

Architect of an Open World™

Modeling Multiprocessor Cache Protocol Impact on MPI Performance

Ghassan Chehaibar*, Meriem Zidouni*[†], Radu Mateescu[†] *Bull SAS - [†]INRIA

AINA'09, QuEST Workshop, Bradford, May 26-29, 2009

Motivation

- Bull HPC servers
- MPI library.
- Cache-coherent distributed shared memory nodes.

Motivation

- Bull HPC servers
- MPI library.
- Cache-coherent distributed shared memory nodes.

Ping-Pong benchmark

Measured latency not conform to miss count expectations

Motivation

- Bull HPC servers
- MPI library.
- Cache-coherent distributed shared memory nodes.

Ping-Pong benchmark

Cache protocol

Measured latency I not conform to miss count expectations

Need a method to correctly evaluate latency and miss count per variable

Interaction between benchmark software, cache protocol, and architecture topology

Related work

- Measurement:

- Post hardware development phase.
- Lack of analysis elements without complex instrumentation (like miss count per variable).
- Simulation environment:
 - Complex model construction with libraries and C-code snippets.
 - All the more, we consider parallel processes.
 - No way to verify correctness of modeling.
- Not aware of an already published work that:
 - Allows verifiable modeling interactions of complex aspects like cache coherence protocol, architecture topology and software algorithm.
 - Provides not only overall performance figures but also analysis elements.

Using formal methods

- Formal modeling of the functional behavior with LOTOS.
- Formal verification of model correctness with CADP toolbox.
- Integration of performance aspects based on Interactive Markov Chain theory: smooth extension of LOTOS.
- Generation of a Continuous Time Markov Chain, which we are confident properly reflects functionality and performance behaviors.
- Use of numerical analysis algorithms to calculate relevant performance figures.

System at hand

System at hand

Ping-Pong benchmark (latency of send; receive)

System at hand

Ping-Pong benchmark (latency of send; receive)

State-dependent latency

- Latency of an access: depends on dist(requester, data).
- Data location at a given time: depends on cache protocol and history execution of parallel processes.

Latency of an access depends on global state of caches in the system

Modeling state-dependent latencies

LOTOS model

Same model for functional and performance behavior

Same tool and technique for formal verification and performance evaluation

Same model for functional and performance behavior

Same tool and technique for formal verification and performance evaluation

Computing performance figures

Message exchange latency

Computing performance figures

Message exchange latency

Miss count during an exchange

Evaluation results in several configurations

- Mapping of processes onto the architecture \rightarrow distance.
- Implementation of primitives (1, 2)
- Cache coherence protocol variant: A, B.

Evaluation results in several configurations

- Mapping of processes on the architecture \rightarrow distance.
- Implementation of primitives (1, 2)
- Cache coherence protocol variant: A, B.

Number of cache misses

Evaluation results in several configurations

- Mapping of processes on the architecture \rightarrow distance.
- Implementation of primitives (1, 2)
- Cache coherence protocol variant: A, B.

Conclusion

- Inexpensive modeling and evaluation:
 - Abstract model of a complex system.
 - About 2500 lines for modeling and verification.
 - LTS size: ~1,5M states. Minimized stochastic LTS: ~4,5K states.
 - A few minutes execution time.
- Yet, it has the potential to compare and analyze benchmark behavior in different configurations.
- Future work:
 - Additional performance figures.
 - Other MPI primitives.
 - Automatic production of LOTOS code.

Thank you

Architect of an Open World™