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Overview of mainstream 
process calculi 
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Process calculi 
Definition #1 

mathematical models for the study of concurrency 
mostly asynchronous concurrency 
some approaches towards synchronous concurrency: SCCS, Esterel 

Definition #2 
specification languages with an explicit parallel composition operator 
and a formal semantics 

A complicated history 
many different process calculi 
partly justified by technical differences between them 
but also due to different schools that were reluctant to merge 
international standardization efforts did not manage to bring unification 
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A tentative landscape 

5 

Oxford 
track 

CSP  (1975) 

Edinburgh 
track 

CCS   (1981) 

Th. CSP   (1984) 

ISO 
track 

CCS   (1989) 

π-calculus 

bigraphs 

FDR2 

FDR3 

LOTOS   (1989) 

E-LOTOS   (2001) 

Grenoble 
track 

CADP 

LOTOS  NT 

 LNT v1 (2006) 

Amsterdam 
track 

ACP   (1984) 

PSF 

µCRL 

mCRL2 

 LNT v6 (2016) 
… 

M 

VPL 



Sequential composition in  
process calculi   —  
Rationale for the design of LNT 
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Action prefix    (1/2) 
A key operator of many process calculi: 
    a . P  |   a !x . P   | a ?x . P    with a action, P process, x variable 

Advantages: 
well accepted by (most of) the concurrency theory community 
simple syntax  
simple SOS rules 
favors inductive proofs 

Drawback #1:   non-standard wrt other programming languages 
action prefix is asymmetric:       a . P     action followed by a process 
everywhere else: symmetric sequential composition  
                                                         P ; P'    process followed by another process 
students always tend to write symmetric sequential composition by default  
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Action prefix   (2/2) 
Drawback #2:   incompatible with regular expressions 

computer scientists know regular expressions (command shells, text editors) 
they naturally tend to write regular expressions, rather than prefix terms 

Drawback #3:   no "loop" operator 
one is forced to use recursion and introduce extra processes 
many proposals for introducing loops, but few implementations (if any) 

Drawback #4:   prohibits control-flow sharing 
action prefix forces to write trees and prohibits DAGs 
Ex1:   (a . c . nil + b . c . nil)   rather than   (a+b) . c . nil 
Ex2:   if x then (a . c . nil) else (b . c . nil) rather than (if x then a else b) . c . nil 
only solution to avoid undesirable unfoldings:  define auxiliary processes 
but  poorly readable control flow ("goto"-like programming) 
        obscures the data flow (requires value parameters to be passed) 
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Attempt #1: LOTOS, CSP 
Idea: keep action prefix, add symmetric sequential composition 

noted ">>" in LOTOS and ";" in CSP 
action prefix recognized to be insufficient as soon as 1985 

Many drawbacks: 
two operators for almost the same purpose 
a ; b ; exit >> c ; d ; stop 
each sequential composition creates a τ-transition in the LTS 
no neutral element for sequential composition (modulo strong bisimulation) 
sub-term sharing is possible but heavy 
(a ; exit [] b ; exit) >> c; stop 
In CSP, the values of variables do not move across sequential composition 
(?x : T -> SKIP) ; (x -> STOP)          the left x remains local to (?x : T -> SKIP) 
In LOTOS, the values of variables may move across sequential composition 
(let x:T = 1 in exit (x)) >> accept x:T in Output !x; stop      but awfully complex 
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Attempt #2: ACP & Co (PSF, µCRL, mCRL2) 
Idea: discard action prefix; use symmetric sequential composition 
Advantages    (without value passing) 

simplicity      —  and no creation of extra τ-transitions 
allows control-flow sharing 
subsumes regular expressions (and even context-free grammars) 

Drawbacks   (all related to value passing) 
Input?x:Int ; Output !x ; exit cannot be written this way 
it must be written  Σ (x:Int, Input (x) . Output (x)) 
x is not assigned during the input, but before (in the sum operator) 
ambiguous: no dedicated syntax to distinguish between inputs and outputs 
Σ (x:Int, a (x))  can mean either   a?x:Int ; exit    or   choice x:Int [] a !x ; exit 
certain suitable behaviours cannot be expressed 
Ex1:    (a ; b ?x + c ; stop) ; d !x 
Ex2:     x := 0 ; y := 0 ; (a ?x + b ?y) ; c !x+y 
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Early conclusions 
 ACTION PREFIX IS THE ROOT OF ALL EVIL 
CCS, CSP, LOTOS are not optimal languages 
ACP & Co. do slightly better, but not solve all issues 
A better language (named "LNT") needs to be designed 

 
DECISION 1 for LNT: 

get rid of action prefix 
use ACP-style sequential composition 
 

Next step: find a proper solution for value-passing issues 
must be intuitive for mainstream software engineers 
thus, necessarily different from ACP & Co. 
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Control-flow and data-flow sharing 
Control-flow sharing is intuitive and suitable 

Ex1:   ( A [] B ) ; C    
Ex2:   ( if x then A else B ) ; C 
Ex3:   ( case x in a -> A | b -> B ) ; C 

The values of variables should implicitly move across ";" operators 
Ex4:   ( A ?x [] B ?x) ; C !x … 
Ex5:  ( if c then A ?x else x := 0 ) ; B !x … 

In most process calculi, variables are write-once 
they are so-called "dynamic constants" 
simple syntax:   declaration and assignments are bound together 
simple semantics:   [value/variable] substitutions are enough 

But dynamic constants are not mainstream in computer languages 
they isolate process calculi from the crowd of software developers 
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Introducing "true" variables 
DECISION 2 FOR LNT: 

ordinary (i.e., "write-many") variables are suitable 
both in the data part (functions) and in the behavior part (processes) 
variable declarations and variable modifications need to be separated 
successive assignments to the same variable are permitted 

Variable declarations 
var X : T in … end var 

Variable modifications 
X := E                                             assignment 
G ?X  where E (X)                        input with (optional) predicate 
X := any T where E (X)               nondeterministic assignment with predicate 
calls to functions and processes ("in", "out", and "in out" parameters) 
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Uninitialized variables   (1/2) 
Problem: certain syntactically correct terms have no meaning 

 Ex:  ( A ?x [] B ?y ) ; C !x+y 
but this term becomes meaningful if prefixed with   x := 0 ; y := 0  

Whether a term has a meaning or not is undecidable  (= halting) 
Solution #1: reading uninitialized variables has undefined effects 

usual solution in imperative languages (as in C, etc.) 
unacceptable if a formal semantics is sought 

Solution #2: initialize all variables implicitly when they are declared 
e.g. set integers to zero, Booleans to false (as in Eiffel) 
allows formal semantics but hides user mistakes 

Solution #3: give uninitialized variables  nondeterministic values 
tricky: implicit summation operator by reading an uninitialized variable 
allows formal semantics but hides user mistakes 
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Uninitialized variables   (2/2) 
Solution #4: add restrictions to reject "dubious" programs 
Either syntactic restrictions: 

CCS:   asymmetric action prefix is just a means to avoid   (a ?x + b ?y) . c !x+y 
ACP:  output-only syntax for actions is another means for the same issue 
syntactic restrictions are very primitive defense means; better solutions exist 

Or static semantics restrictions: 
standard means to rule out syntactically correct, yet problematic programs 
process calculi neglect static semantics and try to do everything using syntax 

DECISION 3 FOR LNT: static semantics constraints on initializations 
reject programs in which variables are not provably set before used 
sufficient conditions based on static data-flow analysis 
inspired by the Hermes (IBM) and Java (Sun) languages 
well-accepted by programmers, catches many mistakes 
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"Context-free" recursion 
Symmetric sequential composition allows context-free recursion 

 Example:   process P [A, B]  =  null  []  ( A ; P [A, B] ; B ) 
(action prefix syntactically prohibits this) 
 

Assessment: 
this recursion is not so useful in practice 
the same behaviour can be  easily described using  regular processes with 
value parameters 

 

DECISION 4 for LNT: static semantic restrictions on recursion 
LNT processes: only tail-recursion is allowed 
note: non-tail recursion could be eliminated automatically (e.g.  µCRL) 
LNT functions: no restriction on the use of recursion 
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Shared variables 
Separation of declaration and assignment allows shared variables 

Example:   var X:int in ( Input ?X || Input ?X ) ; Output  !X 
(this is impossible when variables are write-once) 

Assessment 
This could be an opportunity to combine message-passing and shared- 
variable paradigms in the same formal language 
A nice semantics could probably be found for shared variables 
For the moment, LNT remains in the message-passing framework 

DECISION 5 for LNT: static semantic restrictions on shared variables 
LNT parallel branches may inherit variables from their enclosing scope 
In principle, all parallel branches can read all shared variables 
If a branch writes a shared variable, the other branches can neither write 
nor read this variable 
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Dynamic semantics of LNT 
 Annex B of the LNT2LOTOS Reference Manual 

Written by Frédéric Lang (16 pages) 

 
For LNT functions: 

 state = memory store (mapping: variable → value) 
 LNT instructions define transitions between states (i.e., store updates) 
 

For LNT processes: 
 Labelled transition systems 
 LTS state = <process term, memory store> 
 SOS rules define transitions between LTS states 
 Sequential composition: ACP-like  rules + store updates 
 Static semantics restrictions avoid complications in the dynamic semantics 
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Upward encodings 
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The quest for a unifying framework 
for process calculi 

The usual approach 
search for a "core" calculus of very primitive elements 
encode the various calculi using this "core" calculus 
the core calculus is low level, the process calculi are high level 

 

LNT: a different approach 
 translate process calculi to LNT 
the process calculi are low level, LNT is high level 
the translations to LNT are straightforward 
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Encoding reg. exp. and ACP in LNT 
Regular expressions  ------------->   LNT 

          ε                                                      null    — but adds a tick √ 
          a                                                      a         — but adds a tick √ 
          R1 . R2                                            R1 ; R2 
          R1 | R2                                           select R1 [] R2 end select 
          R*                                                    loop  R end loop 

ACP                             -------------->   LNT 
          0                                                      stop 
          1                                                      null 
          Σ (x : T, P(x))                                  var x:T in x := any T; P (x) end var 
                 or   var x:T in G (?x) ; P (x) end var 

 
 

21 



Encoding CCS in LNT 
CCS                               ------------->   LNT 

          nil                                                   stop 
          a . P                                                a ; P 
          a !x . P                                           a (x) ; P 
          a ?x:T . P                                       var x:T in a (?x) ; P end var 
          P1 + P2                                         select R1 [] R2 end select 
 

Other CCS operators 
recursion:  translates to either a loop operator or an LNT process call 
"complement" gates : out of scope 
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Encoding LOTOS / CSP in LNT  
Common part with CCS to LNT translation 

plus a few additional operators 

 
LOTOS                         ------------->   LNT 

          G ?x:T [V] ; P                            var x:T in G (?x) where V ; P end var 
          let x:T = V in P                          var x:T in x := V ; P end var 
          choice x:T [] P                          var x:T in x := any T ; P end var 
          exit                                             null 
          P1 >> P2                                    P1 ; τ ; P2 
          P1 >> accept x:T in P2            P1 (which assigns x) ; τ ; P2 
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Expressiveness / Convenience 
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Reusing algorithmic constructs 
Once  symmetric sequential composition is adopted,  all the usual 
constructs of algorithmic programming languages come "for free" 
In LNT, 70% of constructs look familiar (Ada-like syntax): 

if-then-else (with elsif) 
case with pattern matching 
while … loop, for … loop, forever loop with break 
functions with return statement 

Additional constructs (originating from concurrency theory): 
nondeterministic assignment:    X := any T where P (X) 
nondeterministic choice:  select … [] … [] … end select 
parallel composition: par … ||… || … end par 
hiding: hide … end hide 

Functions and processes have many constructs in common 
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More flexible specification styles 
LNT favors alternatives to the traditional "condition/action" style 
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select 
      L := {} 
 []  L := {0, 1} 
 []  L := {1, 0, 2} 
 []  … 
end select ; 
SEND (L); 
while L != {} loop 
    X := X - head (L); 
    L := tail (L) 
end loop  
 

nondeterministic choice used to  
produce a finite set of values among 
a potentially infinite domain 
 
(there are no input/output actions  in  
 the branches of this select statement) 

statically unbounded number of assignments 
 



Challenge 1: Guarded commands 
Proposed by Dijkstra — used, e.g., in the PRISM model checker 
LNT can express guarded commands naturally and concisely 
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Using traditional process calculi: 
• 1 recursive process having n parameters 
• n recursive process calls 
• n2 parameters passed (most of which unchanged) 
• LNT = linear code size, others = quadratic code size 

process GuardedCommands  [G1, G2, … Gn : void]  is 
        var X1, X2, … Xn : int  in 
               X1 := 0 ; X2 := 0 ; … ; Xn := 0 
               loop 
                      select 
                            only if X1 < 9  then G1 ; X1 := X1+1 end if 
                            [] … [] 
                            only if Xn < 9  then Gn ; Xn := Xn+1 end if 
                      end select 
               end loop 
        end var 
end process 



Challenge 2: DAG control patterns 
LNT can directly express DAG-like control patterns:  

 e.g., choice-DAGs:    (P1 [] P2) ; (Q1 [] Q2) ; (R1 [] R2) 
but also if-DAGs, case-DAGs, etc. 
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process DAG  [Input, Output : IntChannel]  (X1, …, Xn : Int) is 
    if X1 = 0 then Input (?X1) end if ; 
    if X2 = 0 then Input (?X2) end if ; 
    … 
    if Xn = 0 then Input (?Xn) end if ; 
    Output (combination (X1, X2, …, Xn)) 
end process Using traditional process calculi: 

• n processes having n parameters each 
• n2 parameters passed 
• LNT = linear code size, others = quadratic code size 
• tedious and error prone 



Challenge 3: Map-Reduce 
Given n inputs X1, X2, ..., Xn, compute g (f1 (X1), f2 (X2), …, fn (Xn)) 
Each computation Yi = fi (Xi) is given to one parallel processor 
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var X1, X2, …, Xn : S, 
       Y1, Y2, …, Yn : T in 
   Input (?X1, ?X2, …, ?Xn); 
   par 
             Y1 := f1 (X1) 
        || Y2 := f2 (X2) 
        || … 
        || Yn := fn (Xn) 
   end par ; 
   Output (g (Y1, Y2, …, Yn)) 
end var 
 

Input ?X1, X2, …, Xn : S ;  
   ( 
        exit (f1 (X1), any T, …, any T) 
   || exit (any T, f2 (X2), … any T) 
   || … 
   || exit (any T, any T,  …, fn (Xn)) 
    )  
     >> accept Y1, Y2, …, Yn : T in 
        Output (g (Y1, Y2, …, Yn)) 
end var 
 LNT = linear code size, LOTOS = quadratic code size, non compositional  



Conclusion 
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Questioning action prefix 
For "basic" process calculi 

 action prefix has little justification and seems inferior to ACP 

For value-passing process calculi 
 action prefix is mostly a "trick" to syntactically forbid write-many variables  
and force the use of write-once variables 
 simple, but overly restrictive and clumsy 
 ignores the difference between syntax checks and static semantics checks 

Why is (most of) concurrency theory built on this? 
 need for having a formal semantics (forbid uninitialized variables) 
 individual preferences for functional languages, algebras, etc. 
 process calculi came too early: Hermes and Java arrived later 
a few forerunner languages tried to get rid of action prefix: ACPε, ACPG, 
ACBS&, Extended-LOTOS, E-LOTOS, OCCAM  
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LNT: an alternative approach 
Key concepts: 

 remove action prefix 
 add sequential symmetric composition 
 separate variable declaration and modification 
 allow write-many variables 
 static semantics: use data flow analysis to reject dubious programs 
 dynamic semantics: extend LTS states with ''memory stores'' 

 

Benefits: 
generalizes regular expressions and the usual calculi: ACP, CCS, CSP, LOTOS 
 generalizes sequential imperative languages 
better convenience than the usual calculi (dags, map-reduce, etc.) 
supports action refinement (replacement of an action by a process) 
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Feedback about LNT 
LNT is taught to engineering students 

LNT is much easier and faster to learn than LOTOS 
LNT builds on prior knowledge: regular expressions, programming languages 
students don't have to forget what they already learnt in programming courses 
they can focus on concurrency theory concepts (choice, parallel, hide, etc.) 
LNT is intuitive,  students tend to jump writing specifications without reading  
the formal semantics 
impossible with traditional process calculi, but a questionable advantage 

LNT is used to model real-life applications 
since 2010, LNT has entirely replaced LOTOS in our team 
a growing list of case-studies: ATVA'13, CBSE’14-15,  EICS'14-15, 
FMICS'13-14, FORTE'13-14, ICEFM’14, IFM'13, ISSE'13, PDP’15,  
MARS'15, SAC'14, TACAS'13-15-16, SCICO’13-14,  VMCAI’15 
 STMicroelectronics: "LNT enabled us to analyze systems too large to be 
realistically described in LOTOS" 
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Implementation of LNT 
First attempt: 1993-2000 

 push ideas in the definition of E-LOTOS (ISO standard 15435:2001) 

Second attempt: 1998-2008 
definition of  LOTOS NT, a simplified version of E-LOTOS 
direct implementation : the TRAIAN compiler (data types only → C) 
Mihaela Sighireanu's PhD thesis 

Third attempt: 2005-now 
indirect implementation: LNT → LOTOS (much harder than LOTOS → LNT) 
LNT2LOTOS translator (funded by Bull) 
Frédéric Lang: translation of LNT types and functions 
Wendelin Serwe: translation of LNT processes 
D. Champelovier, X. Clerc, etc.: implementation of the translator 
reuse of the LOTOS compilers and verification tools present in CADP 

On the long run: resume direct implementation LNT → C 
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