Reachable state space analysis of
LOTOS specifications*

A. Kerbrat
VERIMAGH

We present a symbolic analysis technique for LOTOS programs with integer variables
on which only linear expressions are allowed. The technique is applicable to models gen-
erated by the LOTOS compiler of the CZESAR-ALDEBARAN toolbox which are Petri nets
extended with guarded commands. It allows to compute a predicate on variables charac-
terizing the set of the reachable states or an upper approximation of it. Predicates are
represented as systems of linear inequalities on program variables. We implemented a tool
for performing the operations necessary for the analysis such as conjunction, disjunction,
widening operation as well as comparison of predicates. The method is applied to two
examples showing that non trivial relations between program variables can be discovered

1. Motivations

Most formal verification methods are based on model checking: starting from a specifica-
tion written in any Formal Description Technique with well defined operational semantics,
a model is build and properties are checked on this model. The majority of the model
checking verification techniques are based on a more or less exhaustive exploration of the
graph, either for deadlock searching, checking of logical properties or checking of equiv-
alence between the model and a property. The performances and applicability of these
methods depend greatly on the size of the model to be checked. Unfortunately, real life
examples tend to produce huge models: this problem is known as the state explosion
problem.

Various improvements have been introduced on the classical enumerative exploration
of the fully generated model in order to cope with this problem. The first class of im-
provement try to optimize the exploration of the model, either by avoiding its complete
generation (“on the fly” techniques [11, 24]) or its complete exploration (Partial order
techniques [15, 24]), or by exploration of an abstraction of the model [16] . A second class
of improvement concerns the representation of the model: the aim of symbolic techniques
is to avoid the explosive enumerative representation of a model by the representation
and manipulation of sets of states instead of individual states. Omne particular tech-
nique, Binary Decision Diagrams [5] (BDD) has already a story of success in hardware
verification [7, 23] and has been applied successfully in other concurrent programming
domains [3, 12]. However, the effectiveness of BDDs depends greatly on the structure

*This work has been partly supported ESPRIT-BRA action “REACT”
fAuthor address: VERIMAG, Miniparc ZIRST, 38330 Montbonnot, France.
e-mail: Alain.Kerbrat@Qimag.fr
#Verimag is a joint laboratory of CNRS, Institut National Polytechnique de Grenoble, Université Joseph
Fourier and Verilog SA associated with IMAG.

of the model to represent. In particular, one major cause of the state explosion is the
presence of variables in the program such as counters, which cannot be handled directly
by BDDs.

Another idea is to use symbolic techniques based on an implicit representation of nu-
merical values. Such techniques are widely applied in the context of semantic analysis of
imperative languages (e.g. [9, 17, 4]) and are now introduced for the analysis of real-time
systems (e.g. [1, 21]).

The aim of this paper is to present an analysis technique based on a partly symbolic
representation of the model. The idea is to keep the control structure of the program
explicit and to represent its data part symbolically by systems of linear inequalities known
as polyhedra. This approach offers several advantages, such as the possibility to deal
with infinite models and the checking of properties expressed in terms of variables of the
program instead of actions.

Together with this model, we present a approzimate forward analysis method success-
fully applied in other contexts [9, 19]. Applied with polyhedra, this method allows the
analysis of linear relations among variables of the program and the computation of an ap-
proximation of the reachable states space. We will show the various applications of these
methods to the analysis of LOTOS specifications with integer variables and the results
given by our implementation in the CZESAR-ALDEBARAN toolbox [13] context.

2. Definitions

We propose to work on a model which keeps a distinction between the control part and
the data part, presented below as an extended automaton.
An extended automaton is a tuple M = (C,V, T, qy) where

e (' is a finite set of locations

e V is a finite set {z1,22,...,2,} of variables of IR . We will call a valuation the
function v which associates a real value v(z) to each variable z € V. A state of the
underlying model is defined as a couple (/,v) with [€ C' and v is a valuation. We
will note @ C C' x IR" the (possibly infinite) set of all possible states.

e T is a finite set of transitions. Each transition is a tuple (I, [2,7v, @) where :

— 1,13 € C are respectively the source location and the target location

— v is the guard of the transition. It is a conjunction of m linear constraints, each
constraint being defined as a triple (a,b,r) where a is a vector of Z", b € Z
and r is a comparison operator belonging to {<, <,=,>,>}. The guard defines
a conver set of points of IR" and is called a linear system. Given a set ® of
valuations, the value of v(®) is given by the intersection of the set of points
defined by v and the set ®. If the set ® is convex, then the intersection & N~
is convex too.

— «a is an action, defined as a linear assignment from valuations to valuations.
It is given as a couple (A, B) such that A € Z"*" is a square matrix of
integer coefficients and B € Z" is a vector of integer coefficients. Given a

linear assignment o = (A, B) and a set ® of valuations, we note a(®) the
transformation by a of ®:

o(®) ={Av+ B |v e &}
e go = (lo,v9) is the initial state.

We will note ¢; =% ¢ the transition between ¢; = (l1,v1) and g2 = (l2,v2) such that
It = (l1,la,7,a) € Tyv1 € ¥ Avg = a(vy).

A run of this automaton is a finite or infinite sequence gy == ¢ =% We will say
that a state ¢ = ([, v) is reachable if and only if there exists a run g L ¢ 2% ... such
that 4¢ > 0,q9 = ¢;.

We will note Reach the set of all reachable states.

More precisely, we are interested in the computation of the set of reachable valuations

for any location [€ L, that we will note ¢;:

¢ ={v|(l,v) € ¢}
In the following, we will call ¢; the context of the location .

2.1. From Lotos specification to extended automaton

Given the type of variables used in an extended automaton, we will first restrict our-
selves to LOTOS specifications with integer or enumerated variables, and linear expressions
on these variables. The translation of a LOTOS program into an extended automaton suit-
able for analysis is done in two steps, via the interpreted Petri Net provided by the CESAR
[14] compiler. This interpreted Petri Net is a safe Petri Net decorated with guards and
operations on variables. The Petri Net is then simulated without taking account of the
variables, to provide the control part of the extended automaton. This simulation can
in some cases generate a extended automaton with unreachable locations. However, this
automaton is generally much smaller than the explicit model, due to the implicit rep-
resentation of the numerical variables. The whole process is best resumed by the figure
1.

During the translation, all the correspondences between locations of the automaton and
places of the Petri Net are kept. In particular, all transitions in the extended automaton
refer to a transition in the Net. As the inverse relation is also kept, we can associate to a
given transition in the Net the set of corresponding transitions in the extended automaton.
These informations give the possibility to interpret automatically the properties deduced
on the automaton as properties on the Net.

The current version of the CESAR compiler dees not allow us to extend this backward
interpretation up to the LOTOS program, but still the Petri Net generated matches closely
the structure of the source program, so any information obtained on the Net is easy to
understand on the LOTOS specification.

3. Forward analysis

The computation of a set of reachable states from the initial state is usually performed
by the resolution of a least fizpoint equation z = F(z), where = represents sets of states

LOTOS specification

Interpreted Petri Net

[Control simulator]

Extended automaton

Figure 1. LOTOS to extended automaton

and F is defined as a transformation on sets of states. When dealing with programs using
numerical variables, we face two problems:

1. How do we represent sets of states 7 We need an efficient representation which can
be normalized (for comparison of elements) and allows the definition of an ordering
relation (for fixpoint computation).

2. As the set of all states can be infinite, how do we perform (possibly) infinite fixpoint
computations ?

Both problems can find an answer in the context of abstract interpretation.

3.1. Abstract interpretation

Abstract Interpretation is a useful method proposed by [8] for computing formally and
automatically an approximation of the dynamic behaviour of a program. It gives a way
to establish a correspondence between the concrete domain and an abstract domain on
which representation of elements becomes simpler and more efficient. An application of
this framework proposed in [9] gives us an answer to our first question: they propose to
represent a concrete set ¢ of valuations of variables by an abstract representation given
by the convex hull ® of the set ¢. This convex hull can be defined as the set of solutions
of a system of linear constraints, i.e. a convex polyhedron.

We first recall the definition of a convex polyhedron, then we present how the usual
operators on sets such as inclusion, union, ... translate in terms of operators on polyhedra.

Convex polyhedron

A convex polyhedron P can be expressed as one of the following dual representations:

e a system of linear inequalities also called its constraint system: P = {Z | AZ > B}
where = {z; |1 €[l...n|Az; € R}, Ac Z™" and B € Z™.

e a system of generators, which is a couple (V, R) where V and R are finite sets of
vectors of IR", called respectively vertices and rays:

P={Y Xowi+ Y pirj|Xi>0,u >0 X=1}
v €V ri€ER i

We use an efficient algorithm initially proposed by [6] then improved and implemented
by [25] to compute one representation from the other. This algorithm also allows to
minimize each representation, by the detection of redundant constraints in the constraint
system and conversely redundant generators.

Most of the operators needed for the computations of fixpoints are directly defined as
operators on polyhedra. Given two convex polyhedra P and P’, their minimal system
of inequalities (A, B) and (A’, B') and their minimal system of generators (V,R) and
(V', R'), we define the following operators:

Test operators:
e Emptyness: P is empty if and only if V = §)

e Inclusion C: PC P& YveV,Av> B andVr € R,/ A'r >0
(each vertex and ray of P satisfies the system of inequalities of P')

¢ Equality =: P=P' < PC P and PCP

Set operators:

e Intersection IM: the polyhedron Pr(Q is defined by the system of inequalities given
by the conjunction of (A4, B) and (A', B')

e Union: the union of two convex polyhedra is not (in general) a convex polyhedron.
We will approximate this operator by the convez hull operator

e Convex hull L: The convex hull of P and P’ is the convex polyhedron defined by
the system of generators (V UV',RU R’)

e Linear assignment: given a = (A", B") a linear assignment, then «(P) is the
convex polyhedron defined by the system of generators (V”, R") where
V'={A"v+ B"|veV}and R ={A"r |r € R}

z < 1,000,000

rz:=z+1

Figure 2.

3.2. Fixpoint computation acceleration

Choosing convex polyhedra as abstract domain dces not provide an answer to our
second problem: the lattice of convex polyhedra is of infinite depth, so we can still be
faced with infinite fixpoint computations. It would be possible to choose an abstract
domain either finite or of finite depth: in that case, all fixpoint computations converge in
a finite number of steps. However, abstract domains of this kind are usually uninteresting,
giving too inaccurate approximations. Furthermore, even if a fixpoint terminates, it may
do so in too many steps to be of any practical interest: if we consider the example of
figure 2, a classical iteration starting with z := 0 would take 1,000,000 steps before giving
the obvious result {0 < z < 1,000,000}.

To complete the framework of abstract interpretation, [8] propose another kind of ap-
proximation, which enforces the convergence of an infinite fixpoint computation by ex-
trapolation of its limit. This technique is based on the use of a widening operator and
allows to compute an upper approximation of a least fixpoint, giving a safe approximation
of the desired result.

If we consider the fixpoint equation ® = F(®), it can be written as the limit of the
sequence

O — |

{ (I)(n+1) — F((I)(n)) (1)
We define a widening operator as follows:

Definition 3.1 (Widening operator)

Given a complete lattice L, a widening operator NV : L x L — L satisfies the following
properties:

o Vz,y€e L,z Uy C zVy
e for all increasing chains xy C 1 C --- the chain yo = o, Yir1 = YiVT;y1 1S not

strictly increasing, i.e. the limit of the sequence can be computed in a finite number
of steps.

The sequence (1) then becomes:

¢(0) - L

") = (T F (™) if F (o) Z ™)
¢t = ¢ if F(p™) E ¢

PYVQ

P = {(w,y) | (i
@={@w | (

rPVQ={(zy | (1 < = < y)}

8N

ININ INIA
< < 8
IAINA INIA
W w N DN
8 8
N——— N———
N— —

NS

Figure 3. Widening operator

3.3. Widening operator for polyhedra
A widening operator for polyhedra has been first proposed in [18]. Given two polyhedra
P and @), the basic idea for computing PV (@) is to keep only the constraints of P satisfied

by Q:

Given P = {(z,y) | 1 <o <20 <y<2s}and Q = {(,y) |2< o < 3,2 <y < 3a}
then (see figure 3)

PVQ ={(z,y) |1 < z,z <y}

This widening operator can be improved when P is not full dimensional. In that case,
its system of inequalities can be rewritten in order to maximize the number of constraints
satisfied by Q:

Given P = {(z,y) |1 <2z <2,y=1} and Q = {(z,y) | 1 <y < z < 2}, if we apply the
basic idea of the widening operator, we obtain

PVQ={(z,y) [1 <z <2,1<y}

If we first rewrite P into P = {(z,y) | 1 <y <z <2,y < 1}, the result of the widening
becomes

PVQ = {(z,y) | 1 <y <z <2} This operator satisfies the properties of a widen-
ing operator: the result of the widening contains its operands and it cannot be applied
infinitely without convergence, as if P # @, the system of inequalities of PV Q) will be a
strict subset of the system of inequalities of P.

3.4. Analysis of extended automaton with polyhedra
We can now gather the results of abstract interpretation with convex polyhedra to
apply them on extended automata.

(.
©,
©, 3‘9 az

Figure 4. SCCs computation example

As the set of states () of an extended automaton is partitioned with respect to the set
of locations C, the computation of the reachable states is given by a system of fixpoint
equations. Each equation is associated with a given location [and defines the context of
this location as follows:

o = Fi({on |LLeC}) (2)

In particular, the context of a location [depends only on the contexts of locations [y
such that 3(l1,1,7,a) € T. So the equations (2) become:

& = U , {a(¢11 N 7)}
(li,ly,@)€ET
We can write this system of fixpoint equations directly in terms of polyhedra and
operators on polyhedra. In particular, the guard = of each transition is itself a polyhedron
(conjunction of linear inequalities) and the action a can be directly defined in terms of
linear assignments on polyhedra:

®= U Aa(®yny)} (3)
(llalu’Yua_)eT

Due to the introduction of the convex hull operator, the forward analysis using polyhedra

computes an upper approximation of the reachable states.

3.5. Choice of widening locations
The basic idea to ensure the convergence of the system of fixpoint equation (3) is to
introduce a widening operation in every equation. This system then becomes:

¢ = &V || A{a(®,N9)}
(I1,l7,0)€T

As the widening operator is an important source of loss of accuracy, it is important to
apply it only when necessary. A good intuition is that every cycle of the extended au-
tomaton must contain a widening location, in order to ensure convergence. This condition
is not always necessary, depending on the nature of the automaton: it is not necessary to
set a widening location for a loop doing only an assignment of the form X := K.

We need to choose a minimal (in number of elements) set of widening locations, i.e. a
minimal set of locations v such that every cycle of the automaton contains at least one

state of v. This problem being NP-complete, we use an algorithm of graph decomposition
into Strongly Connected Components (SCC), this decomposition being applied recursively
until no further decomposition is possible. The algorithm gives also for each SCC its entry
point for a depth-first exploration, we will choose this entry point as the widening location
for the SCC. The result of this decomposition is an admissible set of widening locations,
possibly not minimal. The decomposition into SCCs of the example of Figure 4 gives the
following result:

0(1(234))(5(6))(7)

where the (...) operator indicates a SCC. The admissible set of widening locations com-
puted is {1 2 5 6} and a minimal set of widening locations computed would be {2 6}.

3.6. Iteration strategy

Given this system of equations and an admissible set of widening locations, we still
have to choose an iteration order for the computation and stabilization of each fixpoint
equation. All orders are not equivalent: it is better to delay the computation of a context
®; until a maximum of the contexts ®;, it depends on are themselves updated. Hopefully
the decomposition in SCCs of the extended automaton will help us to choose a consistent
iteration strategy, as it allows to sort the locations in a topological order.

The iteration strategy itself consists in a recursive iteration as presented in [4]. The
whole stabilization algorithm (Figure 5) is based on a depth first exploration of the hier-
archy of SCCs. During this exploration, we will stabilize first the innermost SCCs of the
automaton.

The main call to this algorithm is Stabilize(C) (C is the set of all locations). The
context of the initial location is defined by the initial value of the variables. The context
of all other locations is empty. The successors of the initial location are marked not stable.

The application of this strategy on the example of figure 4 could be given by the
expression

0 (L(234)")(2(6))" (7)

where the * operator’s meaning is “

iterate until stabilization”.

4. Analysis example

We have developed a prototype implementation of the approximate analysis described
in the previous sections. We present now the application of this tool on two different
LoToOS programs.

4.1. Read-write protocol

The first example is a simple readers-writers protocol. A common resource is shared
by a pool of potential writers and readers. Reading and writing are mutually exclusive,
only one writer is allowed at a time, but all readers can read together if they want. All
writing demands are counted, and a reader can start to read only when there is no more
writers waiting to write, thus giving priority to the writers over the readers.

The process controlling the access to the resource is given by the following LOTOS
process:

10

procedure Stabilize(Loc : set of locations)

while there exists a non stable location in Loc do
let I € Loc be the least (wrt iteration order) non stable location
= U Ae(@, 0y}
(l,l,v,0)0€T
Mark 1 as stable

if ®;C @] then

if 1 is a widening location then
=9,V

else
b, = @lLJq%

fi

foreach (l,l5,v,a) € T do
Mark l5 as not stable

od

fi

if 1 is an entry point of a sub SCC then
Stabilize(SCC(1))

fi

od

Figure 5. Stabilization algorithm

process RESOURCE[S_READ,E_READ,WRITE_DEMAND,S_WRITE,E_WRITE] (N_READERS, N_W_DEMANDS, WRITING:NAT) : noexit :=
(* N_READERS gives the number of readers currently reading *)
(* N_W_DEMANDS gives the number of writers asking to write *)
(* WRITING indicates that a writer is currently writing *)
[(WRITING eq 0)]—>
(
[N_W_DEMANDS eq 0] ->
S_READ ; RESOURCE [S_READ,E_READ,DEMAND_WRITE,S_WRITE,E_WRITE](N_READERS+1, N_W_DEMANDS, WRITING)
0
[(N_READERS eq 0) and (N_W_DEMANDS gt 0)]1 ->
S_WRITE ; RESOURCE [S_READ,E_READ,DEMAND_WRITE,S_WRITE,E_WRITE](N_READERS, N_W_DEMANDS-1,1)

)

0

WRITE_DEMAND ; RESOURCE [S_READ,E_READ,DEMAND_WRITE,S_WRITE,E_WRITE](N_READERS, N_W_DEMANDS+1,0)
0

E_WRITE ; RESOURCE [S_READ,E_READ,DEMAND_WRITE,S_WRITE,E_WRITE] (N_READERS, N_W_DEMANDS,0)

1

E_READ ; RESOURCE [S_READ,E_READ,DEMAND_WRITE,S_WRITE,E_WRITE](N_READERS-1, N_W_DEMANDS,WRITING)

endproc

The global parallel expression for 3 readers and 2 writers is

(READER[S_READ,E_READ] ||| READER[S_READ,E_READ])
| [S_READ,E_READ] |
RESOURCE[S_READ,E_READ,S_WRITE,E_WRITE] (0, 0)
| [S_WRITE,E_WRITE] |
(WRITER[S_WRITE,E_WRITE])

The following results are given for M readers and N writers if we compute the union of

11

the non empty contexts of the extended automaton after forward analysis, we obtain the
following convex polyhedron, which represents an approximation of the smallest invariant
of the program:

N_W_DEMANDS > 0
N_READERS > 0
P =(¢ WRITING > 0
N_W_DEMANDS + WRITING < N
N_READERS + M « WRITING < M

As WRITING can only take the value 0 and 1, this invariant shows that the number
N_READERS can vary from 0 to M if and only if WRITING is equal to 0, thus ensuring
the mutual exclusion. Note that the constraint N.READERS < M dces not appear
anywhere in the LOTOS program, this information has been deduced by the analysis
process and is derived from the control part, not only from the data part of the program.

Another interesting result of this analysis is the detection of unreachable locations
(empty context) in the extended automaton (see the size of the explored part of the
automaton in table 1). This unreachability detection could be later used by the simulation
phase of CESAR in order to remove some transitions of its Petri Net and reduce its state
vector size .

4.2. Scheduler

This example is a task scheduler which handles several classes of tasks, each class is as-
signed a specific job whose completion takes a certain number of time units (TASK#LENGTH).
All these tasks are constrained to run on a single processor. Each class is activated by a
specific interrupt, these interrupts being generated at constant time intervals (INT#LENGTH).
We describe further the version of the protocol running with two classes of tasks.

The LOTOS process generating the interrupts for two classes of tasks is the following:

process Interrupts[TICK,INT1,INT2](t1,t2:nat):noexit :=

[t1 ge IntiLength] -> INT1 7X:nat;Interrupts[TICK,INT1,INT2](0,t2)
[1

[t2 ge Int2Length] -> INT2 ?X:nat;Interrupts[TICK,INT1,INT2](t1,0)
[]

TICK ;Interrupts[TICK,INT1,INT2](t1+1,t2+1)

endproc

When no tasks are running, the control is taken by an Idle process which reacts to the
first interruption coming:

process Idle[TICK,INT1,INT2]:noexit :=
INT1 ;Taski1[TICK,INT1,INT2](0,1)
1
INT2 ;Task2[TICK,INT1,INT2](0,0,0,1)
[
TICK;Idle[TICK,INT1,INT2]

endproc

For each class of task, the number of incomplete tasks (either running or waiting) is
accumulated in a variable (O#). Furthermore, we want to give priority to interrupts of
the second class other the first class. The first class has just to keep count of its own
interrupts and of the time it has already spent running a job. When interrupted by a

12

second class interrupts, it saves its context by giving it to task?2.

process Task1[TICK,INT1,INT2](L1,01:nat): noexit :=
(
TICK;(
[L1 eq TasklLength]-> (* Current task completed *)
([01 le 1]->Id1e[TICK,INT1,INT2] (* No more tasks *)
1
[01 gt 1]1->Task1[TICK,INT1,INT2](0,01-1) (* begin another task *)
)

[]

[L1 1t TaskiLength]->Task1[TICK,INT1,INT2](L1+1,01) (* Running the current taskx*)
)

1
INT1 ;Task1[TICK,INT1,INT2](L1,01+1) (* Keeping count of interrupts of same class*)
1

INT2 ;Task2[TICK,INT1,INT2](L1,0,01,1) (* Prioritary interrupt *)
)

endproc

As the second class has maximum priority, it must keep a trace of all interrupts counters
and length of incomplete tasks of lower priority.

process Task2[TICK,INT1,INT2](L1:nat,L2:nat,01:nat,02:nat): noexit :=
(
TICK;(
[L2 eq Task2Length]-> (* Current task completed *)
([02 le 1]-> (* No more task of this class *)
(
[01 ge 1]1-> Task1[TICK,INT1,INT2](L1,01) (* Continue or begin a task of class 1%)
[1
[01 eq 0]-> Idle[TICK,INT1,INT2] (* No task of any class *)
)
01
[02 ge 2]->Task2[TICK,INT1,INT2](L1,0,01,02-1) (* Begin another task of this class *)
)
[]
[L2 1t Task2Length]->Task2[TICK,INT1,INT2](L1,L2+1,01,02) (* Running current task *)
)
1
INT1 ;Task2[TICK,INT1,INT2](L1,L2,01+1,02) (* Keeping count of lower priority interrupts *)
1
INT2 ;Task2[TICK,INT1,INT2](L1,L2,01,02+1) (* Keeping count of same interrupts *)
)

endproc

Given that priority is given to tasks of the second class over tasks of the first class,
we want to verify that tasks of the second class never wait if the time interval between
the generation of interrupts of class 2 is greater than the duration of tasks of class 2
(INT2LENGTH > TASK2LENGTH). It is equivalent to verify that the number of waiting or
running tasks of class 2 never exceed 1 (0 < 02 < 1) under the previous condition.

An important remark is that exact forward analysis on this example will not terminate,
as the variables of the interrupts generator are not bounded. It is therefore necessary
to approximate the computations in order to terminate. The results obtained for this
example need a little more interpretation than the previous example: if we compute only
the union of all non empty contexts, we obtain IR" (n being the number of variables) as
a result. To obtain more accurate results, it is necessary to investigate at the transitions
level of the Petri Net. In particular, we want to know the possible values of the variable
02 in the process task2. As the only line of this process able to change the value of 02 is

13

the line
INT2 ;Task2[TICK,INT1,INT2](L1,L2,01,02+1)

we have to check the corresponding transition of the Petri Net, which expands to a
set of transitions in the extended automaton. This is done automatically by the tool, by
the insertion of a question mark {027} at this transition in the Petri Net. The analysis
gives the following results: the union of the contexts of source and target locations of
these transitions is computed, giving the following polyhedra (for all examples such that
INT2LENGTH > TASK2LENGTH):

(Tl)
T2 < TASK2LENGTH

L1 < TASKILENGTH

L2 >
1

TASKILENGTH % O1 — L1

T1+ T2 + TASK2LENGTH % T1 |

[VANIVANIVAY

Source locations P =

o H
conmpNo oo

INIA I

\

Target locations P' = ()

and the answer to the question mark is {02 = 1}.
This result shows that:

1. Whenever the control arrives at this transition, 02 = 1

2. The transition is never enabled (target contexts are all empty), so 02 cannot be
incremented.

So 02 can never be greater than 1; tasks of the second class can never wait.

Note that the analysis performances in this case do not depend on the size of the
variables: the example has been run with values for (TASKILENGTH,INTILENGTH) and
(TASK2LENGTH, INT2LENGTH) going from {(2,4) (3,5)} or {(4,8) (10,20)} up to {(30,40)
(40,50)}, with the same performances, thanks to the widening operator. The limitation
here comes from the internal representation of numbers in our package, leading to some
overflows during the minimization of the polyhedra representations.

Another important remark is that the scheduler example is difficult to verify with enu-
merative tools like CESAR: the 2 tasks version remains workable, as the graphs gen-
erated by CESAR are in the order of 100,000 states, but if we consider the 3 tasks
version of the scheduler, even if we bound the variables 71, T2 and 7’3 to at most
maz(INTILENGTH, INT2LENGTH, INTSLENGTH) (otherwise, the resulting graph is infi-
nite), and we choose small values (< 10) for the durations of the different tasks and
the time intervals between interrupts, then the resulting graph generated by CESAR is
more than two millions states big (when we stopped the generation), well beyond the
capacity of classical verification tools.

14

Program Petri Net Extended automaton || Explored automaton || Variables || Analysis

name || places | transitions || states | transitions states | transitions number time

3 readers
20 19 320 608 166 250 3 1.3s

2 writers

4 readers
25 24 2156 4748 754 1257 3 15s

3 writers

5 readers
27 26 4364 10412 1454 2677 3 42s

3 writers

Scheduler
17 27 27 51 24 48 8 4.4s

2 tasks

Scheduler
26 46 46 91 43 88 15 25.9s

3 tasks

Table 1

Analysis performances on a SPARC station 10

5. Conclusion

We have presented a symbolic representation of models well-suited for the approximate
analysis of reachable states space. Although the analysis technique as well as the symbolic
representation presented are not new [18] , their application to concurrent programming
languages like LOTOS is as far as we know an innovation. Similar works for protocols can
be found in [22] and [2], but based on a less powerful extrapolation operator than the
widening operator used in our work.

One of the applications of this analysis technique is of course the verification of some
invariant properties on the variables of the program, as shown on the examples presented.
But we also use our implementation as an abstract debugging tool: it is often useful to
know what are the bounds on variables or relations between them to understand some
behaviours (and often unwanted behaviours) of the program. As our tool allows finely
tuned analysis, at the level of places and transitions of the Petri Net, we can see as a
symbolic debugger of LLOTOS programs.

The analysis technique proposed here is based on a semi-symbolic model, an automaton
being used to describe the control part and a symbolic representation being used for the
data part. The control part of this automaton is derived from a simulation of a Petri
Net. Yet, this automaton is only used for a partitioning of the analysis, in order to obtain
more accurate results. An improvement would be to explore the automaton “on the
fly” during the analysis, to avoid storing it completely and generating unreachable states
and transitions, in the same spirit as those developed in [11, 24|, and also partial-orders
methods such as [15, 24].

A last direction of interest is the application of these techniques to timed automata,
already under investigation in [19] for delay analysis and [20] for linear hybrid systems.

15

An adaptation of our tool to this kind of systems could complement the tool presented in
[10] for the verification of an extension of LOTOS with timing requirements .

Acknowledgments

Thanks are due to Jean Claude Fernandez and Laurent Mounier for their helpful com-
ments and careful readings of this paper.

REFERENCES

1. R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi. Minimization of
timed transition systems (extended abstract). In CONCUR’92, Stony Brook. LNCS
630, Springer Verlag, august 1992.

2. Bernard Boigelot and Pierre Wolper. Symbolic verification with periodic sets. 6th
Workshop on Computer-Aided Verification,Stanford, 1994.

3. A. Bouali and R. de Simone. Symbolic bisimulation minimisation. In G. Bochmann,
editor, Proceedings of the fourth workshop on Computer-Aided Verification (Mon-
treal,Canada), june 1992.

4. Francois Bourdoncle. Semantique des languages imperatif d’ordre superieur et inter-
pretation abstraite. PhD thesis, Ecole Polytechnique, 1992.

5. R. E. Bryant. Graph-based algorithms for boolean function manipulation. [FEFE
Transactions on Computers, C-35(8), 1986.

6. N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear pro-
gramming problem. U.S5.5.R. Computational Mathematics and Mathematical Physics,
8(6):282-293, 1968.

7. 0. Coudert, J.C. Madre, and C. Berthet. Verifying temporal properties of sequential
machine without building their state diagram. In R.P. Kurshan and E.M. Clarke,
editors, Proceedings of the Workshop on Computer-Aided Verification (Rutgers, USA).
DIMACS, June 1990.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In jth POPL,
January 1977.

9. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables
of a program. In 5th. Annual Symp. on Principles of Programming Languages, pages
84-87, 1978.

10. C. Daws, A. Olivero, and S. Yovine. Verifying et-lotos programs with the tool kronos.
In 7th international Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols, 1994.

11. J.C. Fernandez, C. Jard, T. Jéron, and L. Mounier. “on the fly” verification of finite
transition systems. Formal Methods in System Design, Kluwer Academic Publishers,
1992.

12. J.C. Fernandez, A. Kerbrat, and L. Mounier. Symbolic equivalence checking. In
C. Courcoubetis, editor, Proceedings of the 5th Workshop on Computer-Aided Verifi-
cation (Heraklion, Greece), 1993.

13. Jean-Claude Fernandez, Hubert Garavel, Laurent Mounier, Anne Rasse, Carlos Ro-
driguez, and Joseph Sifakis. A toolbox for the verification of lotos programs. In

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

16

Lori A. Clarke, editor, Proceedings of the 1jth International Conference on Software
Engineering ICSE’14 (Melbourne, Australia), pages 246-259, New-York, May 1992.
ACM.

Hubert Garavel and Joseph Sifakis. Compilation and verification of lotos specifica-
tions. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the 10th
International Symposium on Protocol Specification, Testing and Verification (Ottawa,
Canada), Amsterdam, June 1990. IFIP.

P. Godefroid and P. Wolper. Using partial orders for the efficient verification of dead-
lock freedom and safety properties. In Kluwer Academic Publishers, editor, Formal
Methods in System Design, April 1993.

S. Graf and C. Loiseaux. A tool for symbolic program verification and abstraction.
In 5th Conference on Computer-Aided Verification (Elounda, Greece). LNCS 697,
Springer Verlag, jul 1993.

Philippe Granger. Static analysis of linear congruences. In International Journal of
Computer Mathematics, 1989.

N. Halbwachs. Détermination automatique de relations linéaires vérifiées par les vari-
ables d’un programme. These de 3e cycle, Université de Grenoble, March 1979.

N. Halbwachs. Delay analysis in synchronous programs. In 5th Conference on
Computer-Aided Verification (Elounda, Greece). LNCS 697, Springer Verlag, jul 1993.
N. Halbwachs, Y.E. Proy, and P. Raymond. Verification of linear hybrid systems by
means of convex approximations. In First International Static Analysis Symposium.
Springer Verlag, September 1994.

T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking for
real-time systems. In LICS’92, June 1992.

A.S. Krishnakumar. Reachability and recurrence in finite state machines: Modular
vector addition systems. In C. Courcoubetis, editor, Proceedings of the 5th Workshop
on Computer-Aided Verification (Heraklion, Greece), 1993.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit
state enumeration of finite state machines using BDDs. In International Conference
on Computer Aided Design (ICCAD), November 1990.

A. Valmari. On-the-fly verification with stubborn sets. In C. Courcoubetis, editor,
Proceedings of the fifth workshop on Computer-Aided Verificatio n (Elounda, Crete).
DIMACS, june 1993.

H. Le Verge. Un environnement de transformations de programmes pour la synthése
d’architectures régulieres. PhD thesis, Université de Rennes, 1992.

