
Revisiting Sequential Composition
in Process Calculi

Hubert Garavel
Inria Grenoble – LIG
http://convecs.inria.fr

http://convecs.inria.fr/

Outline

Overview of mainstream process calculi
Sequential composition in process calculi —
Rationale for the design of LNT
Upward encodings
Expressiveness / Convenience
Conclusion

2

Overview of mainstream
process calculi

3

Process calculi
Definition #1

mathematical models for the study of concurrency
mostly asynchronous concurrency
some approaches towards synchronous concurrency: SCCS, Esterel

Definition #2
specification languages with an explicit parallel composition operator
and a formal semantics

A complicated history
many different process calculi
partly justified by technical differences between them
but also due to different schools that were reluctant to merge
international standardization efforts did not manage to bring unification

4

A tentative landscape

5

Oxford
track

CSP (1975)

Edinburgh
track

CCS (1981)

Th. CSP (1984)

ISO
track

CCS (1989)

π-calculus

bigraphs

FDR2

FDR3

LOTOS (1989)

E-LOTOS (2001)

Grenoble
track

CADP

LOTOS NT

 LNT v1 (2006)

Amsterdam
track

ACP (1984)

PSF

µCRL

mCRL2

 LNT v6 (2016)
…

M

VPL

Sequential composition in
process calculi —
Rationale for the design of LNT

6

Action prefix (1/2)
A key operator of many process calculi:
 a . P | a !x . P | a ?x . P with a action, P process, x variable

Advantages:
well accepted by (most of) the concurrency theory community
simple syntax
simple SOS rules
favors inductive proofs

Drawback #1: non-standard wrt other programming languages
action prefix is asymmetric: a . P action followed by a process
everywhere else: symmetric sequential composition
 P ; P' process followed by another process
students always tend to write symmetric sequential composition by default

7

Action prefix (2/2)
Drawback #2: incompatible with regular expressions

computer scientists know regular expressions (command shells, text editors)
they naturally tend to write regular expressions, rather than prefix terms

Drawback #3: no "loop" operator
one is forced to use recursion and introduce extra processes
many proposals for introducing loops, but few implementations (if any)

Drawback #4: prohibits control-flow sharing
action prefix forces to write trees and prohibits DAGs
Ex1: (a . c . nil + b . c . nil) rather than (a+b) . c . nil
Ex2: if x then (a . c . nil) else (b . c . nil) rather than (if x then a else b) . c . nil
only solution to avoid undesirable unfoldings: define auxiliary processes
but poorly readable control flow ("goto"-like programming)
 obscures the data flow (requires value parameters to be passed)

8

Attempt #1: LOTOS, CSP
Idea: keep action prefix, add symmetric sequential composition

noted ">>" in LOTOS and ";" in CSP
action prefix recognized to be insufficient as soon as 1985

Many drawbacks:
two operators for almost the same purpose
a ; b ; exit >> c ; d ; stop
each sequential composition creates a τ-transition in the LTS
no neutral element for sequential composition (modulo strong bisimulation)
sub-term sharing is possible but heavy
(a ; exit [] b ; exit) >> c; stop
In CSP, the values of variables do not move across sequential composition
(?x : T -> SKIP) ; (x -> STOP) the left x remains local to (?x : T -> SKIP)
In LOTOS, the values of variables may move across sequential composition
(let x:T = 1 in exit (x)) >> accept x:T in Output !x; stop but awfully complex

 9

Attempt #2: ACP & Co (PSF, µCRL, mCRL2)
Idea: discard action prefix; use symmetric sequential composition
Advantages (without value passing)

simplicity — and no creation of extra τ-transitions
allows control-flow sharing
subsumes regular expressions (and even context-free grammars)

Drawbacks (all related to value passing)
Input?x:Int ; Output !x ; exit cannot be written this way
it must be written Σ (x:Int, Input (x) . Output (x))
x is not assigned during the input, but before (in the sum operator)
ambiguous: no dedicated syntax to distinguish between inputs and outputs
Σ (x:Int, a (x)) can mean either a?x:Int ; exit or choice x:Int [] a !x ; exit
certain suitable behaviours cannot be expressed
Ex1: (a ; b ?x + c ; stop) ; d !x
Ex2: x := 0 ; y := 0 ; (a ?x + b ?y) ; c !x+y

10

Early conclusions
 ACTION PREFIX IS THE ROOT OF ALL EVIL
CCS, CSP, LOTOS are not optimal languages
ACP & Co. do slightly better, but not solve all issues
A better language (named "LNT") needs to be designed

DECISION 1 for LNT:

get rid of action prefix
use ACP-style sequential composition

Next step: find a proper solution for value-passing issues
must be intuitive for mainstream software engineers
thus, necessarily different from ACP & Co.

11

Control-flow and data-flow sharing
Control-flow sharing is intuitive and suitable

Ex1: (A [] B) ; C
Ex2: (if x then A else B) ; C
Ex3: (case x in a -> A | b -> B) ; C

The values of variables should implicitly move across ";" operators
Ex4: (A ?x [] B ?x) ; C !x …
Ex5: (if c then A ?x else x := 0) ; B !x …

In most process calculi, variables are write-once
they are so-called "dynamic constants"
simple syntax: declaration and assignments are bound together
simple semantics: [value/variable] substitutions are enough

But dynamic constants are not mainstream in computer languages
they isolate process calculi from the crowd of software developers

12

Introducing "true" variables
DECISION 2 FOR LNT:

ordinary (i.e., "write-many") variables are suitable
both in the data part (functions) and in the behavior part (processes)
variable declarations and variable modifications need to be separated
successive assignments to the same variable are permitted

Variable declarations
var X : T in … end var

Variable modifications
X := E assignment
G ?X where E (X) input with (optional) predicate
X := any T where E (X) nondeterministic assignment with predicate
calls to functions and processes ("in", "out", and "in out" parameters)

 13

Uninitialized variables (1/2)
Problem: certain syntactically correct terms have no meaning

 Ex: (A ?x [] B ?y) ; C !x+y
but this term becomes meaningful if prefixed with x := 0 ; y := 0

Whether a term has a meaning or not is undecidable (= halting)
Solution #1: reading uninitialized variables has undefined effects

usual solution in imperative languages (as in C, etc.)
unacceptable if a formal semantics is sought

Solution #2: initialize all variables implicitly when they are declared
e.g. set integers to zero, Booleans to false (as in Eiffel)
allows formal semantics but hides user mistakes

Solution #3: give uninitialized variables nondeterministic values
tricky: implicit summation operator by reading an uninitialized variable
allows formal semantics but hides user mistakes

14

Uninitialized variables (2/2)
Solution #4: add restrictions to reject "dubious" programs
Either syntactic restrictions:

CCS: asymmetric action prefix is just a means to avoid (a ?x + b ?y) . c !x+y
ACP: output-only syntax for actions is another means for the same issue
syntactic restrictions are very primitive defense means; better solutions exist

Or static semantics restrictions:
standard means to rule out syntactically correct, yet problematic programs
process calculi neglect static semantics and try to do everything using syntax

DECISION 3 FOR LNT: static semantics constraints on initializations
reject programs in which variables are not provably set before used
sufficient conditions based on static data-flow analysis
inspired by the Hermes (IBM) and Java (Sun) languages
well-accepted by programmers, catches many mistakes

 15

"Context-free" recursion
Symmetric sequential composition allows context-free recursion

 Example: process P [A, B] = null [] (A ; P [A, B] ; B)
(action prefix syntactically prohibits this)

Assessment:
this recursion is not so useful in practice
the same behaviour can be easily described using regular processes with
value parameters

DECISION 4 for LNT: static semantic restrictions on recursion
LNT processes: only tail-recursion is allowed
note: non-tail recursion could be eliminated automatically (e.g. µCRL)
LNT functions: no restriction on the use of recursion

16

Shared variables
Separation of declaration and assignment allows shared variables

Example: var X:int in (Input ?X || Input ?X) ; Output !X
(this is impossible when variables are write-once)

Assessment
This could be an opportunity to combine message-passing and shared-
variable paradigms in the same formal language
A nice semantics could probably be found for shared variables
For the moment, LNT remains in the message-passing framework

DECISION 5 for LNT: static semantic restrictions on shared variables
LNT parallel branches may inherit variables from their enclosing scope
In principle, all parallel branches can read all shared variables
If a branch writes a shared variable, the other branches can neither write
nor read this variable

17

Dynamic semantics of LNT
 Annex B of the LNT2LOTOS Reference Manual

Written by Frédéric Lang (16 pages)

For LNT functions:

 state = memory store (mapping: variable → value)
 LNT instructions define transitions between states (i.e., store updates)

For LNT processes:
 Labelled transition systems
 LTS state = <process term, memory store>
 SOS rules define transitions between LTS states
 Sequential composition: ACP-like rules + store updates
 Static semantics restrictions avoid complications in the dynamic semantics

18

Upward encodings

19

The quest for a unifying framework
for process calculi

The usual approach
search for a "core" calculus of very primitive elements
encode the various calculi using this "core" calculus
the core calculus is low level, the process calculi are high level

LNT: a different approach
 translate process calculi to LNT
the process calculi are low level, LNT is high level
the translations to LNT are straightforward

20

Encoding reg. exp. and ACP in LNT
Regular expressions -------------> LNT

 ε null — but adds a tick √
 a a — but adds a tick √
 R1 . R2 R1 ; R2
 R1 | R2 select R1 [] R2 end select
 R* loop R end loop

ACP --------------> LNT
 0 stop
 1 null
 Σ (x : T, P(x)) var x:T in x := any T; P (x) end var
 or var x:T in G (?x) ; P (x) end var

21

Encoding CCS in LNT
CCS -------------> LNT

 nil stop
 a . P a ; P
 a !x . P a (x) ; P
 a ?x:T . P var x:T in a (?x) ; P end var
 P1 + P2 select R1 [] R2 end select

Other CCS operators
recursion: translates to either a loop operator or an LNT process call
"complement" gates : out of scope

22

Encoding LOTOS / CSP in LNT
Common part with CCS to LNT translation

plus a few additional operators

LOTOS -------------> LNT

 G ?x:T [V] ; P var x:T in G (?x) where V ; P end var
 let x:T = V in P var x:T in x := V ; P end var
 choice x:T [] P var x:T in x := any T ; P end var
 exit null
 P1 >> P2 P1 ; τ ; P2
 P1 >> accept x:T in P2 P1 (which assigns x) ; τ ; P2

23

Expressiveness / Convenience

24

Reusing algorithmic constructs
Once symmetric sequential composition is adopted, all the usual
constructs of algorithmic programming languages come "for free"
In LNT, 70% of constructs look familiar (Ada-like syntax):

if-then-else (with elsif)
case with pattern matching
while … loop, for … loop, forever loop with break
functions with return statement

Additional constructs (originating from concurrency theory):
nondeterministic assignment: X := any T where P (X)
nondeterministic choice: select … [] … [] … end select
parallel composition: par … ||… || … end par
hiding: hide … end hide

Functions and processes have many constructs in common

25

More flexible specification styles
LNT favors alternatives to the traditional "condition/action" style

26

select
 L := {}
 [] L := {0, 1}
 [] L := {1, 0, 2}
 [] …
end select ;
SEND (L);
while L != {} loop
 X := X - head (L);
 L := tail (L)
end loop

nondeterministic choice used to
produce a finite set of values among
a potentially infinite domain

(there are no input/output actions in
 the branches of this select statement)

statically unbounded number of assignments

Challenge 1: Guarded commands
Proposed by Dijkstra — used, e.g., in the PRISM model checker
LNT can express guarded commands naturally and concisely

27

Using traditional process calculi:
• 1 recursive process having n parameters
• n recursive process calls
• n2 parameters passed (most of which unchanged)
• LNT = linear code size, others = quadratic code size

process GuardedCommands [G1, G2, … Gn : void] is
 var X1, X2, … Xn : int in
 X1 := 0 ; X2 := 0 ; … ; Xn := 0
 loop
 select
 only if X1 < 9 then G1 ; X1 := X1+1 end if
 [] … []
 only if Xn < 9 then Gn ; Xn := Xn+1 end if
 end select
 end loop
 end var
end process

Challenge 2: DAG control patterns
LNT can directly express DAG-like control patterns:

 e.g., choice-DAGs: (P1 [] P2) ; (Q1 [] Q2) ; (R1 [] R2)
but also if-DAGs, case-DAGs, etc.

28

process DAG [Input, Output : IntChannel] (X1, …, Xn : Int) is
 if X1 = 0 then Input (?X1) end if ;
 if X2 = 0 then Input (?X2) end if ;
 …
 if Xn = 0 then Input (?Xn) end if ;
 Output (combination (X1, X2, …, Xn))
end process Using traditional process calculi:

• n processes having n parameters each
• n2 parameters passed
• LNT = linear code size, others = quadratic code size
• tedious and error prone

Challenge 3: Map-Reduce
Given n inputs X1, X2, ..., Xn, compute g (f1 (X1), f2 (X2), …, fn (Xn))
Each computation Yi = fi (Xi) is given to one parallel processor

29

var X1, X2, …, Xn : S,
 Y1, Y2, …, Yn : T in
 Input (?X1, ?X2, …, ?Xn);
 par
 Y1 := f1 (X1)
 || Y2 := f2 (X2)
 || …
 || Yn := fn (Xn)
 end par ;
 Output (g (Y1, Y2, …, Yn))
end var

Input ?X1, X2, …, Xn : S ;
 (
 exit (f1 (X1), any T, …, any T)
 || exit (any T, f2 (X2), … any T)
 || …
 || exit (any T, any T, …, fn (Xn))
)
 >> accept Y1, Y2, …, Yn : T in
 Output (g (Y1, Y2, …, Yn))
end var
 LNT = linear code size, LOTOS = quadratic code size, non compositional

Conclusion

30

Questioning action prefix
For "basic" process calculi

 action prefix has little justification and seems inferior to ACP

For value-passing process calculi
 action prefix is mostly a "trick" to syntactically forbid write-many variables
and force the use of write-once variables
 simple, but overly restrictive and clumsy
 ignores the difference between syntax checks and static semantics checks

Why is (most of) concurrency theory built on this?
 need for having a formal semantics (forbid uninitialized variables)
 individual preferences for functional languages, algebras, etc.
 process calculi came too early: Hermes and Java arrived later
a few forerunner languages tried to get rid of action prefix: ACPε, ACPG,
ACBS&, Extended-LOTOS, E-LOTOS, OCCAM

31

LNT: an alternative approach
Key concepts:

 remove action prefix
 add sequential symmetric composition
 separate variable declaration and modification
 allow write-many variables
 static semantics: use data flow analysis to reject dubious programs
 dynamic semantics: extend LTS states with ''memory stores''

Benefits:
generalizes regular expressions and the usual calculi: ACP, CCS, CSP, LOTOS
 generalizes sequential imperative languages
better convenience than the usual calculi (dags, map-reduce, etc.)
supports action refinement (replacement of an action by a process)

32

Feedback about LNT
LNT is taught to engineering students

LNT is much easier and faster to learn than LOTOS
LNT builds on prior knowledge: regular expressions, programming languages
students don't have to forget what they already learnt in programming courses
they can focus on concurrency theory concepts (choice, parallel, hide, etc.)
LNT is intuitive, students tend to jump writing specifications without reading
the formal semantics
impossible with traditional process calculi, but a questionable advantage

LNT is used to model real-life applications
since 2010, LNT has entirely replaced LOTOS in our team
a growing list of case-studies: ATVA'13, CBSE’14-15, EICS'14-15,
FMICS'13-14, FORTE'13-14, ICEFM’14, IFM'13, ISSE'13, PDP’15,
MARS'15, SAC'14, TACAS'13-15-16, SCICO’13-14, VMCAI’15
 STMicroelectronics: "LNT enabled us to analyze systems too large to be
realistically described in LOTOS"

33

Implementation of LNT
First attempt: 1993-2000

 push ideas in the definition of E-LOTOS (ISO standard 15435:2001)

Second attempt: 1998-2008
definition of LOTOS NT, a simplified version of E-LOTOS
direct implementation : the TRAIAN compiler (data types only → C)
Mihaela Sighireanu's PhD thesis

Third attempt: 2005-now
indirect implementation: LNT → LOTOS (much harder than LOTOS → LNT)
LNT2LOTOS translator (funded by Bull)
Frédéric Lang: translation of LNT types and functions
Wendelin Serwe: translation of LNT processes
D. Champelovier, X. Clerc, etc.: implementation of the translator
reuse of the LOTOS compilers and verification tools present in CADP

On the long run: resume direct implementation LNT → C

34

	Revisiting Sequential Composition�in Process Calculi
	Outline
	Overview of mainstream�process calculi�
	Process calculi
	A tentative landscape
	Sequential composition in �process calculi — �Rationale for the design of LNT
	Action prefix (1/2)
	Action prefix (2/2)
	Attempt #1: LOTOS, CSP
	Attempt #2: ACP & Co (PSF, CRL, mCRL2)
	Early conclusions
	Control-flow and data-flow sharing
	Introducing "true" variables
	Uninitialized variables (1/2)
	Uninitialized variables (2/2)
	"Context-free" recursion
	Shared variables
	Dynamic semantics of LNT
	Upward encodings
	The quest for a unifying framework for process calculi
	Encoding reg. exp. and ACP in LNT
	Encoding CCS in LNT
	Encoding LOTOS / CSP in LNT
	Expressiveness / Convenience
	Reusing algorithmic constructs
	More flexible specification styles
	Challenge 1: Guarded commands
	Challenge 2: DAG control patterns
	Challenge 3: Map-Reduce
	Conclusion
	Questioning action prefix
	LNT: an alternative approach
	Feedback about LNT
	Implementation of LNT

