
CADPCADP
C AConstruction and Analysis of

Di t ib t d PDistributed Processes

ETAPS Test-of-time Tool Award 2023
Hubert GARAVEL

Frédéric LANG
Radu MATEESCU
Wendelin SERWEWendelin SERWE

CADP Objectivesj
Formal analysis of concurrent systems:
design error detection: safety security correctnessdesign-error detection: safety, security, correctness
Message-passing communication
Wide usage in various (3rd party) research work:
> 200 case studies > 100 research tools

2

Communication Protocols Hardware Design
Distributed Systems Embedded Systems

Formal Verification Web Services
Protocol Testing Embedded Systems

CADP in Practice
Comprehensive software package:
59 tools 18 libraries 630 pages of documentation59 tools, 18 libraries, 630 pages of documentation
Continuously improved since 1987
Rolling release schedule (one per month)
6 supported 32/64-bit architectures6 supported 32/64 bit architectures
(Linux, macOS, Solaris, Windows)

ld dWorldwide
distribution
https://cadp.inria.fr

3

Principal Modelling Language: LNTp g g g
Features

Uniform usual imperative syntaxUniform usual imperative syntax
Heavy use of static analysis
(semantics & warnings) process FILTER [GET: option_channel,

PUT h l] (b N) iStrong typing
Concepts: expressions,

PUT: nat_channel] (b: Nat) is
var opt: Option in

loop
GET (?opt)instructions, behaviours

Convenient translation

GET (?opt) ;
case opt var x: Nat in

none -> null
| some(x) where x > b > PUT (x)

target
Development language of

| some(x) where x > b -> PUT (x)
end case

end loop
end varp g g

most compilers in CADP
Positive feedback from academia and industry

end var
end process

Positive feedback from academia and industry

4

Other Modelling Languagesg g g
LOTOS (ISO standard 8807)

Supported since the beginning of CADP
Current target of the LNT tool chaing

FSP (Finite State Processes)
L f th LTSA t lLanguage of the LTSA tool

EXP (networks of communicating automata)
Synchronization vectors as generic composition means

Common featuresCommon features
Labelled Transition Systems semantics
Parallel composition, interleaving, rendezvous

5

Visual Checking / Simulationg
Manipulation of explicit LTS

Compact storage (BCG format)
Visualization

Step-by-step simulation
Backtrackingg
Save & load simulations

Random simulationRandom simulation

6

Equivalence Checkingq g
LTS comparison and reduction/minimization
V i l ti d d i l diVarious relations and preorders, including

strong bisimulation
()(divergence-preserving) branching bisimulation
(weak) trace equivalence

b b l / hprobabilistic/stochastic variants
Basis for compositional techniques p q

strong branching

bisimulation

g

bisimulation

7

Model Checkingg
XTL (on LTS in the BCG format):
functional language for graph NEVER (

({ PUT ? })*functional language for graph
traversals
MCL (on-the-fly)

(not { PUT ?any })* .
{ PUT ?m1:Nat } .
(not { GET ?any })*(y)

regular alternation free µ-calculus
macro libraries for CTL, ACTL, ...

(not { GET ?any }) .
{ GET ?m2:Nat

where m1 <> m2 }macro libraries for CTL, ACTL, ...
infinite looping operator
regular expressions on action sequences

1 2 }
)

regular expressions on action sequences
action predicates with data-handling constructs
probabilistic extensionsprobabilistic extensions

PUT m1 GET m2.

8

not PUT not GET

Distributed Tools
Distributed state space generation

U f h d d fUse memory of up to hundreds of computers
Good speed-up

Manipulation of distributed state spaces
Distributed solving of Boolean equation systemsDistributed solving of Boolean equation systems
(distributed
model andmodel- and
equivalence
checking)checking)

9

Compositional Verificationp
Divide and conquer principle:
generate, reduce, and compose components hierarchically
Heuristics to select composition order
Semi-composition using interfaces
Property dependent reductionsProperty-dependent reductions
Success stories

[ASYNC18] 146 LNT processes, 660 concurrent units, semi-
composition, intermediate LTSs below 116 Mstates
[RERS2019] up to 70 automata (each with up to 153 states),
new sharp bisimulation, property dependent reduction

10

Conformance Testingg
Model-based testing: model test

model as test oracle
ioco conformance relation

model purpose

ioco conformance relation
Test purpose to guide on-the-fly

test
case

test case generation
Coverage guarantees verdict

contva
tio

n

g g
EXEC/CÆSAR framework
simultaneous execution of

trol

ob
se

r

simultaneous execution of
the model and an implementation implemen-

tation

11

Software Libraries
Manipulation of binary LTS format
Auxiliary data structures:
hash table, bitmap, cache, stack, hiding/renaming, ...
Common algorithms: BES solving
Extensive documentationExtensive documentation
Example: components of a test generation tool

grey: reused
white: newwhite: new

12

User Interfaces

C i lConvenient access to tools
Eucalyptus GUIyp

Contextual menus
Well chosen default valuesWell-chosen default values

SVL (Script Verification Language)
Integration of verification, properties, and shell
commands
Automatic advanced verification heuristics
Support for compositional techniquesSupport for compositional techniques

13

Quality Control and Supporty pp
Code review before integration
Nightly test of demo examplesNightly test of demo examples
Large collections of models and properties

CONTRIBUTOR tool for automatic gathering of examplesCONTRIBUTOR tool for automatic gathering of examples
Example provider for benchmarks and model repositories
(VLTS VLSAT MARS)(VLTS, VLSAT, MARS)
Benchmark provider for tool competitions
(MCC, SAT competition, SMT-COMP, Model Counting)(, p , , g)

Support tools
INSTALLATOR: graphical installerINSTALLATOR: graphical installer
TST: diagnostics of installation problems
UPC: upgrade specifications following language changesUPC: upgrade specifications following language changes

14

Conclusion: Salient CADP Features
Sophisticated rich modelling languages with
explicit parallelism and general data types
Action-based branching-time logicsAction based branching time logics
Model checking and equivalence checking

On-the-fly algorithms
Distributed tools
Compositional approaches

Smooth combination of all techniquesSmooth combination of all techniques

“Concurrency theory in practically usable tools”y y p y

15

More Information about CADP
Website: https://cadp.inria.fr
demo examples, documentation, current status, ...
User forum: https://cadp.forumotion.comUser forum: https://cadp.forumotion.com
Overview [Garavel-Lang-Mateescu-Serwe-13]
Awards

9 gold medals at RERS competitions (2019 & 2020)g p ()
Innovation award (French Académie des sciences, 2021)
ETAPS Test of time Tool (2023)ETAPS Test-of-time Tool (2023)

To obtain a free academic license
// /https://cadp.inria.fr/registration

16

