An industrial experiment in automatic generation of executable
test suites for a cache coherency protocol*

Hakim Kahlouche$, César Viho¥ Massimo Zendril
E-mail: {kahlouch, viho}@irisa.fr, massimo.zendri@bull.net

March 13, 1998

Abstract

In this paper, we present an end to end industrial case-study concerning the automatic
generation of tests suites for the Cache Coherency Protocol of a Multiprocessor Architecture.
It consists of the following stages : (1) formal specification of the architecture using Lotos
language, (2) formal description of the test purposes, (3) automatic generation of abstract test
suites using the prototype TGv, and (4) automatic generation and analysis of executable test
suites.

Through the description of each of the previous stages, this paper demonstrates that tools
designed for protocol conformance testing can be efficiently used to generate executable tests
for hardware concurrent systems.

Key-words : Conformance Testing, Test Generation, Lotos, Test Execution, Hardware
Multi-Processor Architecture, Cache Coherency Protocol.

1 Introduction

The aim of testing is to guarantee that the implementation of the system correctly realizes what is
described in its specification. In this paper, we are particularly concerned with the so called black
boz conformance testing. In this testing approach, the behaviour of the implementation (otherwise
called IUT for Implementation Under test) is known only by its interactions with the environment
via its interfaces (called PCO for Point of Control and Observation). Thus, testing consists in
stimulating the IUT and observing its reactions on its PCOs. The prototype TGV has been devel-
opped to generate test suites for communication protocols using the black box conformance testing
approach. TGV is based on protocol verification algorithms and its main purpose is to fit as well as
possible the industrial practice of test generation. It takes as entries the formal specification of the
system to be tested and a formalization of a test purpose, and it generates an abstract test case. A
test case is represented by a tree (not only sequences), and each branch of this tree contains the in-
teractions between the tester and the implementation. A verdict is associated to each branch. TGv
has been experimented on the Drex military protocol [1]. The formal specification of this protocol
is done in SDL formal description language (IUT-T Recommendation Z.100). The comparison of
the hand written test cases with those generated by TGV, has showed the interest and efficiency of
TGV [2].

*This work has been done in the context of Dyade (R&D joint venture between Bull and Inria).
$INRIA-Rennes, Campus universitaire de Beaulieu, F35042 Rennes, France

TIRISA-IFSIC /Université de Rennes I, Campus de Beaulieu, F35042 Rennes, France

IBull Italia, Via ai Laboratori Olivetti, I-20010 Pregnana Milanese (MI), Italy

On another side, many tools have been developped in the area of Hardware testing, allowing
simulation of the specifications, automatic synthezis of implementations and even tests generation.
The hardware design is often based on hardware description languages such as VHDL (IEEE
Standard 1076-1993). This is due to the possibility in these languages to describe hardware-related
details such as register-transfer, gate and switch level. This details may lead in overspecification
and (most of all) are not directly relevant to high-level functionalities specification, such as Cache
Coherency Protocols, etc. It then becomes fully justified to wonder whether the formal specification
languages and associated tools designed in computer network area could be better appropriate for
the description of these functionalities [3, 4].

The challenge for us, in the VASY (VAlidation of SYstems) action of the Dyade GIE Bull/Inria, is
to demonstrate that TGV can also be used to generate tests for other systems than communication
protocols: particularly, for the Cache Coherency Protocol of a Multiprocessor Architecture under
construction at Bull Italia. In this experiment, we have had to deal with three main difficulties:

e The system to test is not a communication protocol but a Cache Coherency Protocol of a
Hardware Multiprocessor Architecture.

e The formal description language used is not SDL but LOTOS (ISO International Standard
8807).

e The habits and methodologies of test practicians in the area of hardware architecture are not
the same as in the area of communication protocol testing.

First, we describe the fundamental aspects of TGv. We give some precisions on the Cache Co-
herency Protocol of the architecture'. In this paper, we will call this architecture the BULL’S
CC_NUMA Architecture. Then, we indicate the appropriate abstractions made on its LOTOS for-
mal specification, in order to make the test generation feasible. We show how we have used this
formal specification to generate tests suites with TGV, particularly how the test purposes have been
formalized. We have also developped tools in order to make the abstract test cases generated by
TGV executable in real test environment of the BuLL’s CC_NUMA Architecture. The last sec-
tion is dedicated to the presentation of these tools. We end this paper by reporting results of the

experiment which indicates how we have resolved the main difficulties enumerated above.

2 Overview of tests generation with TGV

In this section, we state precisely the context of black box conformance testing of TGv. Then,
we give the principles of automatic test suites generation based on the formal specification of the
component to be tested and test purposes.

2.1 Context of TGV

The testing method with TGV consists in stimulating the IUT and observing its reactions on its
PCOs. Depending on what is observed, a verdict is emited indicating whether the IUT can be
considered as a good implementation of the system or not. According to the importance of this
verdicts, it is fundamental to give a precise specification of the system. It is also important to define
the conformance relation between an implementation and the specification. Because a test activity

!For confidential reasons, we cannot give precise details on this architecture

of complex system cannot be exhaustive, only particularly important aspects can be tested. This
can be done by defining test purposes which help to choose the behaviours of the IUT to be tested.
In the testing methods where the test suites are hand written, all the objects enumerated before
(specification, test purposes, conformance relation, verdicts) are described informally. This implies
the problem of the correctness of these test suites, and therefore the problem of the confidence to
put in the associated verdicts. The methods of automatic generation of test suites which are based
on formal description of these different objects bring a solution to this problem. The prototype
TGV we have developped in collaboration with the Spectre team of the Verimag laboratory [1, 5] is
precisely situated in this context.

2.2 Principles of automatic generation in TGV using LOTOS specification

TGV takes two main entries : the formal specification of the system and a formal description of a
test purpose (by an automaton) which represents an abstract form of the test case to be generated.
From these objects, TGV gives as result a test case in form of a “decorated” DAG (Direct Acyclic
Graph). The paths of this DAG (which can be unfolded into a tree) represent test sequences. In
what follows, we summarize the operations done by TGV to generate this DAG (details can be
found in [5, 6]):

Abstraction, Reduction and Determinization This consists in abstracting the state graph of
the system according to observable events through its interfaces with the environment. This
operation generates internal actions which are not needed in black box testing. Thus, TGV
realizes a reduction operation (the 7*a-minimization) to suppress internal actions and bring
out only the observable behaviour of the system. The non-determinism thus introduced by
the previous operation is suppressed by a determinization operation.

Test Case Synthesizing The TGV algorithm is based on a depth first search traversal of a syn-
chronous product of the abstracted state graph obtained (as shown above) and the formal
test purpose. During the traversal, we verify that the test purpose is coherent with the spec-
ification. While backtracking, we synthesize a “decorated” DAG (called the test case) which
consists of preambule, test body, postambule, verdicts. This graph satisfies the controlability
condition which stipulates that the tester controls its outputs.

The test graph integrates also timers management which guarantees the termination of the
application of the tests on implementations.

We present here the elements (described in Figure 1) which partake in the generation of a test cases
for the BurL’s CC_NUMA architecture.

The first main entry of TGV is the formal specification of the BuLL’sS CC_NUMA machine. The
LOTOS language has been selected because its underlying semantics model is based on the rendez-
vous synchronization mechanism which is well suited for the specification of hardware entities [7,
3, 4] such as processors, memory controllers, bus arbiter. To the environment point of view, this
entry (CC_NUMA _spec.lotos in Figure 1) defines the temporal relation among the interactions that
constitute the externally observable behaviour of the system to be tested. This specification has
been debugged and verified with appropriate formal verification techniques, and is considered by
TGV as the reference model of the system.

Formal specification
CC_NUMA _spec.lotos

‘ caesar .adt ‘
caesar -open

CC_NUMA_spec.c

C <(‘ompiler
CC_NUMA _spec.h cc-C)

Specialization parameters
C_NUMA_spec.rename
CC”NUM A"spec.hide
Test purpose
txx_obj.inform
Context + behaviour

FERMDET_OPEN: abstraction and
determinization

Link

—
TGV_OPEN: traversal of the /
synchronous product and

test case synthezis
tgv_CC_NUMA_spec

'

txx_test.aut

|
|
|
|
|
:
CC_NUMA_spec.o |
|
|
|
|
|
|
|

txx_obj.aut

Figure 1: TGV General Architecture using LOTOS entry

The CAESAR.ADT compiler of the CADP toolbox [8, 9] is used to compile the data part of the
specification. The CAESAR compiler produces the C file corresponding to the control part, including
the functions (Init, Fireable, Compare,...) needed by TGV to manipulate “on-the-fly” the state
graph of the system (without generating it) [6]. Then, the C compiler produces the corresponding
objectfile (CC_NUMA _spec.o in Figure 1).

Some observable interactions described in the LOTOS specification can be judged not important
to the test activity point of view. Those interactions must be considered unobservable. This is
done in TGV by a hiding mechanism (CC_NUMA _spec.hide on the figure 1) which contains all the
interactions to be considered internal to the system.

The semantics of LOTOS (so do the CAESAR compiler also) does not make distinction between
input and output. In fact, interactions between processes are synchronization events. This puts
in trouble TGV in which this disctinction is needed to distinguish controlable events (from tester
to implementation) from observable events (from implementation to tester) in the generated test
cases. We introduce the renaming mechanism in TGV to resolve this problem.

The other main entry of TGV is the formal test purpose from (and for) which we have to gen-
erate a test case. It is formalized by an automata in Aldebaran format (see an example below
in section 4.2.2), which represents an abstract view of interactions between the tester and the
implementation on which the generated test case has to focus.

The libraries FERMDET _OPEN and TGV_OPEN of TGV contain the functions which realize “on-the-
fly” all the operations (abstraction, reduction, determinization and test case synthesizing) leading
to the generation of the test case. This is a solution to the combinatory explosion problem which
makes most of tools unable to generate test cases for complex system. In another side, this makes
algorithms of TGV more complicated but offers the possibility to generate test cases even when the
state graph of the system to be tested cannot be generated, as it is the case in the experiment we are
describing in this paper.

Linking the object file together with the two libraries (FERMDET_OPEN and TGV_OPEN), produces
an executable (tgv_CC_NUMA _spec in Figure 1). Given a formal test purpose (txx_obj.aut) and

a test architecture (described with two files CC_ZNUMA _spec.rename and CC_NUMA _spec.hide) as
parameters of this executable, TGV generates the corresponding test case.

3 The BurLrt’s CC_.NUMA architecture: the cache coherency pro-
tocol

The BurLr’s CC_NUMA architecture is a multiprocessor system based on a Cache-Coherent Non
Uniform Memory Architecture (CC-NUMA), derived from Stanford’s DASH multiprocessor ma-
chine [10]. It consists of a scaleable interconnection of modules. The memory is distributed among
the different modules. Each module contains a set of processors (see figure 2).

|

Processor Processor |

Cache T Cache :
Local To

‘ ‘ Remote I
‘ Interconn. | |

Network
Presence
Local Cache
Memory 110

!
Controler :
|

Remote
Interconnection
Network

|
Processor Processor |
|

Cache Cache
Local To
Remote I

‘ Interconn. 4_

Local Bus ‘ ‘ Network

Presence I

Local Cache Cache |
Memory 110 |
|

|

Controler

Figure 2: The BuLL’s CC_NUMA General Architecture

The BurL’s CC_NUMA architecture key feature is its distributed directory based cache coherency
protocol using a Presence Cache and a Remote Cache in each module. The Presence Cache of a
module is a cached directory that maps all the blocks (and only those) cached outside the module.
The global performance of the BuLL’s CC_NUMA architecture is improved through the Remote
Cache (RC) that locally stores the most recently used blocks retrieved from remote memories
(whose home is in a module different from the local module). Remote memory block can be in
one of the following status: uncached, shared, modified which correspond to the possible RC status:
(INV)alid, (SH)ared, (MOD)ified.

So, the purpose of testing the Cache Coherency Protocol consists in ensuring that the status of
the Presence Cache and Remote Cache are allways correctly updated during the execution of any
transaction in the BuLL’s CC_NUMA architecture.

4 Formalization and abstract tests generation

In this section, we describe the formal objects which constitute the main entries of TGV : the formal
specification of the cache coherency protocol of the BuLL’s CC_NUMA architecture using LOTOS

and the formalization of the test purposes.

4.1 Formal specification of the cache coherency protocol

The LoTOS language has been selected for the formal specification of the BuLL’s CC_NUMA
architecture because its underlying semantics model is based on the rendez-vous synchronization
mechanism which is well suited for the specification of hardware entities [3, 4] such as processors,
memory controllers, bus arbiter, etc. The communications between these components by sending
electrical signals on conductors are better described by interactions between LOTOS processes, rather
than infinite FIFO queues as in SDL.

The formal specification consists of about 2000 Lotos lines where 1000 lines describe the control part
(13 processes) and the other half defines the ADT (Abstract Data Types) part. This specification is
composed of two modules and has been debugged and verified with appropriate formal verification
techniques, and is considered by TGV as the reference model of the system. In the following, we will
call these modules M0 and M1. Each module contains one processor called PO. There is two block
addresses in the system called A0 and Al, and two data DO and D1. These blocks are pysically
located in module MO.

Two main reasons bring us to make some abstractions in the formal specification:

e The first reason is due to the size and the complexity of the BuLL’s CC_NUMA architecture,

with as direct consequence the combinatory explosion problem even though TGV works “on-
the-fly”.

Thus, some causally dependant operations concerning the same transaction are collapsed.
For example, from the testing point of view, the local response transaction always follows a
local bus transaction in an atomic way (although if the real system can do something else
between this two actions). These two transactions are collapsed in the Lotos specification.
This reduces the complexity of the specification.

e The second reason is that in this work, we are interested in tests generation for the Cache
Coherency Protocol. So, we make abstractions needed to hide all other operations which do
not concern with this protocol.

4.2 Formalization of the test purposes

A test purpose in TGV is described by an automaton which represents an abstract view of the test
case. S0, in order to make TGV working, we have had to formalize each test purpose. The main
test purposes to be applied to the BurLL’s CC_NUMA architecture are informally described (in the
shape of tables with comments) in the test plan. Seven Test Groups have been identified. In the
experiment we are reporting in this paper, we are interested by two Test Groups (the Test Groups
3 and 4) concerning the test of the Cache Coherency protocol. In what follows, we describe more
precisely these two groups.

4.2.1 The Cache Coherency Test Groups

Some other definitions are needed to make what follows more easier to understand. The Requesting
Processor is the processor that initiates the transaction. The Requestor is the module that includes
the Requesting Processor. The Home Module is the module which physically locates the requested
block. The Owner Module is the module which hold the most updated copy of the memory block.

The Participant Modules are modules which are requested by the Presence Cache to participate in
the cache coherency protocol.

The test purposes described in the Test Group 3 are dedicated to Cache Coherency Testing (No
Participants). This means that they aim to test interactions between two modules (the Requestor
and the Home) which do not need interventions of other modules. For example, the table 1 describes
an informal test purpose which means: “The block address is in Module#0. The CPU#0 of
Module#1 executes a READ on this address. Verify that the Presence Cache (PC) status of
Module#0 changes from Invalid to Shared.” In this case, we can notice that the other modules
(Module#2 and Module#3) are not concerned.

H Cache Coherency Tests : set-PC-to-SH H Test group #3 H
H Operation H Parameters H Source H Target H PC H Notes H
Module#1 PC Status of
READ - CPU#0 Module#0 || SH || Module#0 changes
from Invalid to Shared

Table 1: Presence Cache Status Setting to (SH)ared

The test purposes described in the Test Group 4 are dedicated to Cache Coherency Testing (With
Participants) in which other modules than the Owner and the Requestor are requested to realize
the transaction.

4.2.2 Formal specification of test purposes

A test purpose is described with a labelled automaton in the Aldebaran syntax [8]. The format of a
transition is :(from_state, label, to_state). A label is a LOTOS gate followed by a list of parameters.
As said previously, TGV needs to distinguish between input and output actions of the system. This
is achieved simply by the first occurrence of “?” (for input) or “!” (for output) in the label. The
automaton corresponding to a test purpose describes a point of view of the system. As an example,
we give hereafter the automaton which formalizes to the test purpose described in Table 1:

des,(0,,11,.4)
(0,"?BUS_TRANS_,!M1,,'READ, ! A0, ! PROCESSOR, ! FALSE",1)
(1,"?BUS_TRANS_ !MO, !READ, ! AO_ ! PROCESSOR, ! FALSE",2)
(1,"?BUS_TRANS_ !'MO, !'READ,!A1,!PROCESSOR, FALSE",2)
(1,"?BUS_TRANS, !M1,,!READ,!' A0, ! PROCESSOR,, ! FALSE", 2)
(1,"?BUS_TRANS, !M1,,'READ,!'A1,,! PROCESSOR,, ! FALSE", 2)
(1,"?BUS_TRANS,, MO, ! RWITM, ! AO,,! PROCESSOR, ! FALSE",2)
(1,"?BUS_TRANS, MO, ' RWITM, A1, ! PROCESSOR, ! FALSE",2)
(1,"?BUS_TRANS, !M1,,'RWITM, ! A0, ! PROCESSOR, ! FALSE",2)
(1,"?BUS_TRANS_ !M1,,'RWITM,!A1, ' PROCESSOR,, ! FALSE",2)
(1,"LMD_PUT,,!MO,,!AO,,'RCC_SH, ' FLAG,, (FALSE, TRUE)",3)
(1’"*"’1)

ACCEPT_3

REFUSE, 2

The first line is the automata descriptor. It indicates that the first state is 0, there are 11 transitions
and 4 states. The first transition indicates that the processor PO of M1 requests for a READ
transaction on the block address AO.

The statement REFUSE 2 on the last line indicates to TGV that the state 2 is a refusal state of the
test purpose. The label of transitions which lead to a refusal state are not considered by TGV while
generating the test case. After the READ transaction requested by M1 on A0, we don’t want to
consider other READ transactions. This is expressed by the 8 transitions following the first one.
The statement ACCEPT 3 indicates to TGV that the state 3 is the acceptance state of the test
purpose. When the LMD status of Module M0 changes from Invalid to Shared, TGV should con-
sider that the test purpose is reached. This is mentioned in the test purpose with the transi-
tion (1,”LMD_PUT IMO !A0 'RCC_SH !FLAG (FALSE, TRUE)”,3).

The label “*” stands for otherwise. This mentions to TGV what to do with other observations which
are not specified in the current state (state 1) of the test purpose. With the transition (1,”*”,1),
we indicate TGV to take other intermediate observations into account until it observes the specified
observations (from state 1).

4.3 Generated abstract test cases

In this section, we give the test case generated by TGV starting from the test purpose of Table 1
and formally described above. Then we give some explanations of its content.

des,(0,.,28,,,26)

(0,"'BUS_TRANS,,!M1,,'READ,,!AQ,, ' PROCESSOR,, ! FALSE" ,1)

(1,"LOC_RESP,,?M1,,! ARESP_MODIF",2)
(2,"PACKET_TRANSFER,,?M1,,'MO,'READ,,! AO,,'REQ_PACKET_TYPE,_ !NIL_DATA_ !NETRESP_NIL
L) ! UUTQIOU ! Mll_l ! OIJTQIO" ’3)
(3,"LMD_PUT_?MO.,'AO,,'RCC_SH,,'FLAG,, (FALSE, TRUE) ,_,(PASS)",4)
(3,"BUS_TRANS,,?MO,,'READ,, ' AO_,'RCC_INQ,'FALSE",5)
(5,"LOC_RESP,,?MO,, ! ARESP_RETRY",6)
(6,"LMD_PUT_,?MO, ' A0 !'RCC_SH 'FLAG,(FALSE, _TRUE),(PASS)",7)
(6,"BUS_TRANS,,?MO, 'READ_,'AO_'RCC_INQ,'FALSE",8)
(8,"LOC_RESP,,?MO,, ! ARESP_RETRY, ,INCONCLUSIVE",9)

(8,"LOC_RESP,,?MO,,! ARESP_NULL",10)
(10,"LMD_PUT,,?MO,, ! A0 ,!RCC_SH,,! FLAG,,(FALSE, TRUE), (PASS)",11)
(10,"LOC_DATA_BUS_TRANS,,?MO,,'READ,,!'AO,,!'DO,,!SMC,,'RCC_INQ",12)
(12,"LMD_PUT,,?MO,,'AO,,'RCC_SH, ' FLAG,,(FALSE, TRUE), (PASS)",13)

(12, "PACKET_TRANSFER,,?MO,,'M1,,' RESP_DATA_PACKET_TYPE,,!DO,, ! NETRESP_DONE, ! 0UTQIO",14)
(14, "LMD_PUT,,?MO,,' AO,,' RCC_SH, ! FLAG,, (FALSE,, ,TRUE) , ,(PASS) ", 15)

(14, "RCT_PUT,,7M1,,' AO,,'RCC_SH" , 16)
(16,"LMD_PUT,,?MO,,!'AO,,'RCC_SH, ' FLAG,,(FALSE, TRUE), (PASS)",17)
(16,"LOC_DATA_BUS_TRANS,,?M1,,'READ,,! AO,,!' DO, !RCC_0OUTQ,, ' PROCESSOR", 18)
(18,"LMD_PUT,,?MO,,!'AO,,'RCC_SH, ' FLAG,,(FALSE, TRUE), ,(PASS)",19)
(18,"FREE_0OUTQ,?M1",20)
(20,"LMD_PUT_?MO,,'AO,,'RCC_SH,, ' FLAG,,(FALSE, TRUE), ,(PASS) ", 21)
(14,"LOC_DATA_BUS_TRANS,,?M1'READ_,!' A0, !'DO,!'RCC_0OUTQ,, ' PROCESSOR",22)
(22,"LMD_PUT,?MO,, ' A0 !'RCC_SH,,'FLAG,,(FALSE, TRUE),(PASS)",23)
(22,"RCT_PUT,?M1,,'A0,!'RCC_SH",24)

(24, "LMD_PUT,,?M0,,' AO,,'RCC_SH, ! FLAG,, (FALSE, ,TRUE) , ,(PASS) ", 25)

(24, "FREE_QUTQ,,?M1" ,20)

(5,"LOC_RESP_?MO,,! ARESP_NULL",10)
(1,"LOC_RESP,,?M1,,!' ARESP_RETRY, ,INCONCLUSIVE",9)

We can recognize the reverse form (“!” rather than “?”, because it is the tester’s point of view)

of the first transition of the test purpose described before: (0,”!BUS_TRANS !M1 !READ !A0

'PROCESSOR !FALSE”,1). This is a stimuli of the tester. It consists of a READ transaction on
the local bus of module M1. The target of this transaction is the address location A0 (local to MO).
So, this is expected to be a remote operation.

Let us now describe some important transitions of the test case :

4.4

The transition (1,”"LOC_RESP ?M1 'ARESP_MODIF”,2) indicates that the remote cache
controller recognizes the address as a non-local address and force the arbiter of the node to
give a modify (ARESP_MODIF) response. Normally, the memory controller will do nothing,
the remote cache controller is in charge of providing the data. The requesting processor waits
for the data on a dedicated data-path of the cross-bar switch.

The remote cache controller routes the request to the remote link, the request is directed to the
home module MO : (2,”PACKET_TRANSFER 7M1 !M0O !READ !A0 'REQ_PACKET_TYPE
INIL_DATA INETRESP_NIL !OUTQIO0 'M1 !OUTQI0”,3). The packet contains a request to
provide data to module M1.

(3,”LMD_PUT ?MO0 !A0 'RCC_SH !FLAG (FALSE,TRUE),(PASS)” 4) :

Module MO reads his Presence Cache to see the status of the cache line. After that, the entry
is updated (the line is in a Shared (RCC_SH) status), which means that the line is present also
in module M1; an array of booleans is used to represent the presence bits (FLAG (FALSE,
TRUE)). The verdict (PASS) is then emited indicating that the test purpose is reached.

The implementation is allowed to choose the order in which the operations are done. Thus, the
three following transitions constitute an other way to reach the test purpose : (3,”BUS_TRANS
™0 'READ !'A0 'RCC_INQ !FALSE”,5), the remote cache controller of module M0 requests
localy the data. An agent on the bus can always decide to retry the transaction for any
sort of reason (5,”LOC_RESP ?M0 !ARESP_RETRY”,6). This means that the remote cache
controller has to execute again the transaction. Then the Presence Cache changes to Shared :
(6,”LMD_PUT 7?MO0 'A0 'RCC_SH !'FLAG (FALSE, TRUE), (PASS)”,7).

(6,”BUS_-TRANS 7M0 'READ !A0 'RCC_INQ !FALSE”,8) and (8,”LOC_RESP ?MO0 !A-
RESP_RETRY, INCONCLUSIVE”,9) indicate that the remote cache controller of module
MO executes again the local operation. A second retry response should lead to an inconclu-
sive verdict because in TGV we have choosen to cut cycles in order to generate finite test cases.
This is also the case for the transition (1,”LOC_RESP ?M1 !ARESP_RETRY, INCONCLU-
SIVE”,9). An improvement in TGV will overhelm this problem allowing the number of retry
needed.

All the other transitions of this test case can be easily interpreted as they correspond to
different other orders of execution of operations described in previous items.

Results on abstract test cases generation

At this moment of the experimentation, we have formally specified half of test purposes described
in the Test Groups 3 and 4 (see section 4.2.1). For each test purpose, we have generated the
corresponding abstract test case using TGvV. The main problem here concerns the time spent by
TGV to generate test cases. This is due to the complexity of the BuLL’s CC_NUMA architecture
specification which required us sometimes to refine the test purposes in order to speed up the test
generation with TGV.

5 Implementation of the generated test cases

The purpose of this section is to describe the techniques and tools we have developed in order to
make the abstract test cases generated by TGV executable in the testing environment of BULL’S
CC_NUMA architecture (called SIM1 environment). To do so, we start by describing the SIM1
environment and principally the testing methodology currently used in SIM1 environment. Then,
we present the new testing architecture. Finally, we describe an example on using this architecture.

5.1 The current testing architecture

The SIM1 Burr’s CC_NUMA testing environment structure consists of three modules, connected
on a Remote Interconnection Network. Each module is composed by Processor Behavioral Mod-
els (MPB Bus Model), Memory Array and Memory Control, Arbiter and I/O Block, Coherency
Controller, Remote Cache Tag that contains the Tag of Remote Cache and the Presence Cache.
Figure 3 shows the current testing environment. For sake of clarity, the MBPs in th figure are put
outside of the other components of a module, even though in the environment all the components
of a module are really together.

The simulation environment is based on the Synopsys simulation environment, composed of kernel
event simulator (VSS kernel : VHDL System Simulator) and a front end human interface (VHDL
Debugger). The models of BuLL’s CC_NUMA architecture are linked to the VSS in order to
obtain a single executable simulator file. The VSS is in charge of downloading the outputs which
are issued by the PROBE lines into a file (PROBE.OUT file in Figure 3). A CPU#i (MPBi in
Figure 3) expects an input table which contains the commands to the MPB model in an intermediate
format. The MPBgen application is in charge of converting the MPB input commands format (input
files) into the intermediate format (input tables). The first step in the testing methodology is to
write the input files.

5.1.1 Input files

An input file describes a sequence of transactions to be executed by one CPU. The input files
are written according to the informal test purposes specified in the test plan document. This is
currently done by hand. There is one input file per MPB, and the main difficulty in describing
these files is the synchronization of the CPUs w.r.t the test purpose. In fact, there are two cases of
synchronization:

Case 1 (Intra-CPU Synchronization): In the case where all the transactions have to be exe-
cuted by one CPU, that is materialized by only one input file, the synchronization is achieved
by using the SYNC_CYC transaction. This transaction is a “barrier” for any subsequent
operation issued by the same processor, and this barrier, being in the processor itself, is a
“global barrier” for all the possible target we can have in CC-NUMA architecture.

Case 2 (Inter-CPUs Synchronization): In the case where the transactions of the test purpose
have to be executed by several CPUs, the problem is to achieve an inter-CPUs synchronization.
The participant CPUs may belong to different modules. The previously described SYNC_CYC
transaction can also be used in this case. Another way to achieve this synchronization consists
in submitting one input file to its corresponding CPU. Then after an estimated delay ¢ of
the execution, the next input file is submitted to an other CPU which possibly belongs to an
other module. The difficulty of this synchronization mechanism lies in the estimation of ¢.

10

MODULE 1 SYNOPSYS MODULE 0 MODULE 1 MODULE 2

SIMULATION / MPBO

ENVIRONMENT

MODULE 0 \

DPCI.C

CC.VHD

MEMORY
& SMC.VHD

REMOTE_
NETWORK.C

VHDL Debugger

i

C

RC.C

PROBE.VHD

Figure 3: Current testing environment of the BuLL’s CC_NUMA architecture

5.1.2 Owutput Analysis

Once the execution of the different input files has been completed, a PROBE output file is generated
(see Figure 3). This file contains for each module the sequence of actions which has been effectively
executed in the system together with the Local Memory Directory and Remote Cache status. Each
action is associated with a stamp, that is the starting time of its execution. One line of this file
has the following form :

PROBE #0 ---> L_Bus 620 burst rwitm A0 Tag 00 addr=014000AA00 Pos_Ack Resp_Rerun
at time 660 NS

It means that the PROBE of Module#0 observes at time 660 NS a RWITM transaction on the local
bus 620, the tag of the transaction is 00, the target of the transaction is the address 14000AA00,
the transaction is positively acknowledged and a Resp_Rerun response is locally delivered to the
requestor. Currently, the analysis of the output file is done by hand using some empirical rules. It
consists in comparing each line of the PROBE file with what was specified in the test purpose and
what is informally described in the test plan document. Finally a verdict is emitted at the end of
the analysis.

The main problem here is the analysis task which is completely based on informal specifications and
informal notion of conformance which may sometimes lead to false verdicts. The TGV approach
brings a solution to that problem since the verdicts are formally specified in the test cases.

5.2 The new testing architecture

The test cases generated by TGV are abstract in the sense that they are specified independently of
the testing environment. There is one test case per test purpose (correponding to one of the tables
described in the test plan document). In this section, we present the tools we have developped to
make this abstract test cases executable in SIM1 environment.

An abstract test case generated by TGV is a direct acyclic graph in which each branch describes
a sequence of interactions between the tester and the system under test. This means that input

11

MODULE 1 SYNOPSYS MODULE 0 MODULE 1 MODULE 2

SIMULATION /7 @ @ @ MPBO

ENVIRONMENT,

NETWORK.C
C

MODULE 0 .

(orac)
Input Input Input Input
Table X Table X | | Table X Table X
\ / A
MEMORY 4 BATCH TESTER
& SMC.VHD EXCITATOR
REMOTE_
IXIT_FILE X TEST_PURPOSE_X.AUT|

TEST_CASE_X.AUT

VHDL Debugger
RC.C

| TRANSLATOR ANALYSOR
PROBE.VHD \ / ‘
PROBE_OUT_X
—OUT_ _ PROBE_OUT_XAUT VERDICT X

Figure 4: The BuLL’s CC_NUMA architecture SIM1 batch testing environment proposal

actions targeting the system under test and output actions observed by the tester are put together
in the same test case. Furthermore, input actions mostly depend on the output previously observed.
This way of generating test cases is suitable to network protocols conformance testing where the
testing activity is “interactive”. We have seen in section 5.1 that the testing activity currently
used in SIM1 environment is rather “batch”. Indeed, it consists in three independant steps: (a)
stimulating the system, (b) collecting all what has been observed (including the stimulus), and (c)
analysing and concluding with a verdict. So, the problem we have to tackle here is to implement
interactive abstract test cases on top of batch testing environment. Basically, the solution we
propose consists first in translating what has been observed during step (b) from the system into a
trace in the model of the system. Then, this trace is analysed according to what has been forseen
in the abstract test case.

Figure 4 shows the new testing environment and principally the overall structure of the batch tester
package we have developed. The tester package consists of three applications.

The EXCITATOR application deals with the conversion of a test purpose (called TEST_PURPO-
SE X.AUT in Figure) described in the format of TGV into a format readable by the MPBs. Once
the conversion is done, the EXCITATOR proceeds to the stimulation of the MPBs. Then, the VSS
kernel generates the probe output file (called PROBE_OUT _X). This file describes what has been
effectively observed from the system under test.

The TRANSLATOR application is in charge of translating the probe output file into a trace
in the specification model. This translation is necessary to make possible the analysis of the
observation according to what has been forseen in the specification.

Both EXCITATOR and TRANSLATOR take into account some Implementation eXtra Information
for Testing (called IXIT_FILE X in Figure). These information describe the mapping between the
abstract data values of the formal specification and the real data values of the system under test.

Finally, the ANALYSOR application proceeds to the analysis of the trace generated by the
TRANSLATOR according to the given test case (called TEST_CASE_X.AUT) and delivers a verdict
together with some diagnostic information. A correct trace must be a branch of the test case which

12

leads to a PASS verdict. The analysis consists then in sychronously traversing the trace and the
test case, where the synchronization is the equality of labels (without verdict). The ANALYSOR
is independant from the specification and the implementation. It only assumes that the test case
and the implementation trace are described by deterministic automata.

Since the TRANSLATOR and the EXCITATOR are automatically produced using compiler gen-
erators, the tester package can be reused to test other batch systems without major effort.

In its current version, the tester package doesn’t include the EXCITATOR application. Indeed,
this application is quite easy to do by hand in the case of batch testing.

5.3 Example on using the tester package
We present in this section the results obtained using the tester package for the example of section 4.3.
Probe output file generation When the system under test is stimulated by the READ transac-

tion, the VSS kernel produces the following trace. This trace describes all the operations performed
by the system.

PROBE # 1 ---> L_Bus 620 burst read_tt A0 Tag 00 addr=0140042000 Pos_Ack Resp_Mod

PROBE # 1 ---> BLINK SID=2 fm 0010 to home 0000 R_tag=07 (rq=0010 07) burst read_tt
WIM=101 addr=000140042000 retry=00 at time 880 NS

PROBE # 0 ---> BLINK SID=0 fm 0010 to home 0000 R_tag=07 (rq=0010 07) burst read_tt
WIM=101 addr=000140042000 retry=00 at time 1200 NS

PROBE # 0 ---> L_Bus LMD update : address = 0140042000 status = SHD 1,

PROBE # 0 ---> L_Bus LMD update : address = 0000042000 status = INV -———————————————

PROBE # O ---> L_Bus LMD update : address = 0000042000 status = INV --——-——————-————=

PROBE # O ---> L_Bus LMD update : address = 0000042000 status = INV -———————————————

PROBE # 0 ---> L_Bus RCC burst read_tt A0 Tag 7C addr=0140042000 Pos_Ack Resp_Null

PROBE # O ---> L_Bus Data Transaction for Tag ’L111°C data=DEADBEEFFEDCBA98 at time 2260 NS

PROBE # O ---> BLINK SID=2 fm 0001 to part 0011 R_tag=07 R_Done data=DEADBEEFFEDCBA98

PROBE # 1 ---> BLINK SID=1 fm 0001 to part 0011 R_tag=07 R_Done data=DEADBEEFFEDCBA98

PROBE # 1 ---> L_Bus RCT update : address = 0140042000 status = SHD

PROBE # 1 ---> L_Bus Intv. Data Xact. for Tag 00 data=DEADBEEFFEDCBA98

IXIT information The trace of the system is therefore submited to the TRANSLATOR appli-
cation with the following IXIT information. These information give the correspondance between
abstract values and real values.

MO = MODULE O

M1 = MODULE 1

A0 = ADDRESS 0140042000
DO = DATA DEADBEEFFEDCBA98

Trace of the specification The TRANSLATOR application translates the trace of the system
into a trace of the specification, the result is given as follow.

des(0,10,11)

(0,"BUS_TRANS !M1 !'READ !AO !PROCESSOR !FALSE",1)

(1,"LOC_RESP !M1 !ARESP_MODIF",2)

(2,"PACKET_TRANSFER !M1 !MO !'READ !'AO !'REQ_PACKET_TYPE !NIL_DATA !NETRESP_NIL !OUTQIO !M1 !0OUTQIO",3)
(3,"LMD_PUT !MO !'A0 !'RCC_SH !FLAG(FALSE, TRUE)",4)

(4,"BUS_TRANS !MO !'READ !A0 !RCC !FALSE",5)

(5,"LOC_RESP !'MO !ARESP_NULL",6)

13

(6,"LOC_DATA_BUS_TRANS !MO !DO !RCC",7)

(7,"PACKET_TRANSFER !MO !M1 !'RESP_DATA_PACKET_TYPE !DO !NETRESP_DONE !OUTQIO",8)
(8,"RCT_PUT !M1 'AO '!'RCC_SH",9)

(9,"LOC_DATA_BUS_TRANS !M1 !DO !'PROCESSOR",10)

Trace analysis Finnaly, the obtained trace is analysed according to the test case generated
by TGV (see Section 4.3). This is done by the ANALYSOR application. The output of the
ANALYSOR given below describes the traversed part of the test case during the analysis and the
verdict which has been found. The pass verdict means that the system under test is conform to
the specification w.r.t the given test purpose.

TC traversed part...

(0,"BUS_TRANS !M1 !'READ !AO !PROCESSOR !FALSE",1)

(1,"LOC_RESP !M1 !'ARESP_MODIF",2)

(2,"PACKET_TRANSFER !M1 !MO 'READ 'AO !REQ_PACKET_TYPE !NIL_DATA !NETRESP_NIL !OUTQIO 'M1 !OUTQIO",3)
(3,"LMD_PUT !MO !'AO !RCC_SH !FLAG (FALSE, TRUE), (PASS)",4)

IUT(3),TC(3): PASS

5.4 Results on using the tester package

The main difficulty in executing the test cases was in the fact that the format of the test cases is
different from the probe output format. The tester package brings solution to this problem.

All the test cases generated by TGV have been executed in the testing SIM1 environment. For each
test case and the corresponding probe output file, the testing activity is almost instantaneous.

6 Conclusion

In this paper, we have presented an end to end industrial case-study concerning the automatic
generation of executable tests suites for the Cache Coherency Protocol of the BuLL’s CC_LNUMA
Architecture. From the formal specification in Lotos language of this architecture and formalized
test purposes, we have generated abstract test suites using the prototype TGV. The generated test
cases have been experimented in the real testing environment of BurLL’s CC_NUMA architecture
using the software toolset (called the tester package) we have developped. At this stage of the
experiment, we have covered all the test purposes described in the test plan, except those requiring
an interactive approach. In order to cover all the test plan, some improvements are needed for both
TGV and the tester package, such as:

e the introduction of cycles in the test cases in order to reduce the inconclusive cases; this
should improve the quality of the generated test cases,

e some tests need be executed in an interactive way; this requires to extend both the tester
package and the testing environement.

The main benefit in using the TGV approach is that we only have to formally specify the system to
test and the test purposes, then all the testing activity would be completely automated. The time
spent in specifying the BuLL’s CC_NUMA architecture, formalizing test purposes and generating
the test cases with TGV is completely paid by the better correctness and the confidence to put in
the implementation.

14

This industrial experiment also demonstrates that the prototype TGV which was developped for
conformance testing of communication protocols can also be efficiently used to generate tests for
hardware architectures.

Acknowledgements : This work has been done in the framework of DYADE, the Bull-Inria

Research Joint Venture. It has been supported by the Bull R&D PowerPC(TM) technology
Platforms Division, headed by Angelo Ramolini. Special thanks to Pierpaolo Maggi and
Paolo Coerezza and all the methodology office in Pregnana for their help in providing the
inputs for our case study. We also want to thank all the member of the TGV-TEAM of Irisa-
Rennes/Pampa & Verimag-Grenoble/Spectre, and particularly Pierre Morel, Thierry Jéron &
Claude Jard, for the time they spent in improving “on-the-fly” TGV during this experiment.

References

1]

J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experiment in automatic generation
of test suites for protocols with verification technology. Science of Computer Programming -
Special Issue on Industrial Relevant Applications of Formal Analysis Techniques, To appear,

1997.

L. Doldi, V. Encontre, J.-C. Fernandez, T. Jéron, S. Le Bricquir, N. Texier, and M. Phalippou.
Assessment of automatic generation methods of conformance test suites in an industrial con-
text. In B. Baumgarten, H.-J. Burkhardt, and A. Giessler, editors, IFIP TC6 9" International
Workshop on Testing of Communicating Systems. Chapman & Hall, September 1996.

M. Faci and L. Logrippo. Specifying Hardware in LOTOS. In D. Agnew, L. Claesen, and
R. Camposano, editors, Proceedings of the 11th International Conference on Computer Hard-
ware Description Languages and their Applications, pages 305-312, Ottawa, Ontario, Canada,
April 1993.

G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. Zulian. Specification and Verification
of the PowerScale’™ Bus Arbitration Protocol : An Industrial Experiment with LOTOS. In
R. Gotzhein and J. Bredereke, editors, Proceedings of the Joint International Conference on

Formal Description Techniques for Distributed Systems and Protocols, and Protocol Specifica-
tion, Testing, and Verification FORTE/PSTV’96, Kaiserslautern, Germany, October 1996.

J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-fly verification techniques for
the generation of test suites. In A. Alur and T. Henzinger, editors, Conference on Computer-
Aided Verification (CAV ’96), New Brunswick, New Jersey, USA, LNCS 1102. Springer, July
1996.

T. Jéron and P. Morel. Abstraction et déterminisation & la volée : application & la génération
de test. In G. Leduc, editor, CFIP’97 : Colloque Francophone sur I’Ingénierie des Protocoles,
pages 255—270. Hermes, September 1997.

E. Brinksma and T. Bolognesi. Introduction to the ISO Specification Language LOTOS. In
Computer Networks and ISDN Systems, Vol. 14, pages 25-59, North-Holland, 1987. Elsevier
Science Publishers B.V.

15

8]

[10]

J.-C. Fernandez, H. Garavel, .. Mounier, A. Rasse, C. Rodriguez, and J. Sifakis. A Tool
Box for the Verification of Lotos Programs. In 14th International Conference on Software
Engineering, Melbourne, Australia, May 1992.

H. Garavel and J. Sifakis. Compilation and Verification of LOTOS Specification. In L. Lo-
grippo, R. Probert, and H. Ural, editors, Proceedings of the 10th International Symposium on
Protocol Specification, Testing and Verification, pages 379-394, Amsterdam, North-Holland,
June 1990.

D. Lenoski, J. Laudon, K. Gharachorloo, and J. Hennessy. The Directory-Based Cache Co-
herency Protocol for the DASH Multiprocessor. Technical Report CSL-TR-89-403, Computer
System Laboratory, Stanford University, CA 943054, 1989.

16

