
Efficient Algorithms for Three

Reachability Problems in Safe Petri Nets

Pierre Bouvier Hubert Garavel

Univ. Grenoble Alpes, Inria, Cnrs, Grenoble Inp, Lig, France
E-mail: {pierre.bouvier,hubert.garavel}@inria.fr

Abstract

We investigate three particular instances of the marking coverability problem
in ordinary, safe Petri nets: the Dead Places Problem, the Dead Transitions
Problem, and the Concurrent Places Problem. To address these three prob-
lems, which are of practical interest, although not yet supported by main-
stream Petri net tools, we propose a combination of static and dynamic algo-
rithms. We implemented these algorithms and applied them to a large collec-
tion of 13,000+ Petri nets obtained from realistic systems — including all the
safe benchmarks of the Model Checking Contest. Experimental results show
that 95% of the problems can be solved in a few minutes using the proposed
approaches.

1 Introduction

The present article focuses, in the framework of ordinary, safe Petri nets, on three
related problems: the Dead Place Problem, which searches for all places that are
never marked, the Dead Transition Problem, which searches for all transitions
that can never fire, and the Concurrent Places Problem, which searches for all
pairs of places that get a token in some reachable marking.

The two former problems characterize those parts of a net that are never active,
and are thus relevant for simplifying complex Petri nets, especially those gen-
erated automatically from higher-level formalisms such as process calculi. The
latter problem characterizes those parts of a net that can be simultaneously ac-
tive, and plays a crucial role in the conversion of an ordinary, safe Petri net into
an equivalent network of automata (see, e.g., [2]), an operation that opens the
way to a compositional expression of Petri nets using process calculi.

The present article is organized as follows. Section 2 introduces the three prob-
lems, discussing their practical usefulness and theoretical complexity. Section 3
explains why mainstream model checkers are not optimal for these problems and
presents the dedicated software tools that implement our algorithms, as well as

1

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

the comprehensive set of models used to evaluate these algorithms. Section 4
describes various algorithms for the Dead Place Problem and the Dead Transi-
tion Problem, and reports about their performance when applied to the set of
models. Section 5 does the same as Sect. 4 for the Concurrent Places Problem.
Finally, Sect. 6 gives concluding remarks.

2 Problem Statement

2.1 Basic Definitions

We briefly recall the usual definitions of Petri nets and refer the reader to classical
surveys for a more detailed presentation of Petri nets.

Definition 1 A (marked) Petri Net is a 4-tuple (P, T, F,M0) where:

1. P is a finite, non-empty set; the elements of P are called places.
2. T is a finite set such that P ∩T = ∅; the elements of T are called transitions.
3. F is a subset of (P × T) ∪ (T × P); the elements of F are called arcs.
4. M0 is a non-empty subset of P ; M0 is called the initial marking.

Notice that the above definition only covers ordinary nets (i.e., it assumes all
arc weights are equal to one). Also, it only considers safe nets (i.e., each place
contains at most one token), which enables the initial marking to be defined as
a subset of P , rather than a function P → N as in the usual definition of P/T
nets. We now recall the classical firing rules for ordinary safe nets.

Definition 2 Let (P, T, F,M0) be a Petri Net.

• A marking M is defined as a set of places (M ⊆ P). Each place belonging
to a marking M is said to be marked or, also, to possess a token.

• The pre-set of a transition t is the set of places •t
def
= {p ∈ P | (p, t) ∈ F}.

• The post-set of a transition t is the set of places t•
def
= {p ∈ P | (t, p) ∈ F}.

• A transition t is enabled in some marking M iff •t ⊆M .
• A transition t can fire from some marking M1 to another marking M2 iff t

is enabled in M1 and M2 = (M1 \ •t) ∪ t•, which we write as M1
t−→M2.

• A marking M is reachable from the initial marking M0 iff M = M0 or there
exist n ≥ 1 transitions t1, ..., tn and (n−1) markings M1, ...,Mn−1 such that

M0
t1−→M1

t2−→M2 ... Mn−1
tn−→M , which we write as M0

∗−→M .

We then recall the basic definition of a NUPN, referring the interested reader to
[5] for a complete presentation of this model of computation.

Definition 3 A (marked) Nested-Unit Petri Net (acronym: NUPN) is a 8-tuple
(P, T, F,M0, U, u0,v, unit) where (P, T, F,M0) is a Petri net, and where:

2

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

5. U is a finite, non-empty set such that U ∩ T = U ∩ P = ∅; the elements of
U are called units.

6. u0 is an element of U ; u0 is called the root unit.
7. v is a binary relation over U such that (U,w) is a tree with a single root

u0, where (∀u1, u2 ∈ U) u1 w u2
def
= u2 v u1; intuitively1, u1 v u2 expresses

that unit u1 is transitively nested in or equal to unit u2.
8. unit is a function P → U such that (∀u ∈ U \ {u0}) (∃p ∈ P) unit (p) = u;

intuitively, unit (p) = u expresses that unit u directly contains place p.

Because NUPNs merely extend Petri nets by grouping places into units, they do
not modify the Petri-net firing rules for transitions: all the concepts of Def. 2 for
Petri nets also apply to NUPNs, so that Petri-net properties are preserved when
NUPN information is added. Finally, we recall a few useful NUPN concepts [5]:

Definition 4 Let N = (P, T, F,M0, U, u0,v, unit) be a NUPN.

• The predicate disjoint (u1, u2)
def
= (u1 6v u2) ∧ (u2 6v u1) characterizes pairs

of units neither equal nor nested one in the other.
• A marking M ⊆ P is said to be unit safe iff (∀p1, p2 ∈ M) (p1 6= p2) ⇒

disjoint (unit (p1), unit (p2)), i.e., all the places of a unit-safe marking are
contained in disjoint units.

• The NUPN N is said to be unit safe iff its underlying Petri net (P, T, F,M0)
is safe and all its reachable markings are unit safe.

• N is said to be trivial iff its number of leaf units equals its number of places,
meaning that N carries no more NUPN information than a Petri net.

2.2 The Dead Places Problem

Definition 5 Let (P, T, F,M0) be a Petri Net. A place p ∈ P is dead if there
exists no reachable marking containing p.

A more general definition is given in [4, Def. 4.16], where a place p is said to
be dead at a marking M if it is not marked at any marking reachable from M .
Our definition only considers the case where the net is safe and p is dead at the
initial marking M0.

In the present article, we will carefully avoid using the word live, because it is
not the negation of dead according to the standard definition given in Petri-net
literature, namely: a place p is live if, for any reachable marking M , there exists
a marking M ′ that contains p and is reachable from M . Thus, any live place is
not dead, but a non-dead place is not necessary live.

Definition 6 Given a Petri net (P, T, F,M0), the Dead Places Problem consists
in finding all the dead places. Equivalently, this problem consists in computing

1 v is reflexive, antisymmetric, transitive, and u0 is the greatest element of U for v.

3

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

a vector of |P | bits such that, for each place p, the bit corresponding to p in the
vector is equal to one iff p is dead.

2.3 The Dead Transitions Problem

Definition 7 Let (P, T, F,M0) be a Petri Net. A transition t ∈ T is dead if
there exists no reachable marking in which t is enabled.

The above definition is a particular case, for the initial marking M0, of the
definition given in [4, Def. 4.16], where a transition t is dead at a marking M if
t is not enabled in any marking reachable from M .

Again, to avoid confusion, we will not use the word live throughout the present
paper, as there exist multiple notions of liveness for transitions, e.g., L1-live,
L2-live, L3-live, and L4-live [13, Sect. IV.C]; in our context, the negation of
dead is not live, which means L4-live and is a too strong property, but L1-live,
also known as quasi-live.

Definition 8 Given a Petri net (P, T, F,M0), the Dead Transitions Problem
consists in finding all the dead transitions. Equivalently, this problem consists
in computing a vector of |T | bits such that, for each transition t, the bit corre-
sponding to t in the vector is equal to one iff t is dead.

Notice that this problem is different from the deadlock freeness problem: a net
has a deadlock if there exists a reachable marking in which no transition is
enabled, whereas a net has a dead transition if there exists a transition that is
not enabled in any reachable marking.

Notice that this problem is also different from the net quasi-liveness problem:
asking whether a net is quasi-live only calls for a Boolean answer, whereas the
Dead Transitions Problem calls for a vector of Booleans. The latter problem
is more general, as the net is quasi-live iff the solution of the Dead Transitions
Problem is a vector of zeros. In practice, when studying a complex net, quasi-
liveness is not sufficient, as one needs to know the exact set of dead transitions.

In practice, the Dead Places and Dead Transition Problems are relevant for
several reasons. These problems are instances, with respect to Petri nets, of the
more general dead code problem in software engineering. Dead code is generally
considered as a nuisance for readability and maintenance, so that most software
methodologies recommend to get rid of dead code. This is also the case for Petri
nets in industrial automation, as the Grafcet specification prohibits Sequential
Function Charts containing “unreachable” branches (i.e., Petri nets with dead
places or dead transitions).

In model-checking verification, dead places and dead transitions are likely to
increase the cost (in memory and time) of verification. Moreover, many global
properties of a net can be changed to true or to false just by adding dead places

4

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

and/or dead transitions. This may disturb structural analyses or net transforma-
tions, by invalidating certain “good” properties (e.g., free choice) and thus lead
to incorrect transformations or prevent the application of efficient algorithms
relying on such properties. It is therefore important to detect and eliminate
dead places and dead transitions to only consider a truly “minimal” Petri net.

2.4 The Concurrent Places Problem

Definition 9 Let (P, T, F,M0) be a Petri Net. Two places p1 and p2 are concur-
rent, which we write as p1 ‖ p2, if there exists a reachable marking M containing
both p1 and p2.

Proposition 1 The relation ‖ is symmetric and quasi-reflexive. It is reflexive
iff the net has no dead place.

Proof. Symmetry and quasi-reflexivity follow from Def. 9. As for reflexivity, a
place is concurrent with itself iff it is not dead. Notice that both the relation ‖
and its negation ∦ are neither transitive nor intransitive (since they are not
irreflexive). �

The relation ‖ can be found in the literature under various names: coexistency
defined by markings [9, Sect. 9], concurrency relation [10] [15] [12] [11] [7], con-
currency graph [16], etc. These definitions differ by details, such as the kind
of Petri nets considered or the handling of reflexivity, i.e., whether and when a
place is concurrent with itself or not. For instance, [9] defines that p ‖ p is always
false, while [10] defines that p ‖ p is true iff there exists a reachable marking in
which place p has at least two tokens.

Although the concurrency relation can easily be defined on non-ordinary, non-
safe nets (see, e.g., [10]), this is of limited interest. For instance, consider a Petri
net that is a state machine, with an initial marking M0 containing a single place
p0, and all the places reachable from p0: if there is initially a single token in p0,
each place is non-concurrent with each other, but as soon as there is initially
more than one token in p0, all the places become pairwise concurrent.

Definition 10 Given a Petri net (P, T, F,M0), the Concurrent Places Problem
consists in finding all pairs of concurrent places. Equivalently, since the concur-
rency relation is symmetric, this problem consists in computing a half matrix of
|P |(|P | + 1)/2 bits such that, for each two places p1 and p2, the corresponding
bit in the half matrix is equal to one iff p1 ‖ p2.

As mentioned above, solving the Concurrent Places Problem is practically useful,
e.g., for decomposing a Petri net into a network of automata [2].

5

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

2.5 Complexity

Proposition 2 The Dead Places Problem is a subproblem of the Dead Transi-
tion Problem.

Proof. Given the set of dead transitions, one can easily compute the set of dead
places. Indeed, each non-dead place belongs to the initial marking and/or the
post-set of at least one non-dead transition. Notice that the converse does not
hold, as the set of dead transitions cannot be directly inferred from the set of
dead places. �

Proposition 3 The Dead Places Problem is a subproblem of the Concurrent
Places Problem.

Proof. The diagonal of the Concurrent Places half matrix is the negation of the
Dead Places vector. �

Proposition 4 The Dead Places Problem, the Dead Transition Problem, and
the Concurrent Places Problem are subproblems of the marking coverability prob-
lem, which is the problem of deciding whether a given marking is included in some
reachable marking of a given Petri net.

Proof. Given a set of places M , let R(M) be the predicate: does it exist a
reachable marking containing all the places of M? The Dead Places Problem
can be expressed as: for each place p of the net, decide R({p}). The Dead
Transitions Problem can be expressed as: for each transition t, decide R(•t).
The Concurrent Places Problem can be expressed as: for each two places p1 and
p2, decide R({p1, p2}). �

Proposition 5 On safe nets, the Dead Places Problem, the Dead Transition
Problem, and the Concurrent Places Problem are PSPACE-complete.

Proof. One knows from [3, Th. 15] that the marking coverability problem is
PSPACE-complete on safe nets. Although the Dead Places Problem is a sub-
problem of the marking coverability problem (see Prop. 4), its complexity is not
lower: given a net N , let N ′ be the net consisting of N to which one adds a
new place p and a new transition t such that •t = M and t• = {p}; if N is
safe, then N ′ is also safe; deciding R(p) in N ′ requires to decide whether M
is coverable in N . Given that the Dead Place Problem is a subproblem of the
Dead Transition Problem (see Prop. 2) and of the Concurrent Places Problem
(see Prop. 3), the two latter problems are also PSPACE-complete on safe nets.

2.6 Complete vs Incomplete Solutions

Because the three aforementioned problems are PSPACE-complete, there will
always be Petri nets large enough to prevent the computation of exhaustive so-
lutions on a given computer. Rather than an “all or nothing” approach (in which

6

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

an algorithm is considered to fail if it cannot compute all the dead places, dead
transitions, or concurrent places of a given net), one should consider more prag-
matic approaches in which an algorithm may stop or be halted after computing
only a part of the solution, still leaving some results unknown.

Concretely, this means that the vectors of dead places and dead transitions, and
the half matrices of concurrent places should contain three-valued logical results
(zero, one, or unknown) rather than mere Boolean results. A solution is said to
be incomplete if it contains unknown values, or complete otherwise. An efficient
algorithm should produce as few unknown results as possible in a given lapse of
time.

For the Dead Places Problem and Dead Transitions Problems, an incomplete
solution can be turned into a complete one by replacing all unknown values by
zeros, meaning that places and transitions are considered to be dead only if this
has been positively proven.

For the Concurrent Places Problem, the elimination of unknown values depends
on the context. For instance, the decomposition of safe Petri nets into automata
networks [2] can work with incomplete half matrices, in which it replaces un-
known values by ones — meaning that two places are assumed by default to be
concurrent unless proven otherwise. Under such a pessimistic assumption, the
algorithms that produce zeros in the half matrix are clearly more useful than
the algorithms that produce ones. However, they may exist other applications
based upon optimistic assumptions about concurrency, for which the latter kind
of algorithms would be preferable.

3 Implementation and Experimentation

3.1 Relation to Temporal Logic

Given that our three reachability problems are particular instances of the mark-
ing coverability problem, one way to solve these problems is to encode them in
temporal logic (e.g., CTL or LTL formulas) and to submit them to an exist-
ing model checker for Petri nets, e.g., one of those competing every year at the
Model Checking Contest [1]. However, such an approach is not practical:

• The number of temporal-logic formulas required for each problem is linear or
quadratic in the size of the Petri net — respectively, |P |, |T |, and |P |(|P |+
1)/2. This is generally too large to be done manually, so one has to develop
ad hoc tools that build these formulas (generating a huge file or a large
number of small files), invoke a model checker on each of these formulas,
then collect and aggregate the results of these invocations.

• Invoking a model checker repeatedly to evaluate hundreds or thousands of
formulas on the same Petri net is inefficient. At each invocation, the formula
and the net are parsed, checked for correctness, and translated from concrete

7

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

syntax to internal abstract representation: most of these steps are redundant
given that all formulas are alike and correct by construction.

We thus believe that, although the three aforementioned problems can be re-
duced to the evaluation of temporal-logic formulas, it is better to express these
problems at a higher level, namely by equipping Petri-net tools with built-in
options (e.g., -dead-places, -dead-transitions, and -concurrent-places)
dedicated to these problems. Not only such options would be easier for tool
users, but they would also give tool developers more freedom to choose the most
efficient approach(es).

For a tool based on some temporal logic, such options would allow a major
boost in performance: (i) they could produce the formulas in the most appropri-
ate temporal logic supported by the tool; (ii) they could generate the formulas
directly in the internal abstract representation, thus saving the cost of writing
intermediate files and later parsing these files; (iii) they would also save the
cost of correctness checking, since the generated formulas would be known to be
correct by construction; (iv) the Petri-net model would be read and analyzed
only once; (v) because the tool knows in advance how many formulas are to be
evaluated on this Petri net, it can try applying preliminary simplifications (e.g.,
structural reductions) and sophisticated optimizations to this model; (vi) the
tool may profitably consider using global model checking (i.e., building the set
of reachable markings first, then evaluating all the formulas on this state space)
whereas, for a single formula, local model checking (i.e., on-the-fly evaluation
that only explores a fragment of the state space relevant to the formula) is often
the default choice.

If temporal logics are one possible way to address the three aforementioned
problems, they are not the only way. The remainder of this article presents
alternative approaches, whose algorithms are implemented in software tools.

3.2 Software Tools and File Formats

We implemented our proposed algorithms in two different tools:

• CÆSAR.BDD2 is a verification tool for Petri nets and NUPNs. It is writ-
ten in C (10,400 lines of code), uses the CUDD library for Binary Decision
Diagrams, and is available as part of the CADP toolbox. CÆSAR.BDD pro-
vides many functionalities, among which solutions for the three aforemen-
tioned problems. For instance, it is routinely used to remove dead transitions
from large interpreted Petri nets automatically generated from specifications
written in higher-level languages such as LOTOS, LNT, AADL, etc.

• ConcNUPN is a prototype written in Python (730 lines of code) that im-
plements algorithms for the three aforementioned problems and a few other

2 http://cadp.inria.fr/man/caesar.bdd.html

8

http://cadp.inria.fr/man/caesar.bdd.html

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

functionalities. It is used to quickly prototype new ideas and to cross-check
the results produced by CÆSAR.BDD.

Both tools take as input a file in the NUPN format3 [5, Annex A], which provides
a concise, human-readable representation for ordinary, safe Petri nets. Two
translators4 automatically convert the NUPN format to the standard PNML
format [8] and vice versa.

Depending on the option given (-dead-places, -dead-transitions, or
-concurrent-places), the tools produce as output a vector or a half matrix.
Both are encoded in the same textual format [6, Sect. 8 and A] made up of one
or more lines containing the characters “0”, “1”, and “.”, the latter representing
unknown values. If the input net is an non-trivial NUPN, some values “0” and
“.” in the half matrix may be replaced by other characters giving additional
information about the NUPN structure. Because half matrices can get large, a
run-length compression scheme5 is used, which, on average, divides by 2.4 the
size of vectors and by 214 the size of half matrices — a reduction factor of 4270
was even observed on very large half matrices.

3.3 Data Sets

To perform our experiments, we used a collection of 13,116 models in NUPN
format. Most of these models are derived from “realistic” specifications (i.e., nets
obtained from industrial problems described by humans in high-level languages,
rather than randomly generated Petri nets). Our collection contains all the
ordinary, safe models from the former PetriWeb collection and from the 2020
edition of Model Checking Context6.

A statistical survey confirms the diversity of our collection. The upper part
of Table 1 gives the percentage of models that satisfy various (structural and
behavioural) net properties, including the percentage of nets that are non-trivial
NUPNs known to be unit safe (and thus, safe) by construction. The lower part
of the table gives information about the size of the models: number of places,
transitions, and arcs, as well as arc density, which we define as the number of
arcs divided by twice the product of the number of places and the number of
transitions, i.e., the amount of memory needed to store the arc relation as a pair
of place×transition matrices.

3 http://cadp.inria.fr/man/nupn.html
4 http://cadp.inria.fr/man/caesar.bdd.html (when invoked with “-pnml” option) and

http://pnml.lip6.fr/pnml2nupn
5 http://cadp.inria.fr/man/caesar.bdd.html (see compression/decompression)
6 http://mcc.lip6.fr/models.php

9

http://cadp.inria.fr/man/nupn.html
http://cadp.inria.fr/man/caesar.bdd.html
http://pnml.lip6.fr/pnml2nupn
http://cadp.inria.fr/man/caesar.bdd.html
http://mcc.lip6.fr/models.php

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

property yes no

pure 62.9% 37.1%

free choice 41.3% 58.7%

extended free choice 42.7% 57.3%

marked graph 3.5% 96.5%

state machine 12.1% 87.9%

property yes no

connected 94.0% 6.0%

strongly connected 14.3% 85.7%

conservative 16.5% 83.5%

sub-conservative 29.7% 70.3%

non trivial and unit safe 67.7% 32.3%

feature min value max value average median std deviation

#places 1 131,216 282.4 15 2690

#transitions 0 16,967,720 9232.8 20 270,287

#arcs 0 146,528,584 72,848 55 2,141,591

arc density 0.0% 100.0% 14.5% 9.4% 0.2

Table 1: Structural, behavioural, and numerical properties of our models

4 Algorithms for Dead Places and Dead Transitions

This section discusses various algorithms for the Dead Places and Dead Transi-
tion Problems, both of which are addressed together as they are largely similar.

4.1 Marking Graph Exploration

The easiest (at least, conceptually) way of computing the dead places and dead
transitions of a safe Petri net is to follow the global model checking approach
mentioned in Sect. 3.1 by first exploring all the reachable markings, and then
examining whether, during this exploration, some places have never been marked
or some transitions have never been fired.

If the state space can be explored entirely, one obtains the complete vectors
for dead places and dead transitions. If the state space is too large for being
exhaustively generated, these vectors only contain zeros and unknown values,
but no ones.

Actually, one can often avoid generating the state space entirely, still obtaining
complete vectors. This can be achieved using algorithmic shortcuts, which stop
the exploration as soon as all the information needed has been determined,
following the idea of on-the-fly verification. For dead transitions, there is one
shortcut: the exploration can stop if each transition has been fired at least once,
meaning that the net is quasi-live. For dead places, there are two shortcuts: the
exploration can stop if each place has been marked, meaning that there are no
dead places, or if each transition has been fired at least once, meaning that a
place never marked so far cannot receive a token from further transition firings.

These ideas have been implemented as follows in the CÆSAR.BDD tool. Reach-
able markings are represented using Binary Decision Diagrams, as symbolic ex-
ploration proved, in the case of safe Petri nets, to be much more efficient than

10

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

explicit-state exploration. If the input net is a non-trivial NUPN and is known
to be unit-safe by construction, CÆSAR.BDD takes advantage of this informa-
tion to significantly reduce the number of Boolean variables needed to encode
reachable markings [5, Sect. 6]. The user can limit state-space construction by
specifying a timeout or giving an upper bound on the depth of exploration. Ob-
serving which transitions have been fired is easy, as CÆSAR.BDD fires each
transition separately (like in explicit-state exploration) rather than building a
single BDD that encodes all the transition relation. Shortcuts are simply imple-
mented using decreasing counters that store the number of remaining unknown
values in the solution vectors.

4.2 Structural Rules

Marking-graph exploration is a brute-force approach, which may fail on large
nets, yielding incomplete vectors. We now examine complementary algorithms
of a lower complexity, which take as input a vector containing unknown values
and produce as output the same vector in which some unknown values have
been replaced by zeros or ones — meaning that all previously known values
are preserved. In this section, we present such an algorithm based on eight
simple “structural” rules (Prop. 6–13) that can decide whether certain places or
transitions are dead or not.

Proposition 6 Any place belonging to the initial marking M0 is not dead.

Proposition 7 Any transition having no input place and no output place is not
dead.

The two next rules exploit the properties of safeness (we only consider Petri nets
that are expected to be safe) and unit safeness (a large proportion of our models
are known to be unit safe by construction — see Sect. 3.3) to characterize certain
classes of dead transitions.

Proposition 8 If the net is safe, any transition whose input places form a strict
subset of the output places is dead.

Notice that, if a transition has no input place and at least one output place, the
net is not safe, as this transition can fire indefinitely often, accumulating tokens
in its output places.

Proposition 9 (from [5, Prop. 8]) If the net is unit safe, any transition hav-
ing at least two input (resp. two output) places located in two non-disjoint NUPN
units is dead.

The four last rules allow to propagate, in certain cases, the fact that a place
(resp. a transition) is dead or not dead to its adjacent transitions (resp. places).

11

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

Proposition 10 (from [4, Prop. 4.17(3)]) If a place p is dead, all the tran-
sitions of •p ∪ p• are also dead.

Proposition 11 (contrapositive of Prop. 10) If a transition t is not dead,
all the places of •t ∪ t• are also not dead.

Proposition 12 If a transition t is dead, any place p such that •t = {p} is also
dead.

Proposition 13 (contrapositive of Prop. 12) If a place p is not dead, any
transition t such that •t = {p} is also not dead.

The algorithm below applies Prop. 6–13 iteratively until saturation. The vector
of dead places is represented by P1 and P0, which are, respectively, the sets of
places known to be dead and not dead, the places of P \(P0∪P1) being unknown.
Similarly, the vector of dead transitions is represented by two sets T1 and T0.
Before the algorithm starts, these four sets have been either initialized to ∅ or
filled in by some other algorithm(s), such as the one of Sect. 4.1.

1 P0 := P0 ∪M0 — from Prop. 6
2 T0 := T0 ∪ {t ∈ T | •t = t• = ∅} — from Prop. 7
3 T1 := T1 ∪ {t ∈ T | (•t ⊆ t•) ∧ (•t 6= t•)} ∪ — from Prop. 8 and 9
4 {t ∈ T | (∃(p1, p2) ∈ (•t× •t) ∪ (t•× t•)) ¬ disjoint (unit (p1), unit (p2))}
5 P ′ := ∅ ; T ′ := ∅ ; assert P0 6= ∅
6 while P ′ 6= P0 ∪ P1 loop
7 assert P ′ (P0 ∪ P1

8 for p ∈ (P0 ∪ P1) \ P ′ loop
9 if p ∈ P1 then

10 T1 := T1 ∪ •p ∪ p• — from Prop. 10
11 else if p ∈ P0 then
12 T0 := T0 ∪ {t ∈ T | •t = {p}} — from Prop. 13
13 end loop
14 P ′ := P0 ∪ P1

15 assert T ′ ⊆ T0 ∪ T1

16 for t ∈ (T0 ∪ T1) \ T ′ loop
17 if t ∈ T0 then
18 P0 := P0 ∪ •t ∪ t• — from Prop. 11
19 else if t ∈ T1 ∧ |•t| = 1 then
20 P1 := P1 ∪ •t — from Prop. 12
21 end loop
22 T ′ := T0 ∪ T1

23 end loop

12

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

4.3 Linear Over-Approximation

Definition 11 Let M1 and M2 be two markings, and t a transition. We write

M1
t

=⇒M2 iff t is enabled in M1 (i.e., •t ⊆M) and M2 = M1 ∪ t•.

The relation differs from the usual firing relation M1
t−→M2 (cf. Def. 2) in that

the latter uses (M1 \ •t) instead of M1. Thus, when a transition t fires according
to Def. 11, each input place of t keeps its token, while each output place of t gets

a token. Said otherwise,
t

=⇒ behaves exactly as
t−→ if one assumes that each

marked place holds an infinite number of tokens (hence, M1 \ •t = M1).

Proposition 14 If a marking M is reachable from the initial marking M0, i.e.,
M0

∗−→M , there exists a marking M ′ such that M0
∗

=⇒M ′ and M ⊆M ′.

Proof. By induction on firing sequences M0
t1−→M1

t2−→M2 ... Mn−1
tn−→M .

The algorithm below is based on the contrapositive of Prop. 14. It performs
a marking-graph exploration, starting from M0 and using

∗
=⇒ instead of

∗−→.
During the exploration, each place, once marked, never loses its token, so that
the state space can be simply represented using the set P ′ of visited places and
the state P ′′ of explored places (with P ′ ⊆ P ′′). We speed up transition firings
by attaching to each (non-dead) transition t a counter c[t] containing the number
of input places of t that have not been marked yet, so that t becomes fireable
when c[t] drops to zero. When the exploration completes, any place that has
not been marked is dead (and thus added to P1) and any transition that has not
been fired is dead (and thus added to T1). The converse is not true: unless each
transition has a single input place, the algorithm may overlook some dead places
and/or dead transitions, as it over-approximates the number of tokens and the
set of fireable transitions.

1 P ′ := ∅
2 P ′′ := P0 ∪M0

3 for t ∈ T \ T1 loop c[t] := |•t|
4 while P ′ 6= P ′′ loop
5 assert (P ′ (P ′′) ∧ (P ′′ ∩ P1 = ∅) ∧ (∀t ∈ T \ T1) (c[t] = |•t \ P ′|)
6 let p = oneof (P ′′ \ P ′)
7 P ′ := P ′ ∪ {p}
8 for t ∈ p• \ T1 loop
9 c[t] := c[t]− 1

10 if c[t] = 0 then P ′′ := P ′′ ∪ t•

11 end loop
12 end loop
13 assert (P ′ = P ′′) ∧ (P ′ ∩ P1 = ∅) ∧ (∀t ∈ T \ T1) (c[t] = |•t \ P ′|)
14 P1 := P1 ∪ (P \ P ′)
15 T1 := T1 ∪ {t ∈ T \ T1 | c[t] > 0}

13

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

At line 14, the new set of dead places (P \ P ′) contains the initial set of dead
places P1 if Prop. 10 has been applied before executing this algorithm.

4.4 Ordering of Algorithms

Let A1, A2, and A3 denote the algorithms presented in Sections 4.1, 4.2, and 4.3,
respectively. Let A2 be split into two successive parts: A2 = A′2;A′′2 , where A′2
comprises lines 1 to 4 (Prop. 6–9) and A′′2 comprises lines 5 to 23 (Prop. 10–
13). It is easy to see that, after executing any of these algorithms, applying
it immediately again never decreases the number of unknown values. But two
successive executions of some algorithm may be fruitful if another algorithm has
been successfully applied in between.

Thus, the next question is: in which order, and how many times, should these al-
gorithms be applied? Our experiments suggest that executing them in the order
(A2;A3;A1;A′′2) is likely to give the best results, based upon the fact that A1,
which is the most expensive algorithm, can take advantage of the information
pre-computed by (A2;A3). Namely, A1 can avoid trying to fire those transitions
known to be dead, and it can enhance the effectiveness of the algorithmic short-
cuts defined in Sect. 4.1 by generalizing their triggering conditions: instead of
checking if all places have been marked or all transitions fired at least once, A1

can merely check if the solution vector contains no more unknown values, which
better takes into account the existence of dead places or dead transitions, if any.

Finally, between each two algorithms, one also checks the number of remaining
unknown values in the vector being computed, and the execution sequence stops
if this number drops to zero. For instance, A1 will not be applied if the prior
execution of (A2;A3) has produced a complete solution.

4.5 Experimental Results

We applied these algorithms to compute the dead places and dead transitions
of the 13,116 models presented in Sect. 3.3. Our experiments are parameterized
by a duration t, which is the number of seconds allocated to algorithm A1 to
symbolically explore (a fragment of) the graph of reachable markings — using
the CUDD library for Binary Decision Diagrams. If t is zero, only the initial
marking is explored and no transition is fired by A1.

Our experiments reveal that at least 16.2% (resp. 15.9%) of the models contain
dead places (resp. transitions), and that at least 20.4% (resp. 37.7%) of dead
places (resp. transitions) are globally present among the models. Such important
ratios confirm the practical relevance of detecting and eliminating dead places
and transitions as a means to reduce the complexity of Petri nets.

Table 2 provides, for various values of t, three metrics about the computation
of dead places (resp. transitions). The first metrics (“% complete vectors”)
gives the percentage of models for which the solution vector can be completely

14

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

problem value of t 0 5 10 15 30 45 60 120 180 240 300

% complete vectors 44.6 93.0 93.6 93.8 94.4 94.6 95.1 95.3 95.4 95.5 95.6
dead places % unknowns values 48.9 33.5 32.0 31.3 28.9 28.3 27.9 27.1 26.5 25.9 25.8

%vector completion 69.3 97.0 97.3 97.5 97.7 97.9 97.9 98.1 98.1 98.2 98.2

% complete vectors 29.3 92.3 92.9 93.2 93.7 94.0 94.1 94.4 94.7 94.9 95.0
dead trans. % unknowns values 68.7 65.0 63.5 62.0 61.0 59.3 57.8 54.6 45.2 39.9 29.8

%vector completion 50.9 95.8 96.2 96.4 96.7 96.8 96.9 97.1 97.2 97.3 97.3

Table 2: Experimental results for dead places and dead transitions

computed within t seconds. The second metrics (“% unknowns values”) gives the
percentage of unknown values that remain after t seconds in all the computed
solution vectors. The third metrics (“% vector completion”) gives the mean,
over all models, of percentage of known values in the computed solution vectors.

The first metrics shows, for t = 0, that algorithms A2 and A3 alone are sufficient
to completely handle 44.6% (resp. 29.3%) of the models; but algorithm A1, as
soon as turned on, gives an major boost, pushing the percentage of models
completely solved to 93.0% (resp. 92.3%) of the models; from there, increasing
the value of t slowly increases this percentage; applying algorithm A′′2 again
after A1 fully solves 0.1% (resp. 0.1%) more models. The second metrics gives
quite similar results concerning the resolution of unknown values, although the
influence of A1 is not as strong as with the first metrics; the percentage of
unknown values does not quickly converge down to zero, due to a small number
of large models that remain incompletely solved for long, with thousands of
unknown values. The third metrics corroborates the first one, but exhibits higher
success percentages, as each model counts for the proportion of known values
in its solution vector rather than for a binary value (one for a fully complete
model, and zero otherwise).

Additional measurements indicate that: (i) the shortcuts of algorithm A1 are
effective, as they are triggered for more than 82.6% (resp. 79.6%) of the models;
(ii) 94.8% (resp. 94.0) of the models are fully solved in less than one second; the
other models are (incompletely) processed in less than 1.56 × t (resp. 1.48 × t)
seconds; (iii) all nets having less than 74 places, 92 transitions, and 366 arcs can
be fully processed with t = 60 (resp. t = 180).

5 Algorithms for Concurrent Places

This section presents various algorithms for the Concurrent Places Problem. In
the sequel, we consider the elements of the half matrix as (unordered) pairs of
places. The diagonal elements of the half matrix are also considered as pairs,
even if both elements of these pairs are equal.

15

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

5.1 Marking Graph Exploration

Concurrent places can be determined by an exploration of reachable markings
similar to the one presented in Sect. 4.1, based upon the fact that the places
of each reachable marking are pairwise concurrent. If the state space can be
generated exhaustively, one obtains a complete half matrix; otherwise, if the
state space is too large for being explored entirely, the half matrix contains only
ones and unknown values, but no zeros.

There are no obvious algorithmic shortcuts, apart from halting the exploration
if the half matrix gets entirely full of known values, which only occurs if all
unknown values turn out to be equal to one, since the exploration, as long as it
has not been done exhaustively, only produces ones but not zeros. In practice,
such a situation is unlikely, as Sect. 5.6 shows that, statistically, there are much
less ones than zeros in half matrices.

5.2 Structural Rules

We now study the case where the state-space exploration of Sect. 5.1 has not
been exhaustively performed, and propose complementary algorithms, with a
lower complexity, that help reducing the number of unknown values in the half
matrix. The two following rules exploit the information gained about non-dead
places and transitions during marking-graph construction.

Proposition 15 The places of the initial marking M0 are pairwise concurrent.

Proposition 16 If a transition is not dead, its input places (resp. output places)
are pairwise concurrent.

We then apply algorithm A2, i.e., the structural rules of Sect. 4.2, to identify
(a subset of) the dead places and dead transitions. Based on this information,
further unknown values can be eliminated from the half matrix.

Proposition 17 (1) A non dead place is concurrent with itself. (2) A dead
place is non concurrent with any other place, including itself.

Proposition 18 If a dead transition has two (distinct) input places, these places
are non concurrent.

The next rule exploits the assumption that the Petri nets considered are safe.

Proposition 19 If a transition t (dead or not) has a single input place p, this
place is non concurrent with any output place of t different from p.

16

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

Proof. By contradiction: if there exists a reachable marking M containing p and
some output place of t, the net is unsafe, as t can fire from M . Notice that, if t
is dead, p is dead too, and the result follows directly from Prop. 17(2). �

The previous rule can be easily generalized to sequences of transitions having
each a single input place. It is implemented using a transitive-closure algorithm.

Proposition 20 For any path (p1, t1, p2, t2, ..., pn, tn, pn+1) such that each tran-
sition ti has a single input place pi and at least one output place pi+1, the places
p1 and pn+1 are non concurrent if they are distinct.

The last rule exploits the unit-safeness property for those nets known to be unit
safe by construction.

Proposition 21 (from [5, Prop. 6]) If the net is a unit-safe NUPN, any two
distinct places located in non-disjoint units are non concurrent. Formally:

(∀p1 ∈ P) (∀p2 ∈ P) (p1 6= p2) ∧ ¬disjoint (unit (p1), unit (p2))⇒ p1 ∦ p2
In particular, any two distinct places located in the same unit are non concurrent.

5.3 Quadratic Under-Approximation

From now on, if P ′ and P ′′ are two sets of places, we write P ′ ⊗ P ′′ for the
set of (unordered) pairs of places defined as {{p′, p′′} | (p′ ∈ P ′) ∧ (p′′ ∈ P ′′)},
assuming that the set notation {p′, p′′} actually denotes a singleton if p′ = p′′.
We represent the half matrix of concurrent places by R0 and R1, which
are, respectively, the sets of pairs of places known to be non concurrent and
concurrent, the pairs of (P ⊗ P) \ (R0 ∪ R1) being unknown. For instance, the
structural rules of Prop. 15, 16, and 17(1) can be summarized as follows:

R1 := R1 ∪ (M0 ⊗M0) ∪
⋃
t∈T0

((•t⊗ •t) ∪ (t•⊗ t•)) ∪
⋃

p∈P0

{{p}}

In this section, we propose an algorithm to detect more concurrent places. This
algorithm starts from the set R1 computed during prior phases and extends
this set by examining all transitions having one or two input places, namely by
combining Prop. 13, 16, and 18 together with the following result:

Proposition 22 If two distinct places p1 and p2 are concurrent, p2 is also con-
current with each output place of any transition t such that •t = {p1}.

The algorithm below stores, in a set R′, pairs of places found to be concurrent.
The algorithm is said to perform a quadratic approximation because each vis-
ited marking M is abstracted away and represented by its set of concurrent pairs
M ⊗M — contrary to algorithm A3 of Sect. 4.3, which performs a linear ap-
proximation by storing only the set of places that appear in at least one visited

17

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

marking. The algorithm performs an under -approximation because it may miss
exploring certain concurrent pairs that are actually reachable.

1 R′ := ∅
2 while R′ 6= R1 loop
3 assert R′ (R1

4 let {p1, p2} = oneof (R1 \R′) — possibly with p1 = p2
5 R′ := R′ ∪ {{p1, p2}}
6 for t ∈ T | •t = {p1, p2} loop
7 assert (1 ≤ |•t| ≤ 2) ∧ (t 6∈ T1) — from Prop. 13 and 18
8 R1 := R1 ∪ (t•⊗ t•) — from Prop. 16(b)
9 end loop

10 for t ∈ T | (•t = {p1}) xor (•t = {p2}) loop
11 assert (|•t| = 1) ∧ (p1 6= p2) ∧ (t 6∈ T1) — from Prop. 13
12 R1 := R1 ∪ (({p1, p2} \ •t)⊗ t•) — from Prop. 22
13 end loop
14 end loop

5.4 Quadratic Over-Approximation

Our last algorithm is based upon the works of Kovalyov and Esparza, who
proposed various algorithms [10, 12, 11] of polynomial complexity that compute
a least fix-point for three rules derived from the Petri-net token game, and
produce an over-approximation of the concurrency relation (i.e., a superset of
concurrent pairs) from which one can safely obtains a subset of R0, the set of
non-concurrent pairs. Our algorithm below evolves their algorithms in several
ways: (i) it does not assume that all places and all transitions are not dead
and, instead, exploits the pre-existing set T1 of dead transitions; (ii) it requires
the input nets to be safe and uses this assumption to produce more accurate
results by discarding unsafe markings, whereas the algorithms of Kovalyov and
Esparza handle non-safe nets, with the alternative definition of diagonal values
discussed in Sect 2.4 above; (iii) to get better and faster results, our algorithm
reuses the sets of pairs R0 and R1 precomputed, e.g., by the algorithms of
Sect. 5.1 to 5.3, whereas the algorithms of Kovalyov and Esparza start with no
prior knowledge about concurrent pairs, i.e., R0 = R1 = ∅. We now formalize
the over-approximation (which we call quadratic due to its memory cost) that
underlies all these algorithms.

Definition 12 Let R and R′ be two sets containing pairs of places, t a tran-

sition, and M a marking. We write R
t

=⇒ R′ if we have •t ⊗ •t ⊆ R and
R′ = R∪ (t•⊗ t•)∪{{p}⊗ t• | (p ∈ P \ •t)∧ ({p}⊗ •t ⊆ R)}. We write R

∗m
=⇒M

if there exists R′ such that R
∗

=⇒ R′ and M ⊗M ⊆ R′.

In contrast with the firing relation
t−→ defined between two markings (cf. Def 2),

18

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

this relation
t

=⇒ is defined between two sets of pairs. With
t−→, the state space

is the set of all reachable markings M , whereas, with
t

=⇒, the (abstracted) state
space is the union of all sets of pairs M ⊗M , for each reachable marking M .

Proposition 23 In a safe Petri net, if a marking M is reachable from the initial
marking M0 (i.e., M0

∗−→M), then M0 ⊗M0
∗m
=⇒M .

Proof. By induction on firing sequences from M0 ⊗M0.

Our algorithm starts from M0⊗M0, to which the known concurrent pairs of R1

are added, and explores, using two variables R′ and R′′, the state space of all
pairs that can be reached by firing the relation

∗
=⇒ for all non-dead transitions.

The non-concurrent pairs of R0 are systematically excluded from the state space.
Upon termination, all pairs that have not been explored are non concurrent for
sure, and can thus be added to R0. To speed up calculations, we reuse the
counter c[t] of Sect. 4.3, which now stores how many pairs of (•t× •t) have not
been yet proven concurrent; a transition is considered to be fireable when its
counter drops to zero. For the conciseness of the algorithm, we introduce an

auxiliary function fire (M, t,R)
def
= (M ⊗ •t ⊆ R) ∧ ((M ⊗ •t) ∩R0 = ∅).

1 R′ := ∅ ; R′′ := (M0 ⊗M0) ∪R1

2 T1 := T1 ∪ {t ∈ T | ((•t⊗ •t) ∩R0 6= ∅) ∨ ((t•⊗ t•) ∩R0 6= ∅)}
3 for t ∈ T \ T1 loop c[t] := |•t| × (|•t|+ 1)/2
4 while R′ 6= R′′ loop
5 assert (R′ (R′′) ∧ (R′′ ∩R0 = ∅)
6 assert (∀t ∈ T \ T1) c[t] = |(•t⊗ •t) \R′|
7 let {p1, p2} = oneof (R′′ \R′) — possibly with p1 = p2
8 R′ := R′ ∪ {{p1, p2}}
9 for t ∈ T \ T1 | {p1, p2} ⊆ •t loop

10 c[t] := c[t]− 1
11 if c[t] = 0 then
12 for p ∈ (P \ •t) ∪ t• | fire ({p}, t, R′′) loop

13 assert (p 6∈ •t \ t•) ∧ (M0 ⊗M0
∗m
=⇒ {p} ∪ •t)

14 R′′ := R′′ ∪ ({p} ⊗ t•)
15 end loop
16 end if
17 end loop
18 for t ∈ T \ T1 | (c[t] = 0) ∧ ((p1 ∈ •t) xor (p2 ∈ •t)) ∧
19 fire (({p1, p2} \ •t), t, R′′) loop

20 assert (|{p1, p2} \ •t| = 1) ∧ (M0 ⊗M0
∗m
=⇒ {p1, p2} ∪ •t)

21 R′′ := R′′ ∪ (({p1, p2} \ •t)⊗ t•)
22 end loop
23 assert (∀t ∈ T \ T1) (∀p ∈ (P \ •t) ∪ t•) (c[t] = 0) ∧ fire ({p}, t, R′)
24 ⇒ ({p} ⊗ t• ⊆ R′′)
25 end loop

19

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

26 assert (R′ = R′′) ∧ (R′ ∩R0 = ∅) ∧ (R0 ⊆ (P ⊗ P) \R′)
27 R0 := (P ⊗ P) \R′

5.5 Ordering of Algorithms

Let C1, C2, C3, and C4 denote the algorithms presented in Sections 5.1, 5.2, 5.3,
and 5.4, respectively. Each of these algorithms needs to be applied only once.
Analysis of dependencies suggests that these algorithms are best applied in the
following order (C1;C2;C3;C4), knowing that C2 also invokes algorithm A2 of
Sect. 4.2. This execution sequence stops as soon as the number of unknown
values in the half matrix drops to zero.

5.6 Experimental Results

We applied these algorithms to compute the half matrices of concurrent places
for the 13,116 models presented in Sect. 3.3. As for algorithm A1 in Sect.4.5, the
execution of algorithm C1 is parameterized by a maximum duration t allocated
to the symbolic exploration of reachable markings. Because the computation of
concurrent places for large models can be much longer than the computation of
dead places and dead transitions, each execution run was bounded by a timeout
of 4000 seconds, which, for various values of t, hits at most 0.82% of our models.

Our experiments reveal that, over the 26,577,437,180 pairs of places present in all
half matrices of the models not interrupted by the timeout, 4.0% are concurrent,
67.0% are non-concurrent, the others being unknown.

Table 3 reuses the three metrics of Table 2 by adapting them from vectors to half
matrices. The first metrics shows that 94.0% of the models can be completely
solved for t = 60, which is slightly less than in Table 2, although the Concurrent
Places Problem usually requires more CPU time. The second metrics decreases
more slowly than in Table 2 and seems to stabilize at a much higher percentage
of unknown values, which can be explained by the quadratic size of a few large,
incomplete half matrices. However, for most models, the third metrics converges
to a high completion rate similar to those of Table 2.

Additional measurements indicate that: (i) alone, the algorithms C2, C3 and C4

can completely handle 51.0% of the models for t = 0 but, as soon as algorithm
C1 is turned on, it performs so well on the models whose reachable markings

value of t 0 5 10 15 30 45 60 120 180 240 300 360 420

% complete matrices 51.0 91.6 92.2 92.5 93.0 93.6 94.0 94.2 94.4 94.5 94.6 94.7 94.7

% unknowns values 45.0 44.7 44.7 44.4 44.4 43.7 43.7 43.7 43.6 43.6 43.6 43.6 43.6

% matrix completion 81.6 96.3 96.6 96.8 97.0 97.1 97.2 97.3 97.4 97.4 97.4 97.5 97.5

Table 3: Experimental results for concurrent places

20

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

can be fully explored that algorithms C2, C3 and C4 only contribute for 1% to
the number of complete half matrices; (ii) however, on large models that can
not be fully explored using Binary Decision Diagrams, the algorithms C2, C3

and C4 play a greater role by eliminating 22.5% of unknown values, in addition
to the 33.8% already eliminated by C1; (iii) all nets having less than 66 places,
64 transitions, and 256 arcs can be completely processed with t = 60.

6 Conclusion

In the present article, we studied three reachability problems that, although prac-
tically useful, are not well supported by mainstream Petri-net tools. As we could
not find a unified algorithm for addressing each problem, we proposed instead
a combination of methods (static vs dynamic state-space exploration, exact vs
approximate solution, polynomial or exponential cost), which we implemented
in two software tools (written in C and in Python) that cross check each other.
We observed that our approach statistically performs well on a large number of
realistic models but, given that the three problems are PSPACE-complete, there
will always exist models too large for being processed in reasonable time.

Future work should focus on refined algorithms capable of handling even larger
models, either by computing solutions with less unknown values or by providing
equivalent results in shorter time. Among the various approaches that might be
profitably applied, we can mention invariants, semi-flows, partial orders, stub-
born sets (e.g., [14, Sect. 11]), SAT solving, explicit-state model checking (to
specifically spot the unknown values that remain in a solution vector or half ma-
trix computed by other algorithms), and net reductions (in this respect, we can
already mention a recent tool named Kong7 that computes concurrent places by
invoking our CÆSAR.BDD tool in combination with net reductions based on
polyhedral abstractions). To foster such research, we suggest [6] that our three
problems, possibly extended to unsafe nets and/or colored nets, become integral
part of Model Checking Contest.

Acknowledgements

The experiments of Sect. 5.6 have been performed using the French Grid’5000 testbed.

References

[1] Elvio Gilberto Amparore, Bernard Berthomieu, Gianfranco Ciardo, Silvano
Dal-Zilio, Francesco Gallà, Lom Messan Hillah, Francis Hulin-Hubard, Pe-
ter Gjøl Jensen, Löıg Jezequel, Fabrice Kordon, Didier Le Botlan, Torsten
Liebke, Jeroen Meijer, Andrew S. Miner, Emmanuel Paviot-Adet, Jiŕı Srba,

7 https://github.com/nicolasAmat/Kong

21

https://github.com/nicolasAmat/Kong

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

Yann Thierry-Mieg, Tom van Dijk, and Karsten Wolf. Presentation of
the 9th Edition of the Model Checking Contest. In Dirk Beyer, Marieke
Huisman, Fabrice Kordon, and Bernhard Steffen, editors, Proceedings (Part
III) of the 25th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’19: TOOLympics), Prague,
Czech Republic, volume 11429 of Lecture Notes in Computer Science, pages
50–68. Springer, April 2019.

[2] Pierre Bouvier, Hubert Garavel, and Hernán Ponce de León. Automatic
Decomposition of Petri Nets into Automata Networks – A Synthetic Ac-
count. In Ryszard Janicki, Natalia Sidorova, and Thomas Chatain, editors,
Proceedings of the 41st International Conference on Application and Theory
of Petri Nets and Concurrency (PETRI NETS’20), Paris, France, volume
12152 of Lecture Notes in Computer Science, pages 3–23. Springer, June
2020.

[3] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity Results for
1-Safe Nets. Theoretical Computer Science, 147(1–2):117–136, 1995.

[4] Jörg Desel and Javier Esparza. Free Choice Petri Nets, volume 40 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press,
1995.

[5] Hubert Garavel. Nested-Unit Petri Nets. Journal of Logical and Algebraic
Methods in Programming, 104:60–85, April 2019.

[6] Hubert Garavel. Proposal for Adding Useful Features to Petri-Net Model
Checkers. Available from https://arxiv.org/abs/2101.05024, December
2020.

[7] Hubert Garavel and Wendelin Serwe. State Space Reduction for Process Al-
gebra Specifications. Theoretical Computer Science, 351(2):131–145, Febru-
ary 2006.

[8] ISO/IEC. High-level Petri Nets – Part 2: Transfer Format. International
Standard 15909-2:2011, International Organization for Standardization –
Information Technology – Systems and Software Engineering, Geneva, 2011.

[9] Ryszard Janicki. Nets, Sequential Components and Concurrency Relations.
Theoretical Computer Science, 29:87–121, 1984.

[10] Andrei Kovalyov. Concurrency Relations and the Safety Problem for Petri
Nets. In Kurt Jensen, editor, Proceedings of the 13th International Confer-
ence on Application and Theory of Petri Nets (ICATPN’92), Sheffield, UK,
volume 616 of Lecture Notes in Computer Science, pages 299–309. Springer,
June 1992.

22

https://arxiv.org/abs/2101.05024

P. Bouvier and H. Garavel Efficient Algorithms for Three Reachability Problems...

[11] Andrei Kovalyov. A Polynomial Algorithm to Compute the Concurrency
Relation of a Regular STG. In A. Yakovlev, L. Gomes, and L. Lavagno, ed-
itors, Hardware Design and Petri Nets, chapter 6, pages 107–126. Springer,
Boston, MA, USA, January 2000.

[12] Andrei Kovalyov and Javier Esparza. A Polynomial Algorithm to Com-
pute the Concurrency Relation of Free-choice Signal Transition Graphs. In
Proceedings of the 3rd Workshop on Discrete Event Systems (WODES’96),
Edinburgh, Scotland, UK, pages 1–6, 1996.

[13] Tadao Murata. Petri Nets: Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[14] Karsten Schmidt. Stubborn Sets for Standard Properties. In Susanna
Donatelli and H. C. M. Kleijn, editors, Proceedings of the 20th Interna-
tional Conference on Application and Theory of Petri Nets (ICATPN’99),
Williamsburg, Virginia, USA, volume 1639 of Lecture Notes in Computer
Science, pages 46–65. Springer, June 1999.

[15] Alexei Semenov and Alexandre Yakovlev. Combining Partial Orders and
Symbolic Traversal for Efficient Verification of Asynchronous Circuits. In
Tatsuo Ohtsuki and Steven Johnson, editors, Proceedings of the 12th In-
ternational Conference on Computer Hardware Description Languages and
their Applications (CHDL’95), Makuhari, Chiba, Japan. IEEE, August–
September 1995.

[16] Remigiusz Wísniewski, Andrei Karatkevich, Marian Adamski, and Daniel
Kur. Application of Comparability Graphs in Decomposition of Petri Nets.
In Proceedings of the 7th International Conference on Human System Inter-
actions (HSI’14), Costa da Caparica, Portugal, pages 216–220. IEEE, June
2014.

23

	Introduction
	Problem Statement
	Basic Definitions
	The Dead Places Problem
	The Dead Transitions Problem
	The Concurrent Places Problem
	Complexity
	Complete vs Incomplete Solutions

	Implementation and Experimentation
	Relation to Temporal Logic
	Software Tools and File Formats
	Data Sets

	Algorithms for Dead Places and Dead Transitions
	Marking Graph Exploration
	Structural Rules
	Linear Over-Approximation
	Ordering of Algorithms
	Experimental Results

	Algorithms for Concurrent Places
	Marking Graph Exploration
	Structural Rules
	Quadratic Under-Approximation
	Quadratic Over-Approximation
	Ordering of Algorithms
	Experimental Results

	Conclusion

