaluation

Implementation performance is evaluated bysameM USTARD scenarios as used
to validate the specification. The service designer choBs&s as the target language
and clicksValidatein the CrRessdiagram editor. This time the scenarios are translated
into a form suitable for validating BeL and are executed against the implementation
by MINT (MUSTARD Interpreter). This evaluates consistency of service resptimes
and pinpoints bottlenecks. When the authors performedetfdhiation, it highlighted
resource limitations in the Tomcat container that runsv&@PEL and required tuning
for better performance.

Implementation validation is similar to specification dafion (see section 4.6.3).
However, additional results are produced if performanststare requested. These
can be executed sequentially (for checking consistentamphtation behaviour) or in
parallel (for loading the service). Additional statist@mstest performance are reported,
e.g. the averages and standard deviations of test exedinties.

5. Evaluation

5.1. Usability of The €essNotation

Although QrREss describes services with a simple graphical notation, tbissd
not necessarily mean that it is usable. A mixed empiricaluateon was therefore
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conducted to check the following hypothesis: someone wiftegence of software
development, with 45 minutes of training on the approach thedORESS diagram
editor, can define small services (up to five activities) hv@0% accuracy, in at most
15 minutes per service.

Five software developers were recruited without previogeeeence of the Bess
approach: two female, three male, average age 25 (range 2D .td'he participants
were given written instructions to follow in their own tim&ithout training or advice
from the authors. A copy of thekEsseditor was provided for local installation, along
with a ‘palette’ of typical symbols used in constructing\sees.

The first part of the instructions gave a three-page explamaf the approach and
the QrRESSeditor, including three diagrams that the participantsensssked to study
and then to reproduce themselves using the diagram edgaonidutes was suggested
as appropriate for this phase, though no time limit was iredos

In the next part of the instructions, the participants wever five specific tasks
to perform. Each task required a service diagram to be draaméwhat different
from the examples), based on a natural language descriptiba participants were
asked to record how long tasks took, and to save their diagy@mcompletion (or
after 15 minutes if a task was not completed). The partidpaere asked to rate five
statements about the approach on a five-point Likert scdiey Were also given the
opportunity to provide a free-form qualitative evaluatafithe exercise.

All collected information was submitted by email. Task tsrend questionnaire
answers were collected and analysed. Participant attesmssrvice diagrams were
scored, comparing these against previously created sasopléons. Each possible
element was given one mark (e.g. number, name, activity arahpeters for a diagram
node). This resulted in a percentage score for the accufaach diagram.

The participants spent an average of 34 minutes (range 1@) wn@he familiarisa-
tion phase. This compares well with the expectation of 45.uteie. The shortest period
(10 minutes) may reflect this participant’s preference éarhing by doing rather than
extended prior study. Overall, participants completedfive service designs in an
average of 5.7 minutes per task, with an average accuracg%f(@ompared to the
hypothesis of 15 minutes and 80%).

The commonest errors in diagrams were omitting a node nuibéch two partic-
ipants reasonably argued should be irrelevant or autoaiigtigenerated), and simple
syntax errors (such as using ‘/’ rather thjhbefore an assignment). In fact this was a
knowingly demanding evaluation:

e The participants were given only a short written briefing aotd an extended
technical manual or training course. They had no opportuioit classroom
instruction or one-to-one advice before undertaking thméd evaluation. This
was deliberate, to see how readily the approach could be wighdminimal
instruction.

¢ Participants were asked to create diagrams without any wapohine-checking
for errors. The full @esstoolset (as opposed to the diagram editor) does, of
course, check for syntactic and static semantic correstradeed, all the syn-
tax errors in the participant diagrams would have been he&dientified and
corrected in this way. Not providing the fullREsstoolset was again a delib-
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erate decision, in order to discover the extent to which thgr@ach exhibited
syntactic idiosyncrasies that would trip up novices.

Participants were asked to rate five statements about threagpon a scale from
1 (strongly disagree) to 5 (strongly agree):

Statement 1: | was able to create the service diagrams without too mudtcdify:
average score 3.8 (range 3 to 4).

Statement 2: | found it fairly straightforward to translate the Engliskedcriptions
into diagrams average score 3.2 (range 1 to 4).

Statement 3: | found it fairly straightforward to create and edit diagranising
CRrEsseditor. average score 3.6 (range 3 to 4).

Statement 4: | think the approach would be usable by people with expegeric
software developmendverage score 4.0 (range 3 to 5).

Statement 5: | think the approach could be useful in practice for devehapi
services average score 3.2 (range 2 to 5).

The rating of statement 1 suggests that the approach iseusglthe planned type
of user (software developers), though the diagram editolddeenefit from some tech-
nical improvements. The authors had expected statemenb@2 teast agreed with,
since significant mental effort is required to translate trs language requirement
into any formal representation (including programmingglaages). Like statement 1,
the scoring of statement 3 offers encouragement — thougtoirements to the diagram
editor are desirable. The evaluation of statement 4 sugtfestan appropriate class of
user has been targeted. Based on the accompanying freesdonments, the lack of a
more positive response to statement 5 appears to reflecedtefar improvements in
the diagram editor rather than doubt over the general approa

Given the short time that the participants spent in faniiaion (average 34 min-
utes), their performance was impressive. Although thetdichhumber of participants
does not allow statistically valid conclusions, the resolt the evaluation are encour-
aging and favour the stated hypothesis.

In their free-form comments, the participants also prodidaluable feedback on
how the approach could be improved. In some cases the oliservarose from the
shortness of the written briefing, e.g. it was not mentioried the editor indicated
page boundaries with gray lines, and the syntax of assigtsveard conditions was
only briefly illustrated. These points can readily be adsedshrough more extended
training notes. Concrete suggestions to be consideregdacutomatic node number-
ing, and use of a toolbox with typical grid service symbols.

5.2. Comparison with Other Approaches
5.2.1. General Capabilities

Implementation-oriented approaches like JOpera [24] aidl-® PEL [8] support
most of the constructs required by grid service orchesinabut they are generally not
rigorous. BUnit (the BEL analogue of JUnit for Java) offers a degree of systematic
testing in ActiveBEL.

22



Construct | WSAT | Ferrara| PEPA | LTSA | CRESS |
v v
v v
s | X

Basic Activities
Structured Activities
Scoped Activities
Data Handling
Dynamism

Process Interaction
Grid Services
BPELV1.1
BPELV2.0

ANRYANEN

S\ IEENERANERENEN

v v

NNNNNNXNN

Table 4: Support of Service Orchestration Constructs defdr explanation)

Some approaches have a rigorous aspect, though the degigeufvaries. Since
rigour is a key claim of @ess a comparison has been made with approaches that
also support rigorous development. Of the techniques dégmliin section 2.2, the
following are the most directly relevant (though they aresthyofor web services):
WSAT (Web Services Analysis Tool [12], the work of Ferrama(islation of BPEL to
LoTos[9]), PEPA[22], and LTSA-WS (Labelled Transition System Analyser\féeb
Services [10]). Specifically, these have been compared re#pect to coverage of
orchestration, support for interacting processes, thel levabstraction, formalisation,
verification, validation, implementation, deploymentdaasting.

Few researchers have worked on complete methodologiee&igrnggrid ser-
vices. As a result, there is no standard example for a cosgradf GRESswith other
approaches. Instead, an example commonly usesdbservice developers has been
chosen. This is a loan approval service [2] that offers enllirans at a rate depending
on the risk assessment.

5.2.2. Service Orchestration Coverage

Table 4 gives a comparison showing the coverage e Bconstructs in the ap-
proaches considered. Hesé, means full suppori?( means partial support, and blank
means no support. The coverage of constructs is based ostaled by authors of the
related work.

The lender service does not require some orchestratiortroetss such as com-
pensation and correlation. Basic activities include serimput and output. Structured
activities include alternatives, iteration, sequenceksfimvs. Scoped activities include
error, event and compensation handling. Data handlingsédedata types, variables,
assignments and expressions. Dynamism means that pagtaees can be chosen or
changed at run time. Interaction allows multipleB. processes to interact with each
other. Support for grid services is indicated. Finally,hestration constructs may be
supported from BEL version 1.1 or 2.0.
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Phase | WSAT | Ferrara| PEPA | LTSA | CRESS |
Abstraction
Specification v v v
Verification v ~
Validation
Implementation v v
Testing
Performance v

NNNYN

2SENANENENENAN

Table 5: Support of Service Development Phases (see tegkfid@nation)

5.2.3. Service Development Support

Table 5 compares the approaches with regard to coverag@dafagrices, abstrac-
tion, formal specification, formal verification, formal iddtion, implementation, test-
ing and performance analysis. Although several approadinestly handle rigorous
analysis, they differ in the extent and ease that this is erpd.

WSAT has automated support only for translatingeR into Promela for verifica-
tion. The WSAT developers manually created two propertigsriear Temporal Logic
and verified these using thee® model checker.

Ferrara’s approach automates the translation betwearasspecification and a
BPEL implementation. However, there is no automated tool sugpowerification.
There are also only general hints about how this might beegelli such as checking
for bisimulation.

LTSA-WS abstracts the underlying techniques and tools ieffamt to simplify and
make analysis more accessible. This was achieved by ugjhgiével notations, auto-
mated specification and analysis. LTSA-WS uses UML for desigecifically MSCs
(Message Sequence Charts). Deadlock freedom can be cHeclted Labelled Tran-
sition System created fromr&L code. Trace equivalence is automatically checked
between models created from the MSCs amEB Other properties have to be man-
ually specified (e.g. request-response, safety). Althaaildemonstrated in [10] for
the lender, the automated check of trace equivalence cantagtors such as interface
incompatibilities. Validation is performed interactiyelnd manually by animating the
model. Analysis does not deal with data semantics. Thededs@ support for imple-
mentation validation.

The RePA approach deals with translation and annotation frope Band WSDL
to PEPA. Performance evaluation can then be performed with respdatency and
execution times. However the analysis does not focus ortibmadity. [22] also does
not demonstrate how the approach helped to improve serviaigy)

Cressallows verification of properties much as WSAT does, but treSsappr-
oach is more complete through the use of typical data vallesddition, there is
support for abstract property specification and tool autanavhich WSAT does not
provide. GRESsprovides verification templates for well-known propertytpens. The
underlying temporal logic syntax is hidden, and realisatadvalues are supported by
verification.
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Depending on the specific data values, the time and state $pacerification can
vary widely. Verification with QResstakes comparable times to WSAT. Properties
of the lender service are typically verified byr€ssin minutes, for a range of 2000
distinct numbers and 5 distinct strings in loan requestse Buwide variations in
data inputs, this requires a state space with 104,000 stadds000 transitions and
50,000 transition labels. REssvalidation is automated for a range of scenarios that
can include realistic data values.

The QrRessapproach has been found in practice [30] to detect inteig&irors
in both specifications and implementations. Implementataidation uses black-box
testing and load testing, neither of which is supported endther approaches cited.
Formal performance analysis in the style &R is not currently supported, although
it would be possible as a future extension since CADP supploig for LOTOS.

6. Conclusion

The CrRESSsNotation, methodology and tools have been discussed, Widbus on
formal aspects. Document content analysis case study leasused to illustrate the
approach. The methodology supports automated specificatialysis and implemen-
tation.

Graphical descriptions of grid services are automaticaipslated into bTos
Specification properties expressed usingd€e are then model checked. This hides
the underlying complexities gf-calculus and CADP from the service developer. To
complement verification, formal validation uses scenaergressed in MSTARD.
This hides the underlying complexities obrosand LoLA. CLOVE and MUSTARD
are abstract, language-independent and more straiglafdifar the non-specialist than
the underlying formalisms. After confidence has been bnithie service design, an
implementation is automatically built and deployed. ThemeaVlUSTARD scenarios
can then be used to evaluate the performance of the impleant

From the designer’s point of view, development mainly reggidrawing flow dia-
grams that describe services. This provides a conveniate to service implementa-
tion if only service creation is needed. As has been seeasGautomates the creation
and deployment of a large amount of implementation code. é¥ew this code would
then have to be debugged in conventional ways.

With some additional effort it is possible to do much bettenplementation and
performance testing can be automated throughsWARD by defining test scenarios
in a reasonably straightforward language. For the sameteffe service design can
then be evaluated at a much earlier stage by validating theifgmation. This allows
problems to be discovered much earlier during development.

However, testing can cover only a limited portion of a desiG®neral properties
(e.g. deadlock/livelock freedom, termination) can befietiby Q.ovE without hav-
ing to write any definitions. With additional work on definidgsirable service prop-
erties, the design can be verified more thoroughly. Thisggmach wider coverage by
checking general properties of the design rather than pestiic scenarios. Although
CLOVE is more accessible to non-specialists than the underlygimgdl techniques, it
is acknowledged that formulating appropriate properti@ssdneed experience. For-
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tunately G.ove was able to build on the knowledge codified by the Patternggtro
about properties that are most likely to be useful in practic

A modest evaluation of the KEssnotation has assessed its usability and found it
to be satisfactory. In future work, the usability o @/ and MUSTARD notation will
also be evaluated. Service development witteGshas also been compared to other
approaches and found to cover a wider range of capabilities.

Although this article has considered only grid servicesfanehalisation using b-
TOS, CRESSdeals with other service domains (e.g. voice, device, wel)thaeir asso-
ciated languages (e.g. Call Processing Language, Spéoificand Description Lan-
guage, VoiceXML). @esstherefore offers a general-purpose approach to delivering
verified and validated services.
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