
Modeling Multiprocessor Cache Protocol Impact on MPI Performance

Ghassan Chehaibar∗, Meriem Zidouni∗†
∗Bull SAS – Platforms Hardware R&D

Les Clayes Sous Bois, France
Email: {ghassan.chehaibar, meriem.zidouni}@bull.net

Radu Mateescu†
†INRIA / VASY project-team

Saint Ismier, France
Email: radu.mateescu@inria.fr

Abstract

This paper presents a modeling method particularly suited
to analyze interactions between Message Passing Interface
MPI library execution and distributed cache coherence pro-
tocol. The method is applied to the Ping-Pong benchmark.
In addition to overall performance figures like message
exchange latency, it also provides detailed analysis elements
such as cache miss counts per variable. It is based on formal
modeling where functional aspects and performance aspects
are integrated by composition and can be refined indepen-
dently. A key modeling point is that the cache coherence
protocol implies that the duration of an access to a variable
is not static but is state-dependent. Our Ping-Pong model
allows comparison of different primitive implementations in
the context of different cache coherence protocols. We ap-
plied this approach using Interactive Markov Chain theory
and its implementation in the CADP toolbox.

1. Introduction

The range of high-end servers designed and manufactured
by BULL includes multiprocessor systems dedicated to high-
performance computing (HPC), providing an implementa-
tion of the Message Passing Interface (MPI) library [1].
Such an HPC system is a network of multiprocessors,
each implementing a Cache-Coherent Distributed Shared
Memory (CC-DSM) architecture. In the message-passing
paradigm, processes do not share data but communicate
and synchronize by means of MPI primitives. The data of
these primitives are shared between processes, which implies
that the performance of the library is impacted by cache
coherence protocol behavior.

The work presented in this paper is motivated by our need
to understand the impact of cache coherence protocol on
MPI library performance in order to optimize the library
implementation. We are interested not only in the overall
performance given by a benchmark execution, we also look
for analysis elements such as individual variable miss counts.

Section 2 details the motivation of this research and
explains why, instead of simulation, we have chosen formal
modeling using the CADP toolbox that supports Interac-
tive Markov Chains (IMC) theory. Section 3 describes the

modeling method through its application to the Ping-Pong
benchmark. We model a software layer comprising the
benchmark and MPI primitives algorithms on top of a hard-
ware layer comprising the topological mapping of processes
and cache coherence protocol. The main aspect a model
should capture is that, at a given time, the latency of an
access done by one process depends on the distributed states
of all other process caches. The software, the hardware, and
the performance aspects are integrated using composition.
Section 4 analyzes the results of the Ping-Pong performance
evaluation obtained by varying three parameters: processor
mapping onto architecture, primitive algorithms and cache
coherence protocol. Section 5 concludes this paper and gives
future work directions.

2. Motivation and related work

MPI optimization is an extensively investigated domain
along various directions: optimizing implementation on a
generic architecture like a cluster [2], [3] or on a specific
machine [4], [5]; or building configurable benchmarking
tools [6]. All this work relies on measuring MPI benchmark
performance on actual machines (already manufactured
hardware), so that one can show that one implementation
is more efficient than another. However, when we want to
optimize an implementation for a CC-DSM architecture, we
need to analyze its interaction with the cache coherence pro-
tocol in order to know how many misses occur and on which
variables. This information either cannot be obtained with
measurement or requires complex instrumentation. Another
drawback of measurement is that optimization cannot be
done during hardware development phase.

The goal of our research is to build a method particularly
suited to analyzing interaction between MPI library execu-
tion and distributed cache coherence protocol. This method
should allow our software teams to compare and analyze
different implementations of the MPI library, providing
overall performance figures and analysis elements such as
cache miss counts per variable. We are not aware of any
published work on this particular subject.

The process of arriving at an adequate performance model
of a system is often considered an art [7] in itself. In our
context, this is even more critical, because the performance

properties depend heavily on the correct modeling of the
functionality of the cache coherence protocol. Therefore,
functional modeling and performance modeling need to be
very tightly intertwined, and it is useful to have check-
ers to verify the correctness of the functional behavior
at hand. Standard simulation environments such as Opnet
(http://www.opnet.com), Omnet (http://www.omnetpp.org)
or NS-2 (http://www.isi.edu/nsnam/ns), do not provide any
support for this. Instead, in these environments, the model
is coded in a loosely structured set of declarations and
libraries, and often some C-code snippets are used to glue the
components together. The results obtained by such studies
are often not credible, as reported in [8], [9], [10]. This is
not a deficiency of the analysis technique (discrete event
simulation), but the model construction process is badly
supported, and hence one looses the view of what one is
actually modeling (and thus analyzing).

In this paper we instead use a formal method, the ISO-
standardized language LOTOS [11], to model the functional
aspects of our system. We formally verify the correctness
of this model exploiting model checking capabilities of the
tool CADP [12]. On top of that, we integrate performance
aspects of the system using the same tool and technique [13],
based on the IMC theory [14], which is a smooth extension
of the theory underlying LOTOS. This modeling results
in a performance model, a highly unstructured continu-
ous time Markov chain, which we are confident properly
reflects the functionality and the performance aspects of
the system under study. We then use numerical analysis
algorithms to calculate relevant performance figures. We
could also use discrete-event simulation of a formal model
as an alternative analysis technique, but this is currently not
supported by CADP. The tight integration of performance
and functionality considerations was first devised in the
context of stochastic Petri nets [15], and indeed the use of a
Petri-net based tool would have been an alternative; we are
however not aware of a tool with the same model checking
support as CADP provides.

3. Functional and performance modeling

This section describes the modeling process: first we
translate the software program into a LOTOS model, then we
compose this model with a process that represents the cache
protocol and associates to each access its state-dependent
transfer type. Finally we obtain a performance model by
composition with a process that inserts “delay transitions”.

3.1. Ping-Pong functional behavior

In this paper, we consider the MPI benchmark called Ping-
Pong dedicated to measure the latency of a message transfer
between two processes. It is composed of two processes;
each process alternately sends and receives a message from

the other. If Sndi→j denotes the emission of a message
from Pi to Pj and Rcvi←j denotes the reception by Pi of a
message sent by Pj , then Ping-Pong behavior is:
(Snd0→1; Rcv0←1)

k||(Rcv1←0; Snd1→0)
k.

The delay ∆t of executing the loop k times is measured;
since one loop turn corresponds to a round trip, that is two
transfers, one transfer latency l is obtained by l = ∆t

2k
.

Each MPI send and receive primitive is a C procedure
composed of assignments, tests, and loops accessing some
variables in shared memory. From a functional viewpoint,
the fact that memory is physically distributed and that an
access to a variable may involve a transfer over the network
is not relevant: only the values of variables are of interest.
That is why we write a process Memory managing a storage
Mem containing the values of variables, that can be accessed
atomically in one transition. An access to a variable can be a
load or a store and is performed by rendezvous with Memory
process on a gate of the form:
Action ?P:Proc ?Op:Access ?Var:Address ?Val:Value;

where P is the identifier of the process performing the access,
Op is the access type (load, store, test-and-set), Var is the
name of the variable and Val is the value read or stored.

Each primitive algorithm is composed of assignments, if-
then-else, and while constructs. A straightforward translation
of these instructions into Action gates gives two LOTOS
procedures Send(Pi, Pj) and Receive(Pi, Pj). Then, each process
of Ping-Pong is:
Proc0[Action] = Send(P0, P1);Receive (P0, P1);Proc0 and
Proc1[Action] = Receive(P1, P0);Send(P1, P0);Proc1,
and the functional behavior of the benchmark is:
(Proc0[Action] ||| Proc1[Action]) |[Action]| Memory[Action](Mem)

(“;” is the sequential composition of processes, ||| is the free
interleaving and |[A]| is synchronization on action A).

3.2. Cache coherence protocol impact

Our protocol is based on the classic 4-state protocol called
MESI [16] (acronym formed by the state initials): Modified,
Exclusive, Shared, and Invalid. The cache coherence proto-
col is described in Table 1 for a load access and Table 2 for a
store access. Pi is the requesting processor and Pj represents
all other processors. The first two columns give the current
cache states, and the next two ones give the new cache
states after the data transfer. The fifth column gives the data
transfer type, specifying the data provider (M means home
memory) and occasional cache lookup or invalidation. We
consider two protocol variants that differ only in handling
a store miss when modified data exist (shown by the last
two lines): in case A the requester goes into M state and the
provider into I state; in case B they both go into S state.

These tables define a cache state transition function
NewState(p, op, v, CurrentState) where p is the requesting
processor, op is the access performed (load or store) and v
the variable that is accessed. It is worth noting that cache

Table 1. Protocol for a load operation

CurrentState NewState Data transfer type
Pi Pj Pi Pj

S/E/M * S/E/M * Hit (internal)
I I E I M → Pi

I S S S M → Pi

I E S S M → Pi with Pj lookup
I I E I Pj → Pi

Table 2. Protocol for a store operation

CurrentState NewState Data transfer type
Pi Pj Pi Pj

E/M I E/M I Hit (internal)
I/S I M I M → Pi

I/S S M I M → Pi with Pj invalidation
I E M I M → Pi with Pj invalidation
I M M I Pj → Pi (Protocol A)
I M S S Pj → Pi (Protocol B)

states in the real system are not modified atomically but the
protocol should ensure that from a coherence viewpoint, the
system behaves as though the NewState function is atomic.
The tables also define a Transfer(p, op, v, CurrentState,
vmap, pmap) function giving the data transfer type, which
has two additional parameters vmap and pmap, describing
respectively variable mapping in the distributed memory and
process mapping onto processors. We consider the FAME
architecture commercialized in the Bull NovaScale R© “Inten-
sive Line” servers (www.bull.com/novascale/intensive.php).
It is a hierarchical CC-DSM architecture with three levels:
at the top level a system is composed of modules, a module
is composed of processing nodes, and a processing node
contains processors connected with a bus and equipped with
a memory piece. This gives three possible cases of distance
(denoted d) between a requester and a data provider: in
the same node (d = 0), in different nodes but in the same
module (d = 1) and in different modules (d = 2). Therefore,
Transfer function can take 13 possible values: 1 hit case
and 12 miss cases. The miss cases are obtained by varying
3 parameters: distance between source and destination (3
values), source types (2 values: other cache or memory),
handling in memory source case (3 cases: with other cache
lookup, with invalidation, or none of them).

It follows from NewState and Transfer definitions that the
latency of an access to a given variable in a given process
cannot be determined statically or locally because it does
not depend only on its local cache state, or on variable or
process mapping onto the architecture. It also depends on
the global state of all caches in the system.

3.3. Inserting state dependent latencies

Once the functional model is built, the next step is to
associate a duration to each access performed by the bench-
mark. In IMC a transition can be an “ordinary” immediate

action, or a delay action labeled with “label; rate R”, where
R is a positive real and label any string (possibly empty).
A transition S1 → S2 labeled with rate R indicates that the
probability that this transition occurs at t ≤ x is 1 − e−Rx.

Applying this approach in LOTOS, in order to specify
that an action A has a mean duration (or latency) LA, we
write the sequence Begin A; Latency A; End A, where Begin A and
End A are immediate actions and Latency A is a delay one.
This distinction is not done at the LOTOS level but in the
generated labeled transition system (LTS), where Latency A is
renamed with Rate R or Label; Rate R, where R=1/LA: this gives
a so-called stochastic LTS.

We will extend our functional model to introduce access
latencies in two steps using process composition: first we
associate to each access its transfer type, then we insert delay
transitions as explained above. Concerning transfer types,
we write a process Caches that maintains the global state
of all caches for all variables and gives the transfer type
associated to each access (as defined by the function Transfer
of Section 3.2):

Process Caches[Action](Cs:Cachestates, Map:Mapping): Noexit:=
Action ?P:Proc ?Op:Access ?V:Address ?Val:Value ?T:Transfer

[T == Transfer(P, Map, Op, V, Cs)];
Caches[Action](Newstate(P, Op, V, Cs), Map)

Endproc

Then we add the ?T:Transfertype on the gates of the functional
behavior and we compose it with Caches, thus obtaining a
functional model where accesses are labeled with their trans-
fer types. In order to insert delay transitions as explained
above, each occurrence of the gate Action in Send and Receive
processes has to be split into a sequence Action;End action (we
keep Action instead of Begin Action). Then the delay transitions
are inserted by composition with the following process:

Process Latency[Action, End action, Latency](P:Proc): Noexit :=
Action !P ?Op:Access ?V:Address ?Val:Value ?T:Transfer;
Latency !P !V !T;
End action !P;
Latency[Action, End action, Latency](P)

Endproc

yielding the following processes:

PLj[Action, End action, Latency]=
Procj[Action, End action]
|[Action, End action]|

Latency[Action, End action, Latency](Pj)

and the benchmark whole model is:

Benchmark =
(PL0[Action, End action, Latency]
|||

PL1[Action, End action, Latency]
)
|[Action]|

Memory[Action](Mem)
|[Action]|

Caches[Action](Cs, Map)

In Memory and Caches processes, actions are not split be-
cause these rendezvous are an abstraction to provide variable

values and cache states to the benchmark processes and do
not represent actual transfers: no duration can be associated
to them in these processes.

The model built above is very abstract, since it associates
a one-shot latency to a transfer and it makes cache state
transition one atomic event at the beginning of the transfer.
In the real system, on a cache miss, the requesting processor
issues a transaction that goes through many phases in the
various agents of the architecture. Cache states are changed
according to these phases. Actually the compositional way
of inserting latencies allows us to easily refine the model
to choose the needed abstraction level in order to improve
accuracy. For instance, in order to split a transfer into two
equal phases and put cache state update at the end of the
first phase, we modify only processes Caches and Latency. We
keep cache states unchanged when Action is fired and we add
a specific event Update in these processes as follows:

Process Caches[Action](Cs:Cachestates, Map:Mapping): Noexit:=
Action ?P:Proc ?Op:Access ?V:Address ?Val:Value ?T:Transfer

[T == Transfer(P, Map, Op, V, Cs)];
Caches[Action](Cs, Map)

[]
Update ?P:Proc ?Op:Access ?V:Address;
Caches[Action](Newstate(P, Op, V, Cs), Map)

Endproc

Then Latency process is modified this way:

Process Latency[Action, End action, Latency, Update](P:Proc):
Noexit :=

Action !P ?Op:Access ?V:Address ?Val:Value ?T:Transfer;
Latency !P !V !T !1;
Update !P !Op !V;
Latency !P !V !T !2;
End action !P;
Latency[Action, End action, Latency](P)

Endproc

This shows how this modeling separates the functional
aspect from the performance one: in this way, each aspect
can be refined independently.

3.4. Formal verification

Once the LOTOS model is available, before exploiting it
for performance evaluation, we assess its correct functioning
using the formal verification tools of CADP toolbox based
on equivalence checking and model checking. The following
verifications are done:
• When all the actions of the model are hidden except the

actions that send or receive a message and branching
bisimulation is applied, we obtain a behavior equivalent
to the Ping-Pong benchmark.

• Correct functioning of the cache coherence protocol
is checked using safety properties written in regular
alternation-free µ-calculus, the input language of the
EVALUATOR [17] model checker of CADP.

• Correct functioning of the primitive algorithms, such as
lock management, is also checked using temporal logic
properties written in regular alternation-free µ-calculus.

4. Performance analysis

To perform numerical analysis, we generate the LTS of the
model, then we rename transitions labeled Latency !P !V !T with
P V T; rate R where R=1/L if L is the latency of a transfer of
type T. BCG MIN minimization tool [18] is used to reduce
LTS according to stochastic branching bi-simulation. The
BCG STEADY tool [18] takes a stochastic LTS as input,
and computes the corresponding equilibrium (“steady-state”)
probability distribution on a long run. Moreover, it also
computes throughputs of the transitions bearing a given
label, which is the only output we have used in this study.

4.1. Computing performance figures

In assessing Ping-Pong performance, two figures are of
interest: latency of a message exchange, and number of
misses on a given variable during this exchange, to analyze
the impact of each variable used in the primitives implemen-
tation.

The mean latency between two consecutive occurrences
of an event is the inverse of its throughput. So, in order
to compute the latency of a message exchange in the Ping-
Pong benchmark model, we add a Startj gate in the LOTOS
specification at the beginning of Procj, and we compute L =
1/(2·FS) where FS is the throughput of Start (see Section 3.1
for a justification of the factor 1/2).

In order to obtain the average number of misses on a given
variable during a message exchange in Ping-Pong, we notice
that a miss on a variable V corresponds to an occurrence of
a miss transfer type, i.e. an action Latency !P !V !T where T
is a miss case. But the mean number of occurrences of an
event in a loop is the throughput of this event divided by
the throughput of the occurrence of the loop. Then, if we
call F(V, p) the sum of all throughputs of Latency !P !V !T, the
number of misses on V during a message transfer in a given
process is F(V, p)/FS.

4.2. Evaluation results

We evaluate the latency and cache miss numbers of Ping-
Pong in several configurations in order to investigate the
impact of various parameters on the performance of MPI
library. A configuration is defined by three parameters:

1) A mapping of processors (with an associated variable
mapping) onto the architecture. This is defined by
inter-process distance (0, 1 or 2).

2) An implementation of Send and Receive primitives.
The first one (called SR1 below), provided by MPICH
v1.26 (www-unix.mcs.anl.gov/mpi/mpich1) is based
on lists and locks: each process has a list of available
packets (to use) and a list of incoming packets (re-
ceived from the other process). These lists are accessed
by locking them first. The second implementation

0 1 2
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

B1
A1
MA1
B2
A2

Distance

La
te

nc
y

(u
s)

Figure 1. Latency of a message exchange

(called SR2 below) is a lock-free implementation,
which replaces lists with fixed-size buffers, taking
advantage of the fact that these buffers have a unique
reader (similar to the algorithms described in [4]).

3) A cache coherence protocol: there are two variants (A
and B) defined in Section 3.2.

Figure 1 gives the latency results for all cases: Xi curve
where X=A or B, and i=1 or 2, represents the X protocol
case with SRi algorithm. We also represent the measured
latency in case A1 (noted MA1) on a Bull server. First we
see that in A1 case, the difference between measured and
evaluated latency ranges between 9% and 22%. However,
let us stress that our objective is not to build a model that
accurately predicts absolute experimental values, but to show
that a fairly abstract model of a large-scale distributed cache
coherence protocol has potential to compare configurations
and to show right tendencies. As expected, latency increases
when distance between processes increases, in all primitive
and protocol cases.

The second less obvious result is that Protocol A is more
efficient than Protocol B. Assume a process P0 performs
a load(V) and V is M in P1 cache (this means that P1 has
already performed a store(V)). If load(V) brings V in E state
in P0 and makes it I in P1 (Protocol A), any subsequent
access by P0 (load(V) or store(V)) is a hit, and any by P1

is a miss. Now if load(V) makes V in S state in both caches
(Protocol B), a subsequent load(V) is a hit, but store(V)
is a miss in both processors. In the MPI library primitive
implementation (in both cases SR1 and SR2), a process
never performs a store(V) followed by a load(V), which is
the favorable case of Protocol B; however, a process always
performs store(V) after load(V), which is the favorable case
of Protocol A.

The third result is that SR2 implementation is more
efficient than SR1 one. This is explained by Figure 2, which
gives the number of misses per kind of variables (packet,
pointer or lock), in each configuration (Ptr-A1 curve gives

0 1 2
0

2

4

6

8

10

12

14

16

Lck−B1
Ptr−B1
Ptr−B2
Ptr−A1
Ptr−A2
Lck−A1
Pkt−B1
Pkt−B2
Pkt−A1−2

Distance

M
iss

 c
ou

nt

Figure 2. Number of cache misses

the number of misses on pointer variables in A1 case, etc).
We see that there are about 20 misses in a message transfer
in case A1, where 20% are on packets, 45% on pointers
and 35% on locks. In case A2, there are about 12 misses,
where 32% are on packets and 68% on pointers (actually
buffer index). These figures show that, in SR1, misses on
list management variables (pointers and locks) play a major
part in the overall latency of a message transfer: therefore a
lock-free algorithm like SR2 is more efficient.

4.3. Modeling and evaluation cost

The model size is 797 lines of LOTOS and 1044 lines of
C code (for efficiency reasons, data types are implemented
in C). The generated LTS has 1,452,856 states. There are
450 lines of temporal logic properties. The state space
generation, formal verification and performance evaluation
are completed within a few minutes. This shows that in
both development effort and execution time, this method is
inexpensive and yet yields useful results.

5. Conclusion and future work

In this paper we presented, by means of its application to
the Ping-Pong benchmark, a method to analyze the impact
of cache coherence protocol on the MPI library performance
in a CC-DSM architecture. The goal of this method is to help
software teams optimize MPI implementation during hard-
ware design phase and to analyze measurement afterwards.
It is based on formal modeling that integrates functional
and performance behaviors, using IMC extension of the
LOTOS language supported by CADP toolbox. The model’s
functional behavior is formally verified, which cannot be
done in simulation approach. The software aspect (bench-
mark and MPI library primitive), the hardware aspect (cache
protocol and topological mapping), and the performance
aspect (delay transitions) are in separate processes. Their

integration is done by composition but each aspect can be
refined independently. An abstraction of the hardware cache
protocol allows to easily capture the fact that an access
latency in one process depends on all cache states in the
system. This is allowed by the compositional method of
building the model and by the distinction of immediate
transitions from delay transitions in IMC theory. It computes
overall latency and above all cache miss count per variable,
in different software and hardware configurations. These
detailed figures allow to understand the weight of each
access in the overall latency. The model is relatively small
and its formal verification and performance evaluation are
done within a few minutes. So even such an abstract model
of a complex large-scale architecture has the potential to
compare and analyze benchmark behavior.

Next step is to apply this method to predict additional
figures like bandwidth; and to investigate modeling of other
MPI primitives like the barrier one. Our long-term objective
is to build a modeling tool that automates this method.
It takes in input primitive and benchmark implementations
written in some pseudo-code, cache coherence protocol and
processor mapping, then automatically produces the LOTOS
models and computes the performance figures.

Acknowledgment

We are grateful to Holger Hermanns and Hubert Gar-
avel for useful discussions. This research was supported
by the MULTIVAL project of the MINALOGIC “Pôle de
compétitivité”. M. Zidouni’s work is partially financed by
French Research Ministry and European Social Fund.

References

[1] M. Snir and et al, MPI: The Complete Reference (2 volumes).
MIT Press, 1998.

[2] W. keng Liao, K. Coloma, A. Choudhary, L. Ward, E. Russell,
and S. Tidemann, “Collective caching: Application-aware
client-side file caching,” in Proc. HPDC, 2005.

[3] T. Hoefler, C. Siebert, and W. Rehm, “A practically constant-
time MPI broadcast algorithm for large-scale InfiniBand
clusters with multicast,” in Proc. IPDPS. IEEE, 2007, pp.
1–8.

[4] W. Gropp and E. Lusk, “A high-performance MPI implemen-
tation on a shared-memory vector supercomputer,” Parallel
Computing, vol. 22, no. 11, pp. 1512–1526, January 1997.

[5] K. Feind and K. McMahon, “An ultrahigh performance MPI
implementation on SGI R© ccNUMA Altix R© systems,” Com-
putational Methods in Science and Technology, vol. Special
issue, pp. 67–70, 2006.

[6] R. Reussner, P. Sanders, L. Prechelt, and M. Müller,
“SKaMPI: A detailed, accurate MPI benchmark,” in Proc.
5th European PVM/MPI Users Group Meeting, ser. LNCS,
vol. 1497. Springer Verlag, 1998.

[7] R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simula-
tion, and Modeling. Wiley-Interscience, 1991.

[8] D. Cavin, Y.Sasson, and A. Schiper, “On the accuracy of
manet simulators,” in Proc. 2nd ACM international workshop
on Principles of mobile computing, 2002, pp. 38–43.

[9] G. Riley and M. Ammar, “Simulating large networks: How
big is big enough?” in Proc. First International Conference
on Grand Challenges for Modeling and Simulation, 2002.

[10] J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat,
K. Lan, Y. Xu, W. Ye, D. Estrin, and R. Govindan, “Effects
of detail in wireless network simulation,” in Proc. SCS
Multiconference on Distributed Simulation, 2001, pp. 3–11.

[11] ISO/IEC, “LOTOS — a formal description technique based
on the temporal ordering of observational behaviour,” ISO,
International Standard 8807, 1989.

[12] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP
2006: A toolbox for the construction and analysis of dis-
tributed processes,” in Proc. CAV, ser. LNCS, W. Damm and
H. Hermanns, Eds., vol. 4590. Springer Verlag, 2007, pp.
158–163.

[13] H. Garavel and H. Hermanns, “On combining functional
verification and performance evaluation using CADP,” in
Proc. FME, ser. LNCS, L.-H. Eriksson and P. A. Lindsay,
Eds., vol. 2391. Springer Verlag, 2002, pp. 410–429.

[14] H. Hermanns, Interactive Markov Chains and the Quest for
Quantified Quality, ser. LNCS. Springer Verlag, 2002, vol.
2428.

[15] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis, Modelling with Generalized Stochastic Petri
Nets. John Wiley & Sons, 1995.

[16] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence
solution multiprocessor with private cache memories,” in
Proc. 11th Annual International Symposium on Computer
Architecture, 1984, pp. 348–354.

[17] R. Mateescu and M. Sighireanu, “Efficient on-the-fly model-
checking for regular alternation-free mu-calculus,” Science of
Computer Programming, vol. 46, no. 3, pp. 255–281, March
2003.

[18] H. Hermanns and C. Joubert, “A set of performance and de-
pendability analysis components for CADP,” in Proc. TACAS,
ser. LNCS, H. Garavel and J. Hatcliff, Eds., vol. 2619.
Springer Verlag, 2003, pp. 425–430.

