
Introduction
Models

Adaptor Generation
Concluding Remarks

Adaptation of Service Protocols using Process
Algebra and On-the-Fly Reduction Techniques

Radu Mateescu1, Pascal Poizat2, Gwen Salaün3

1INRIA / VASY Project-Team, France

2Univ. Évry, France and LRI, France
pascal.poizat@lri.fr

http://www.lri.fr/˜poizat
this work has been done while at IBISC and INRIA / ARLES Project-Team, France

3Univ. Málaga, Spain

ICSOC’2008
December 1–5, 2008

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Motivation (1/2)

user requirements realized
through the automatic orchestration of available services

complex services have conversations
these correspond to the service behavioral interfaces

yet, services may present mismatch
this prevents composition

solution ?

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Motivation (2/2)

software adaptation is a possible means to solve mismatch out
mismatch corresponds to deadlock in service exchanges
adaptors stand in-between services to avoid deadlock
e.g., [Brogi and Popescu, ICSOC’06], [Motahari-Nezhad et al., WWW’07],

[Canal et al., IEEE TSE 34(4), 2008], [Inverardi and Tivoli, SCP 71, 2008]

adaptation features
tools (automation)
adaptation contracts (abstract requirements)
prune interactions leading to deadlocks (restrictive adaptation)
store and reorders messages (generative adaptation)

still, the adaptation process is complex (exponential wrt. service models)

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Motivation (2/2)

software adaptation is a possible means to solve mismatch out
mismatch corresponds to deadlock in service exchanges
adaptors stand in-between services to avoid deadlock
e.g., [Brogi and Popescu, ICSOC’06], [Motahari-Nezhad et al., WWW’07],

[Canal et al., IEEE TSE 34(4), 2008], [Inverardi and Tivoli, SCP 71, 2008]

adaptation features
tools (automation)
adaptation contracts (abstract requirements)
prune interactions leading to deadlocks (restrictive adaptation)
store and reorders messages (generative adaptation)

still, the adaptation process is complex (exponential wrt. service models)

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Objectives

perform pruning and reduction efficiently

verify adaptor-orchestrator correctness
as required by handcrafted contracts and pruning

implement models
BPEL orchestrators

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Outline

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Service Model

Service Conversation

A service conversation is a Labelled Transition System (LTS) i.e. a tuple
(Events, States, Initial state, Final states, Transitions)

Event

An event for a service Si has the form Si : M d P where either:

d = ∗, M = τ , P is empty (internal action)

d = ?, M is a Si input message name, and P = V1, . . . ,Vn (reception)

d = !, M is a Si output message name, and P = V1, . . . ,Vn (emission)

Vi are typed variables (names can be omitted)
b : debitQuery?tid , string, double mf : exitReply!double, string

can be obtained from service descriptions (ABPEL, BPEL, WWF)
e.g., [Fu et al., WWW’04], [Salaün et al., ICWS’04], [Ferrara, ICSOC’04], [Foster, ICSOC’08]

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Service Model

Service Conversation

A service conversation is a Labelled Transition System (LTS) i.e. a tuple
(Events, States, Initial state, Final states, Transitions)

Event

An event for a service Si has the form Si : M d P where either:

d = ∗, M = τ , P is empty (internal action)

d = ?, M is a Si input message name, and P = V1, . . . ,Vn (reception)

d = !, M is a Si output message name, and P = V1, . . . ,Vn (emission)

Vi are typed variables (names can be omitted)
b : debitQuery?tid , string, double mf : exitReply!double, string

can be obtained from service descriptions (ABPEL, BPEL, WWF)
e.g., [Fu et al., WWW’04], [Salaün et al., ICWS’04], [Ferrara, ICSOC’04], [Foster, ICSOC’08]

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Example (Service Conversations)

setFile?tid,tfile doActionQuery?tid,taction

doActionReply!string

exitQuery?tid exitReply!double,str ingsetFile?tid,tfile

connect! t id, tpwd

tau hal t ! t id

tau
fi leQuery!t id,tf i le

setAction!t id,tact ion

fileReply?string

USER (u)

MultiFileQuery (mf)

loginQuery?tid,tpwd logoutQuery?tid logoutReply!double

debitQuery?tid,str ing,double

creditQuery?tid,str ing,double
creditReply?string

debitReply?string

Bank (b)

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Example (Service Conversations)

setFile?tid,tfile doActionQuery?tid,taction

doActionReply!string

exitQuery?tid exitReply!double,str ingsetFile?tid,tfile

connect! t id, tpwd

tau hal t ! t id

tau
fi leQuery!t id,tf i le

setAction!t id,tact ion

fileReply?string

USER (u)

MultiFileQuery (mf)

loginQuery?tid,tpwd logoutQuery?tid logoutReply!double

debitQuery?tid,str ing,double

creditQuery?tid,str ing,double
creditReply?string

debitReply?string

Bank (b)

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Adaptation Contract

extension with value-passing of

Canal et al., Model-based Adaptation of Behavioural Mismatching Components,

IEEE TSE, 34(4):546–563, 2008

Vector

A vector represents correspondences between events
This includes message parts using a set of variables (placeholders)

vh=〈u :halt!ID; mf :exitQuery?ID; b : logoutQuery?ID〉
vh2=〈mf :exitReply!PRICE, INFO; b :debitQuery?ID, INFO,PRICE〉

Adaptation Contract

An adaptation contract is an LTS (V ,S, I, F , T) where V is a set of vectors

contracts impose constraints on vector ordering (à la choreography)
can be computed using similarity measures or via generate-test tool support

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Adaptation Contract

extension with value-passing of

Canal et al., Model-based Adaptation of Behavioural Mismatching Components,

IEEE TSE, 34(4):546–563, 2008

Vector

A vector represents correspondences between events
This includes message parts using a set of variables (placeholders)

vh=〈u :halt!ID; mf :exitQuery?ID; b : logoutQuery?ID〉
vh2=〈mf :exitReply!PRICE, INFO; b :debitQuery?ID, INFO,PRICE〉

Adaptation Contract

An adaptation contract is an LTS (V ,S, I, F , T) where V is a set of vectors

contracts impose constraints on vector ordering (à la choreography)
can be computed using similarity measures or via generate-test tool support

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Adaptation Contract

extension with value-passing of

Canal et al., Model-based Adaptation of Behavioural Mismatching Components,

IEEE TSE, 34(4):546–563, 2008

Vector

A vector represents correspondences between events
This includes message parts using a set of variables (placeholders)

vh=〈u :halt!ID; mf :exitQuery?ID; b : logoutQuery?ID〉
vh2=〈mf :exitReply!PRICE, INFO; b :debitQuery?ID, INFO,PRICE〉

Adaptation Contract

An adaptation contract is an LTS (V ,S, I, F , T) where V is a set of vectors

contracts impose constraints on vector ordering (à la choreography)
can be computed using similarity measures or via generate-test tool support

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Example (Adaptation Contract)

login

logout

credit

debi t

b

connecthalt setAction
file

u

mf

setFile

doAction

exit

vc

vf2

vf2

V

V

V

V={vc,va,v f ,vh ,vh2,vv1,vv2}

vc = <u:connect!ID,PWD ; b:login?ID,PWD >

va = <u:setAction!ID,ACT ; mf:doAction?ID,ACT>

vf = <u:file!ID,FILE ; mf:setFile?ID,FILE>

vf2 = <u:fi le?RES , mf:doAction!RES>

vh = <u:halt ! ID ; mf:exit?ID ; b: logout?ID >

vh2 = <mf:exit!PRICE,INFO ; b:debit?ID,INFO,PRICE>

vv1 = <b:debit !STATUS>

vv2 = <b: logoutReply!BALANCE>

va

vf

vf2

vh
vh2

vv1

vv2

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Towards an Implicit Adaptor Model

Idea

Adaptation constraints encoded as
synchronized automaton:

adaptor in-the-middle
(orchestration)

vector ordering
imposed by contract

in/out message ordering
imposed by conversations

receptions before emissions
in vector application

placeholders already received
in a store

v2v1

FINALC1:...C1:a

v1 = < C1:a!x ; C2:b?y >

run_v1 C1:a write<x>

C2:b

read<y>

rel_v1FINAL

[var in Store]

read<var>

write<var>

FINAL

/ store(var)

run_v1 rel_v1 run_v2 rel_v2 FINAL

SERVICES = n Automata

CONTRACT = 1 Automaton

VECTORS = m Automata

STORE = 1 Automaton

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

On-the-Fly Adaptor Generation

forward exploration of the implicit adaptor model

on-the-fly detection of states potentially reaching successful termination

final states

|= final
⇔ 〈FINAL〉 true

s

|= EFfinal
⇔ µX . 〈FINAL〉 true ∨ 〈true〉 X

|= AG¬final
⇔ νX . [FINAL] false ∧ [true] X

deadlock states

|= [true] false

states that potentially
reach final states

states that never
reach final states

{Xs =µ

W
s

FINAL→ s′
true ∨

W
s→s′′ Xs′′}

problem encoding in terms of a
Boolean Equation System (BES)

efficient BES resolution using the
Caesar_Solve library
(linear wrt. LTS size)

reduction also performed on-the-fly at the same time
wrt. τ -confluence, τ∗.a, weak-trace equivalences

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

On-the-Fly Adaptor Generation

forward exploration of the implicit adaptor model

on-the-fly detection of states potentially reaching successful termination

final states

|= final
⇔ 〈FINAL〉 true

s

|= EFfinal
⇔ µX . 〈FINAL〉 true ∨ 〈true〉 X

|= AG¬final
⇔ νX . [FINAL] false ∧ [true] X

deadlock states

|= [true] false

states that potentially
reach final states

states that never
reach final states

{Xs =µ

W
s

FINAL→ s′
true ∨

W
s→s′′ Xs′′}

problem encoding in terms of a
Boolean Equation System (BES)

efficient BES resolution using the
Caesar_Solve library
(linear wrt. LTS size)

reduction also performed on-the-fly at the same time
wrt. τ -confluence, τ∗.a, weak-trace equivalences

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Example (Adaptor Model)

0

33

USER:CONNECT ?ID,PWD

8 4
B:DEBITQUERY !ID,INFO,PRICE

5
B:DEBITREPLY ?STATUS

3
B:LOGOUTQUERY !ID

2
B:LOGOUTREPLY ?BALANCE

1
FINAL

10

B:LOGINQUERY !ID,PWD

19

USER:SETACTION ?ID,ACT

6

35

MF:DOACTIONQUERY !ID,ACT

21

B:LOGINQUERY !ID,PWD

22

B:LOGINQUERY !ID,PWD

31

MF:DOACTIONREPLY ?RES MF:DOACTIONQUERY !ID,ACT

7

MF:EXITREPLY ?PRICE,INFO

9

B:LOGINQUERY !ID,PWD

27

USER:SETACTION ?ID,ACT

20

USER:FILEQUERY ?ID,FILE

11

12

USER:HALT ?ID

MF:EXITQUERY !ID

13

B:LOGINQUERY !ID,PWD

15

USER:HALT ?ID

B:LOGINQUERY !ID,PWD

14

MF:EXITQUERY !ID

B:LOGINQUERY !ID,PWD MF:EXITREPLY ?PRICE,INFO

16

28

USER:FILEQUERY ?ID,FILE

24

MF:SETFILE !ID,FILE

17

18

MF:DOACTIONREPLY ?RES

USER:FILEREPLY !RES

B:LOGINQUERY !ID,PWD

36

USER:FILEQUERY ?ID,FILE

MF:SETFILE !ID,FILE B:LOGINQUERY !ID,PWD

MF:SETFILE !ID,FILE

25

MF:DOACTIONREPLY ?RES

26

USER:FILEREPLY !RES

23

B:LOGINQUERY !ID,PWD

37

MF:SETFILE !ID,FILE

B:LOGINQUERY !ID,PWD

29

MF:DOACTIONQUERY !ID,ACT

MF:DOACTIONQUERY !ID,ACT USER:HALT ?ID

USER:SETACTION ?ID,ACT

B:LOGINQUERY !ID,PWD

30

MF:DOACTIONREPLY ?RES

USER:FILEREPLY !RES B:LOGINQUERY !ID,PWD

B:LOGINQUERY !ID,PWD

32

USER:FILEREPLY !RES

USER:HALT ?ID

B:LOGINQUERY !ID,PWD

34

USER:SETACTION ?ID,ACT

B:LOGINQUERY !ID,PWDUSER:FILEQUERY ?ID,FILE

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Example (Adaptor Model)
0

33

USER:CONNECT ?ID,PWD

8 4
B:DEBITQUERY !ID,INFO,PRICE

5
B:DEBITREPLY ?STATUS

3
B:LOGOUTQUERY !ID

2
B:LOGOUTREPLY ?BALANCE

1
FINAL

10

B:LOGINQUERY !ID,PWD

19

USER:SETACTION ?ID,ACT

6

35

MF:DOACTIONQUERY !ID,ACT

21

B:LOGINQUERY !ID,PWD

22

B:LOGINQUERY !ID,PWD

31

MF:DOACTIONREPLY ?RES MF:DOACTIONQUERY !ID,ACT

7

MF:EXITREPLY ?PRICE,INFO

9

B:LOGINQUERY !ID,PWD

27

USER:SETACTION ?ID,ACT

20

USER:FILEQUERY ?ID,FILE

11

12

USER:HALT ?ID

MF:EXITQUERY !ID

13

B:LOGINQUERY !ID,PWD

15

USER:HALT ?ID

B:LOGINQUERY !ID,PWD

14

MF:EXITQUERY !ID

B:LOGINQUERY !ID,PWD MF:EXITREPLY ?PRICE,INFO

16

28

USER:FILEQUERY ?ID,FILE

24

MF:SETFILE !ID,FILE

17

18

MF:DOACTIONREPLY ?RES

USER:FILEREPLY !RES

B:LOGINQUERY !ID,PWD

36

USER:FILEQUERY ?ID,FILE

MF:SETFILE !ID,FILE B:LOGINQUERY !ID,PWD

MF:SETFILE !ID,FILE

25

MF:DOACTIONREPLY ?RES

26

USER:FILEREPLY !RES

23

B:LOGINQUERY !ID,PWD

37

MF:SETFILE !ID,FILE

B:LOGINQUERY !ID,PWD

29

MF:DOACTIONQUERY !ID,ACT

MF:DOACTIONQUERY !ID,ACT USER:HALT ?ID

USER:SETACTION ?ID,ACT

B:LOGINQUERY !ID,PWD

30

MF:DOACTIONREPLY ?RES

USER:FILEREPLY !RES B:LOGINQUERY !ID,PWD

B:LOGINQUERY !ID,PWD

32

USER:FILEREPLY !RES

USER:HALT ?ID

B:LOGINQUERY !ID,PWD

34

USER:SETACTION ?ID,ACT

B:LOGINQUERY !ID,PWDUSER:FILEQUERY ?ID,FILE

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Example (Adaptor Model)

0

33

USER:CONNECT ?ID,PWD

8 4
B:DEBITQUERY !ID,INFO,PRICE

5
B:DEBITREPLY ?STATUS

3
B:LOGOUTQUERY !ID

2
B:LOGOUTREPLY ?BALANCE

1
FINAL

10

B:LOGINQUERY !ID,PWD

19

USER:SETACTION ?ID,ACT

6

35

MF:DOACTIONQUERY !ID,ACT

21

B:LOGINQUERY !ID,PWD

22

B:LOGINQUERY !ID,PWD

31

MF:DOACTIONREPLY ?RES MF:DOACTIONQUERY !ID,ACT

7

MF:EXITREPLY ?PRICE,INFO

9

B:LOGINQUERY !ID,PWD

27

USER:SETACTION ?ID,ACT

20

USER:FILEQUERY ?ID,FILE

11

12

USER:HALT ?ID

MF:EXITQUERY !ID

13

B:LOGINQUERY !ID,PWD

15

USER:HALT ?ID

B:LOGINQUERY !ID,PWD

14

MF:EXITQUERY !ID

B:LOGINQUERY !ID,PWD MF:EXITREPLY ?PRICE,INFO

16

28

USER:FILEQUERY ?ID,FILE

24

MF:SETFILE !ID,FILE

17

18

MF:DOACTIONREPLY ?RES

USER:FILEREPLY !RES

B:LOGINQUERY !ID,PWD

36

USER:FILEQUERY ?ID,FILE

MF:SETFILE !ID,FILE B:LOGINQUERY !ID,PWD

MF:SETFILE !ID,FILE

25

MF:DOACTIONREPLY ?RES

26

USER:FILEREPLY !RES

23

B:LOGINQUERY !ID,PWD

37

MF:SETFILE !ID,FILE

B:LOGINQUERY !ID,PWD

29

MF:DOACTIONQUERY !ID,ACT

MF:DOACTIONQUERY !ID,ACT USER:HALT ?ID

USER:SETACTION ?ID,ACT

B:LOGINQUERY !ID,PWD

30

MF:DOACTIONREPLY ?RES

USER:FILEREPLY !RES B:LOGINQUERY !ID,PWD

B:LOGINQUERY !ID,PWD

32

USER:FILEREPLY !RES

USER:HALT ?ID

B:LOGINQUERY !ID,PWD

34

USER:SETACTION ?ID,ACT

B:LOGINQUERY !ID,PWDUSER:FILEQUERY ?ID,FILE

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Experiments

Adaptor LTS State space portion explored for
Application raw reduced reduced adaptor generation

states trans. states trans. states % trans. %

eMuseum 21418 48692 978 2382 29026 72.8 17075 18.7
music-system 1720 4368 49 60 14805 85.9 32923 74.5
sql-server 1720 4264 22 26 2337 57.1 3427 32.9
multi-file query 1,542 3,709 61 79 6,269 99.95 11,623 69.76
mail-system 418 1059 418 1059 13630 99.7 23946 70.1
pc-store 253 472 16 16 782 88.2 1208 66.8
rate-service 241 483 28 32 400 52.6 675 37.2
video-on-demand 149 231 17 22 251 97.6 260 63.5
batchsql 137 239 31 43 429 67.1 276 21.6
restau-booking 94 108 33 37 264 99.6 280 83.1
pc-store 17 17 17 17 237 91.5 249 64.3

largest example computation: ∼1 minute (731 MHz / 512 MB PC Linux)
P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Principles

The previous steps followed a MDE (PIM/PSM) approach

Implementation is then achieved
in two steps:

1 filtering the adaptor model
to ensure its implementability

2 encoding the filtered model
(state-machine pattern)

0

33

USER:CONNECT ?ID,PWD

8 4
B:DEBITQUERY !ID,INFO,PRICE

5
B:DEBITREPLY ?STATUS

3
B:LOGOUTQUERY !ID

2
B:LOGOUTREPLY ?BALANCE

1
FINAL

10

B:LOGINQUERY !ID,PWD

19

USER:SETACTION ?ID,ACT

6

35

MF:DOACTIONQUERY !ID,ACT

21

B:LOGINQUERY !ID,PWD

22

B:LOGINQUERY !ID,PWD

31

MF:DOACTIONREPLY ?RES MF:DOACTIONQUERY !ID,ACT

7

MF:EXITREPLY ?PRICE,INFO

9

B:LOGINQUERY !ID,PWD

27

USER:SETACTION ?ID,ACT

20

USER:FILEQUERY ?ID,FILE

11

12

USER:HALT ?ID

MF:EXITQUERY !ID

13

B:LOGINQUERY !ID,PWD

15

USER:HALT ?ID

B:LOGINQUERY !ID,PWD

14

MF:EXITQUERY !ID

B:LOGINQUERY !ID,PWD MF:EXITREPLY ?PRICE,INFO

16

28

USER:FILEQUERY ?ID,FILE

24

MF:SETFILE !ID,FILE

17

18

MF:DOACTIONREPLY ?RES

USER:FILEREPLY !RES

B:LOGINQUERY !ID,PWD

36

USER:FILEQUERY ?ID,FILE

MF:SETFILE !ID,FILE B:LOGINQUERY !ID,PWD

MF:SETFILE !ID,FILE

25

MF:DOACTIONREPLY ?RES

26

USER:FILEREPLY !RES

23

B:LOGINQUERY !ID,PWD

37

MF:SETFILE !ID,FILE

B:LOGINQUERY !ID,PWD

29

MF:DOACTIONQUERY !ID,ACT

MF:DOACTIONQUERY !ID,ACT USER:HALT ?ID

USER:SETACTION ?ID,ACT

B:LOGINQUERY !ID,PWD

30

MF:DOACTIONREPLY ?RES

USER:FILEREPLY !RES B:LOGINQUERY !ID,PWD

B:LOGINQUERY !ID,PWD

32

USER:FILEREPLY !RES

USER:HALT ?ID

B:LOGINQUERY !ID,PWD

34

USER:SETACTION ?ID,ACT

B:LOGINQUERY !ID,PWDUSER:FILEQUERY ?ID,FILE

0

33

USER:CONNECT ?ID,PWD

8 4
B:DEBITQUERY !ID,INFO,PRICE

5
B:DEBITREPLY ?STATUS

3
B:LOGOUTQUERY !ID

2
B:LOGOUTREPLY ?BALANCE

1
FINAL

10

B:LOGINQUERY !ID,PWD

7

MF:EXITREPLY ?PRICE,INFO

27

USER:SETACTION ?ID,ACT

20

USER:FILEQUERY ?ID,FILE

11

12

USER:HALT ?ID

MF:EXITQUERY !ID

16

28

USER:FILEQUERY ?ID,FILE

24

MF:SETFILE !ID,FILE

17

18

MF:DOACTIONREPLY ?RES

USER:FILEREPLY !RES

21

MF:SETFILE !ID,FILE

22

MF:DOACTIONQUERY !ID,ACT

25

MF:DOACTIONREPLY ?RES

26

USER:FILEREPLY !RES

MF:DOACTIONQUERY !ID,ACTUSER:HALT ?ID

USER:SETACTION ?ID,ACT

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Filtering

Given an adaptor model (A,S, I, F , T) for a set of services Si , three rules

R1 for every s ∈ S, if s −→a1!... s′ then remove all transitions s −→ai?... s′i
R2 for every s ∈ S, if s −→a1!... s1 and s −→a2!... s2 with a1 6= a2 or s1 6= s2

then remove s −→a2!... s2

R3 for every two-way operation o[m1,m2] of some Si , for every s −→!Si :m1 s′,
remove all transitions outgoing from s′ but for s′ −→?Si :m2 s′′

Cleaning the model up

C1 remove any state s ∈ S such that there does not exist a path I −→∗ s
accordingly remove any transition outgoing from s

C2 remove any state s ∈ S such that there does not exist a path s −→∗ f ,
with f ∈ F
accordingly remove any transition going to s

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Filtering

Given an adaptor model (A,S, I, F , T) for a set of services Si , three rules

R1 for every s ∈ S, if s −→a1!... s′ then remove all transitions s −→ai?... s′i
R2 for every s ∈ S, if s −→a1!... s1 and s −→a2!... s2 with a1 6= a2 or s1 6= s2

then remove s −→a2!... s2

R3 for every two-way operation o[m1,m2] of some Si , for every s −→!Si :m1 s′,
remove all transitions outgoing from s′ but for s′ −→?Si :m2 s′′

Cleaning the model up

C1 remove any state s ∈ S such that there does not exist a path I −→∗ s
accordingly remove any transition outgoing from s

C2 remove any state s ∈ S such that there does not exist a path s −→∗ f ,
with f ∈ F
accordingly remove any transition going to s

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Filtering

Given an adaptor model (A,S, I, F , T) for a set of services Si , three rules

R1 for every s ∈ S, if s −→a1!... s′ then remove all transitions s −→ai?... s′i
R2 for every s ∈ S, if s −→a1!... s1 and s −→a2!... s2 with a1 6= a2 or s1 6= s2

then remove s −→a2!... s2

R3 for every two-way operation o[m1,m2] of some Si , for every s −→!Si :m1 s′,
remove all transitions outgoing from s′ but for s′ −→?Si :m2 s′′

Cleaning the model up

C1 remove any state s ∈ S such that there does not exist a path I −→∗ s
accordingly remove any transition outgoing from s

C2 remove any state s ∈ S such that there does not exist a path s −→∗ f ,
with f ∈ F
accordingly remove any transition going to s

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Filtering

Given an adaptor model (A,S, I, F , T) for a set of services Si , three rules

R1 for every s ∈ S, if s −→a1!... s′ then remove all transitions s −→ai?... s′i
R2 for every s ∈ S, if s −→a1!... s1 and s −→a2!... s2 with a1 6= a2 or s1 6= s2

then remove s −→a2!... s2

R3 for every two-way operation o[m1,m2] of some Si , for every s −→!Si :m1 s′,
remove all transitions outgoing from s′ but for s′ −→?Si :m2 s′′

Cleaning the model up

C1 remove any state s ∈ S such that there does not exist a path I −→∗ s
accordingly remove any transition outgoing from s

C2 remove any state s ∈ S such that there does not exist a path s −→∗ f ,
with f ∈ F
accordingly remove any transition going to s

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Example (Filtered Adaptor Model)
before filtering after filtering

0

33

USER:CONNECT ?ID,PWD

8 4
B:DEBITQUERY !ID,INFO,PRICE

5
B:DEBITREPLY ?STATUS

3
B:LOGOUTQUERY !ID

2
B:LOGOUTREPLY ?BALANCE

1
FINAL

10

B:LOGINQUERY !ID,PWD

19

USER:SETACTION ?ID,ACT

6

35

MF:DOACTIONQUERY !ID,ACT

21

B:LOGINQUERY !ID,PWD

22

B:LOGINQUERY !ID,PWD

31

MF:DOACTIONREPLY ?RES MF:DOACTIONQUERY !ID,ACT

7

MF:EXITREPLY ?PRICE,INFO

9

B:LOGINQUERY !ID,PWD

27

USER:SETACTION ?ID,ACT

20

USER:FILEQUERY ?ID,FILE

11

12

USER:HALT ?ID

MF:EXITQUERY !ID

13

B:LOGINQUERY !ID,PWD

15

USER:HALT ?ID

B:LOGINQUERY !ID,PWD

14

MF:EXITQUERY !ID

B:LOGINQUERY !ID,PWD MF:EXITREPLY ?PRICE,INFO

16

28

USER:FILEQUERY ?ID,FILE

24

MF:SETFILE !ID,FILE

17

18

MF:DOACTIONREPLY ?RES

USER:FILEREPLY !RES

B:LOGINQUERY !ID,PWD

36

USER:FILEQUERY ?ID,FILE

MF:SETFILE !ID,FILE B:LOGINQUERY !ID,PWD

MF:SETFILE !ID,FILE

25

MF:DOACTIONREPLY ?RES

26

USER:FILEREPLY !RES

23

B:LOGINQUERY !ID,PWD

37

MF:SETFILE !ID,FILE

B:LOGINQUERY !ID,PWD

29

MF:DOACTIONQUERY !ID,ACT

MF:DOACTIONQUERY !ID,ACT USER:HALT ?ID

USER:SETACTION ?ID,ACT

B:LOGINQUERY !ID,PWD

30

MF:DOACTIONREPLY ?RES

USER:FILEREPLY !RES B:LOGINQUERY !ID,PWD

B:LOGINQUERY !ID,PWD

32

USER:FILEREPLY !RES

USER:HALT ?ID

B:LOGINQUERY !ID,PWD

34

USER:SETACTION ?ID,ACT

B:LOGINQUERY !ID,PWDUSER:FILEQUERY ?ID,FILE

0

33

USER:CONNECT ?ID,PWD

8 4
B:DEBITQUERY !ID,INFO,PRICE

5
B:DEBITREPLY ?STATUS

3
B:LOGOUTQUERY !ID

2
B:LOGOUTREPLY ?BALANCE

1
FINAL

10

B:LOGINQUERY !ID,PWD

7

MF:EXITREPLY ?PRICE,INFO

27

USER:SETACTION ?ID,ACT

20

USER:FILEQUERY ?ID,FILE

11

12

USER:HALT ?ID

MF:EXITQUERY !ID

16

28

USER:FILEQUERY ?ID,FILE

24

MF:SETFILE !ID,FILE

17

18

MF:DOACTIONREPLY ?RES

USER:FILEREPLY !RES

21

MF:SETFILE !ID,FILE

22

MF:DOACTIONQUERY !ID,ACT

25

MF:DOACTIONREPLY ?RES

26

USER:FILEREPLY !RES

MF:DOACTIONQUERY !ID,ACTUSER:HALT ?ID

USER:SETACTION ?ID,ACT

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Encoding (1/2)

Given an adaptor model (A,S, I, F , T) for a set of services Si ,

partner links one per service (Si) + USER

variables message parts (mp-var)
vectors var. (v-var)
STATE, FINAL

process encoded using the state machine pattern
initially STATE=s, where I −→USER:m? s,
and FINAL=false

while(not FINAL) loop

for final states (F): FINAL=true

for all states: communication

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Generation
Implementation

Encoding (2/2)

Given an adaptor model (A,S, I, F , T) for a set of services Si ,

invoke s −→Si :m1!x1,...,xn s′, s′ −→Si :m2?y1,...,ym s′′, o[m1,m2] ∈ Si :
invoke(Si ,o,< x1, . . . , xn >,< y1, . . . , ym >)

receive s −→USER:m1?x1,...,xn s′, o[m1,m2] ∈ USER:
receive(USER,o,< x1, . . . , xn >) if no other reception
pick + onMessage(USER,o,< x1, . . . , xn >) else

+ onAlarm if s ∈ F

reply s −→USER:m2!x1,...,xn s′, o[m1,m2] ∈ USER:
reply(USER,o,< x1, . . . , xn >)

assign. before invoke/reply: v-var→ mp-var
after receive: mp-var→ v-var

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Concluding Remarks

Results

design/deployment time service orchestration
with restrictive+generative adaptation

adaptation is computed efficiently (on-the-fly): scrutator tool

distribution of adaptors is possible
following, e.g., [Autili et al., JSS 81(12), 2008], [Salaün, SEFM’08]

Perspectives

efficiency new reductions in scrutator, preorders
expressiveness adding formal semantics to operations
user support adaptation tool-box with help for contract specification

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Concluding Remarks

Results

design/deployment time service orchestration
with restrictive+generative adaptation

adaptation is computed efficiently (on-the-fly): scrutator tool

distribution of adaptors is possible
following, e.g., [Autili et al., JSS 81(12), 2008], [Salaün, SEFM’08]

Perspectives

efficiency new reductions in scrutator, preorders
expressiveness adding formal semantics to operations
user support adaptation tool-box with help for contract specification

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

thank you for your attention

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Verification

The adapted orchestration O is deadlock-free and livelock-free by construction.
Still handcrafted contracts and pruning makes verification important.

Currently one can check:

Application-independent properties
(no human intervention)

syntactic contract checking
occurence of action/variables (in O)

Application-specific properties
(requires one gives the properties)

safety properties: something bad never happens (in O)
liveness properties: something good eventually happens (in O)

all are achieved on-the-fly using CADP

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Verification

The adapted orchestration O is deadlock-free and livelock-free by construction.
Still handcrafted contracts and pruning makes verification important.

Currently one can check:

Application-independent properties
(no human intervention)

syntactic contract checking
occurence of action/variables (in O)

Application-specific properties
(requires one gives the properties)

safety properties: something bad never happens (in O)
liveness properties: something good eventually happens (in O)

all are achieved on-the-fly using CADP

P. Poizat Adaptation of Service Protocols using Process Algebra

Introduction
Models

Adaptor Generation
Concluding Remarks

Verification

The adapted orchestration O is deadlock-free and livelock-free by construction.
Still handcrafted contracts and pruning makes verification important.

Currently one can check:

Application-independent properties
(no human intervention)

syntactic contract checking
occurence of action/variables (in O)

Application-specific properties
(requires one gives the properties)

safety properties: something bad never happens (in O)
liveness properties: something good eventually happens (in O)

all are achieved on-the-fly using CADP

P. Poizat Adaptation of Service Protocols using Process Algebra

	Introduction
	Models
	Adaptor Generation
	Generation
	Implementation

	Concluding Remarks

