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Abstract. System-on-Chip (SoC) architectures integrate now many dif-
ferent components, such as processors, accelerators, memory, and I/O
blocks, some but not all of which may have caches. Because the valida-
tion effort with simulation-based validation techniques, as currently used
in industry, grows exponentially with the complexity of the SoC, we in-
vestigate in this paper the use of formal verification techniques. More
precisely, we use the CADP toolbox to develop and validate a generic
formal model of an SoC compliant with the recent ACE specification
proposed by ARM to implement system-level coherency.

1 Introduction

The integration of ever more functionalities in set-top boxes or mobile appliances
such as smartphones increases the complexity of both the embedded software
and the hardware architecture. The latter is usually a complex System-on-Chip
(SoC), featuring a significant number of heterogeneous components. Indeed, a
typical SoC includes nowadays not only processors and memory, but also ded-
icated hardware accelerators and (analog) I/O blocks. Integrating caches into
some of these components (in particular, into processors and hardware acceler-
ators) can increase performance and reduce power consumption, for instance by
avoiding accesses to (possibly off-chip) memory.

In the past, prevalence of fast processors encouraged designers to manage
cache coherency in software, taking advantage of the flexibility of software solu-
tions. However, due to increased software complexity, a recent trend [14, 23] is
to introduce hardware support for cache coherency to improve performance and
to lower power consumption by lightening the load on the processors. Hence,
ARM proposed ACE (AXI Coherency Extensions) [1], which is becoming a de
facto industrial standard for system-level cache coherence in heterogeneous SoCs
(ACE explicitly includes operations, called ACE-Lite operations, for components
without cache). ACE is used in ARM’s big.LITTLE framework, which takes ad-
vantage of two processors (i.e., a “big” and a “LITTLE” one) for low-power SoCs.
Also, STMicroelectronics is about to integrate system level coherency (based on
ACE) in its upcoming SoCs.

As cache coherence protocols are known to be complex and difficult to vali-
date, assuring system-level cache coherency is one of the major challenges faced



by architects of current SoC and NoC (Network-on-Chip) designs. Current in-
dustrial validation flows are based on simulation techniques. Because the related
validation effort grows exponentially with the complexity of hardware archi-
tectures, we study the application of formal verification techniques, where the
human modeling effort increases linearly with the complexity of architectures
(each component is modeled by a process). Thus, the exponential complexity is
supported by automated verification tools.

Concretely, we use the CADP toolbox [10] and its modeling language LNT [3]
for the analysis of system-level cache coherency in a heterogeneous SoC. We
focus on enumerative model checking methods to prove their feasibility on an
industrial case study.

As a first step, we develop a generic formal LNT model of an SoC, including
an ACE-compliant cache coherent interconnect and abstractions of master and
slave components (e.g., processors and shared memory). The model is parametric
and can be instantiated with different configurations (number of masters, number
of cache lines, and number of memory lines) and different sets of supported
ACE transactions. We use a constraint-oriented specification style to model the
global requirements of the ACE specification, which must be guaranteed by
any implementation. The LNT model enables STMicroelectronics architects to
interactively simulate a coherent SoC at system level. We also express several
correctness properties in the MCL language [15] and check them on the LNT
model using the EVALUATOR 4.0 model checker. From the counterexamples
generated by EVALUATOR 4.0, we extract interesting scenarios to be tested on
any implementation of an ACE-compliant interconnect.

The rest of this paper is organized as follows. Section 2 presents the ACE
specification. Section 3 describes our LNT model of an ACE-compliant SoC.
Section 4 discusses the validation of correctness properties. Section 5 surveys
related work. Section 6 gives concluding remarks and directions of future work.

2 System Level Cache Coherency with ACE

In general, a System-on-Chip (SoC) is composed of different hardware blocks like
generic or specialized processors, memories, interconnects, dedicated Intellectual
Properties (IPs), or input/output components. These heterogeneous components
usually access a shared memory consisting of several memory lines. To increase
data access performance, some components may use a cache, containing local
copies of memory lines. An SoC is called cache coherent if write operations to
the same memory line by two components are observable in the same order by all
components of the system. One may distinguish sharable and non-sharable mem-
ory lines. For example, the graphics memory of an SoC might be dedicated to
image processing and exclusively used by the Graphics Processing Unit (GPU),
whereas the remaining memory might be used by either the generic processors
(Central Processing Units, CPUs) and the GPU: in this case, the graphics mem-
ory is non-sharable, and the remaining memory is sharable.
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Fig. 1. ACE states of a cache line

The components of an SoC can be grouped into master components (such
as CPUs) and slave components (such as memories). Components communicate
via an interconnection medium, called the interconnect. In the case of a cache
coherent system, the interconnect is also called a Cache Coherent Interconnect
(CCI). Each component communicates with the interconnect by a communica-
tion port, each of which may consist of several channels. Operations performed
on ports are called transactions.

2.1 ACE

To support system-level coherency, ARM has recently proposed the ACE (AXI
Coherency Extensions) protocol specification [1, 22], which extends the AMBA
(Advanced Microcontroller Bus Architecture)/AXI (Advanced eXtensible Inter-
face) specification. ACE is designed to maintain coherence when sharing data
across caches of an SoC, to enable interaction between heterogeneous compo-
nents, and to ensure maximal reuse of cached data. ACE also supports a flexible
framework for system level coherency: the system designer can determine the
ranges of memory lines that are coherent, the system components that imple-
ment the coherency extensions, and the communication policies.

The ACE specification defines the hardware interface protocol (between com-
ponents and the interconnect), the expected behavior of the components, and
the responsibilities of the interconnect. ACE admits different cache coherence
policies, known as directory based, snoop filter, or no snoop filter models.

2.2 ACE States

ACE distinguishes five states (shown in Figure 1) of a cache line.
A cache line is invalid if it does not contain a copy of any memory line. A

cache line is unique if all other copies of the same memory line are invalid. A
cache line is shared if all other copies of the same memory line are shared or
invalid. A cache line is dirty (respectively clean) if the master is responsible
(respectively not responsible) of writing the data back to the shared memory.

2.3 ACE Ports and Channels

The ACE specification distinguishes three kinds of ports to connect a component
to an interconnect. An ACE port is used for components having a cache memory.



An ACE-Lite port is used for components without a cache. An AXI port is used
for components that do not use coherency.

Each port consists of several channels. ACE distinguishes three types of
channels: read channels, write channels, and snoop channels. Read (respectively,
write) channels are used to read (respectively, write) data; these channels extend
AMBA AXI channels with coherency related parameters. Read channels are the
address read channel (AR, to send read requests) and the data read channel (R,
to send the data back). Write channels are the address write channel (AW, to
send write requests), the data write channel (W, to send the data to be written),
and the write response channel (B, to signal completion of a write).

Snoop channels are used for snoop requests issued by the interconnect to
masters with a cache. Snoop channels are the address coherency channel (AC,
to send snoop requests), the coherency response channel (CR, to answer snoop
requests, indicating whether a data transfer will follow), and the coherency data
channel (CD, to send data to the interconnect).

2.4 ACE Transactions

The ACE specification defines several types of transactions. In the sequel, we
focus on a significant subset of the transactions related to cache coherency. For
each transaction, we present the expected order of operations on the channels. A
master initiating a transaction is called initiator. A master with a cache receiving
a snoop from the CCI is called a snooped master.

Snoop transactions are initiated by the interconnect while handling coherent
transactions and cache maintenance transactions (see below). The interconnect
initiates a snoop request on the AC channel. The snooped master responds on the
CR channel indicating if a data transfer is needed. If so, the data is transferred
on the CD channel indicating also whether the data is shared and whether the
snooped master keeps the responsibility to write the data to memory.

Coherent transactions are used to access sharable memory lines, which might
be in the caches of other components. We focus on four coherent transactions,
all of which are initiated by a master through a request on the AR channel.
The interconnect initiates corresponding snoop transactions to all other masters
with a cache and, if necessary, reads the data from the sharable memory. Finally,
the interconnect sends a reply transaction to the initiator on the R channel,
indicating whether the data is shared and whether the responsibility to write
the data to memory is passed to the initiator.

– A ReadShared transaction obtains a copy of the memory line without any
constraint on the resulting state of the cache line.

– A ReadUnique transaction obtains a copy of the memory line and ensures
that the copy is unique (i.e., no other copies exist).

– A MakeUnique transaction invalidates all other copies of the memory line.
– A ReadOnce transaction obtains the current contents of a memory line, which

may not be copied into the cache.
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Fig. 2. Execution scenario of a ReadOnce transaction

Example 1. Consider an SoC with two ACE masters, a CCI, and an ACE-Lite
master. Figure 2 shows the execution of a ReadOnce transaction (for memory
line M1) initiated by the ACE-Lite master. The CCI snoops both ACE masters,
which answer with a Boolean indicating whether the data is in their cache. The
cache of ACE master 2 contains the data, hence this master also sends the data,
which the CCI forwards to the ACE-Lite master to complete the transaction.

Non-snooping transactions are used to access non-shareable memory lines
which must not be in the caches of other master components. We consider two
non-snooping transactions: ReadNoSnoop and WriteNoSnoop.3

Memory update transactions are used to update shared memory. These
transactions (e.g., WriteBack) are initiated by a master on the AW channel; the
data to write is sent by the master on the W channel. The interconnect writes
the data to the memory and returns an acknowledgement on the B channel.

Cache maintenance transactions are used by master components to access
and impact the caches of other components. In particular, cache maintenance
transactions enable a master to observe the effect of load and store operations
on system caches (which cannot otherwise be accessed). The ACE specification
distinguishes three cache maintenance transactions: CleanShared, CleanInvalid,
and MakeInvalid. These transactions are initiated by sending a request on the AR
channel. The interconnect initiates corresponding snoop transactions to all other
masters with a cache. For a CleanShared transaction, a snooped master may
retain its local copy of the memory line, but for a CleanInvalid or MakeInvalid
transaction, a snooped master must invalidate its local copy. For a CleanShared
or CleanInvalid transaction, a snooped master must also provide the data if the
corresponding cache line is dirty. After all snooped masters have answered, the
interconnect returns an acknowledgement to the initiator, on the R channel.

ACE-Lite transactions are a subset of ACE transactions, namely: ReadNoS-
noop, ReadOnce, CleanShared, CleanInvalid, and MakeInvalid.

3 Those transactions are equivalent to the AXI Read and AXI Write transactions.
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Fig. 3. Model architecture

3 Formally Modeling an ACE-compliant SoC in CADP

We developed a formal model of an ACE-compliant SoC, consisting of a CCI,
masters, and slaves, using the LNT (also called LOTOS NT) language [3], sup-
ported by the CADP toolbox [10]. LNT combines the best features of process-
algebraic and imperative programming languages. The semantics of LNT model
is defined as a Labeled Transition System (LTS), following a black box view of
the system. The LNT.OPEN tool translates an LNT model into an LTS suitable
for (on-the-fly) verification.

Our formal model (about 3200 lines of LNT code) represents the behavior of
the system focusing on the interactions between components. It is parametric and
can be instantiated with different configurations (number of masters, number of
cache lines for each master, number of memory lines per slave, etc.). The model
is generic in the sense that it includes all the behaviors permitted by the ACE
specification for any correct implementation. The masters are non-deterministic
agents, which may initiate all the transactions described in Section 2.

We opted for modeling a fully connected snoop topology, i.e., all coherent
transactions lead to snoop transactions for all masters with cache. Note that the
first industrial implementation [2] of the ACE protocol also has a fully connected
snoop topology.

Each operation on a channel is modeled by an LNT rendezvous4 on a gate
of the same name as the channel.

Example 2. Figure 3 shows the model of an SoC consisting of a CCI, two ACE
masters, an ACE-Lite master, and a shared memory (consisting of three memory
lines). Each ACE master contains two cache lines. The component index is 0 for

4 The semantics of an LNT rendezvous avoids the need to model the acknowledgement
signals at the level of channel transmission. However, the acknowledgement opera-
tion for a non-atomic transaction (e.g., the operation on the B channel for Write
transactions) is represented by an independent LNT rendezvous (on gate B).



the shared memory, 1 (respectively, 2) for the ACE masters, and 3 for the ACE-
Lite master. Notice that this configuration shares most characteristics with the
big.LITTLE architecture.

3.1 Types and Data Structures

Each memory line is characterized by two parameters: an index (of range type
Index Mem, where N is the number of memory lines) and a data (of type Nat).
Hence the shared memory can be represented by an array of values of type
Nat, indexed by the range of Index Mem. ACE states are represented by an
enumerated type called ACE state.

type Index_Mem is range 1 .. N of Nat end type

type Cache_Line is

LINE_C (indC: Index_Cache, S: ACE_state, indM: Index_Mem, data: Nat)

end type

type Mem_Lines is array [1 .. N] of Nat end type

type ACE_state is ACE_I, ACE_UC, ACE_UD, ACE_SC, ACE_SD end type

Similarly, we define an index for system components (Index Component) and
an index for cache lines of a master with cache (Index Cache). ACE transactions
are modeled by an enumerated type ACE Trans.

We introduce an abstract transaction A that simulates any ACE transaction
by executing all the phases of an ACE transaction without changing the ACE
state of cache lines.

3.2 Channels

Each ACE channel is modeled by a typed LNT gate. The types of LNT gates
(called LNT channels) specify the number and types of the parameters (called
offers), i.e., the values exchanged during a rendezvous. All gates have an offer
to represent the ongoing ACE transaction, an offer to represent the initiator
of the current transaction, and an offer to designate the concerned memory
line. Snooping gates (AC and CR) have also an offer to represent the snooped
master. Gates which transfer data (R, W, and CD) have also an offer for the
data. The gates R (read data channel) and CD (snoop data channel) have also
three Boolean offers. DataStatus indicates whether the data is valid, PassDirty
indicates whether the responsibility of writing data to memory is passed, and
IsShared indicates whether the data is shared. The gate CR has a Boolean offer
DataTransfer to indicate if a data transfer will be follow on the CD gate. The
gate B has a Boolean offer indicating if the write has completed correctly.

For verification purposes, we add an offer representing the ACE state of
the cache line to all gates going out from an ACE master (i.e., AR, AW, and
CR). Similarly, the gates between the CCI and a slave have an additional offer
corresponding to the initiator.



process memory [AR: CHANNEL_AXI_AR, R: CHANNEL_AXI_R,

AW: CHANNEL_AXI_AW, W: CHANNEL_AXI_W, B: CHANNEL_AXI_B]

(idMEM: Index_Component)

is

var LINES: Mem_Lines, pending_read: Bool, transR, transW: ACE_Trans,

ind_R, ind_W: Index_Mem, CPU_R, CPU_W: Index_Component, data: Nat

in

-- initializations (not included)

loop select

when pending_read == false then

AR (?transR, idMEM, ?indM_R, ?CPU_R);

pending_read := true

end when

[]

when pending_read == true then

R (transR, idMEM, LINES[Nat(indM_R)], CPU_R);

pending_read := false

end when

[]

AW (?transW, idMEM, ?ind_W, ?CPU_W);

W (transW, idMEM, ind_W, ?data, CPU_W);

LINES[Nat(ind_W)] := data;

B (transW, idMEM, indM_W, true, CPU_W)

end select end loop

end var end process

Fig. 4. LNT process representing the shared memory

3.3 ACE Slave: Shared Memory

The shared memory is modeled by the LNT process shown in Figure 4. The five
gates AR, R, AW, W, and B correspond to the AXI channels. We use the Boolean
pending read to indicate if a read operation is in progress. The behavior of
the memory process is a non-terminating loop, the body of which is a non-
deterministic choice (select5) between three possibilities:6

– Receiving a read request on the AR gate, which is only possible if no read
operation is in progress (pending read == false),

– Sending back a read data on the R gate, which is only possible if a previous
read request was received (pending read == true),

– Receiving a write request.

In our model, a write operation cannot be interrupted by a read operation.

5 The LNT construction “select A [] B [] C end select” presents a non-
deterministic choice between A, B, and C.

6 In an LNT rendezvous, an offer “?x” accepts any value of the same type as variable
x, and the received value is stored in variable x.



3.4 ACE Masters

The cache lines of a master are essentially independent from each other, i.e.,
transactions on different cache lines can freely interleave.7 Hence we choose to
model each master by a parallel composition of cache lines. Each cache line is
modeled by five mutually recursive LNT processes: (1) process cpu initializes the
cache line; (2) process cpu ready represents a cache line that is ready to initiate
an ACE transaction or to receive a snoop request from the CCI; (3) process
cpu reply represents a cache line that has previously initiated an ACE transac-
tion and waits for the reply from the CCI (the cache line is also ready to receive
any snoop request from the CCI); (4) process cpu snoop represents a cache line
that has previously received a snoop request from the CCI and can either reply
to this request or initiate a new ACE transaction; (5) process cpu reply snoop
represents a cache line that has previously initiated an ACE transaction and
has also received a snoop request from CCI: thus, it is both waiting for the re-
ply of the ACE transaction and ready to reply to the snoop request. Each of
these processes behaves as a large non-deterministic choice between all possible
rendezvous. Each branch consists of a guard, a rendezvous with parameters to
handle the ongoing transaction, and a recursive call corresponding to the new
state of the cache line.

In order to generate a smaller LTS in the debug phase of the model, we
can deactivate the non-deterministic choice of cache lines relative to the state
changes permitted by the ACE specification.

3.5 ACE-Lite Masters

The LNT model of an ACE-Lite master is obtained from the model of an ACE
master by removing the handling of snoop requests. Thus, an ACE-Lite master
is modeled by three mutually recursive LNT processes: a process to initialize the
ACE-Lite master, a process lite ready, which can initiate any of the ACE-Lite
transactions presented in Section 2.4, and a process lite reply, which waits for a
reply from the CCI.

3.6 Cache Coherent Interconnect (CCI)

To ease the modeling of all interleavings between the ports of the CCI, we employ
two techniques. First, we model the CCI by a parallel composition of as many
processes as there are ports; each port is always ready to receive a request from
both the corresponding component and other ports. Second, all received requests
are stored in a set and are handled in any order.8

The ports of the CCI communicate internally via dedicated gates, which
are not part of the ACE specification and can be hidden (in the LTS and in
counterexamples), but are useful in the debug phase of the model.
7 Actually, the only constraint is to store the same memory line in at most one cache

line of a same master.
8 Because the numbers of CPUs and cache lines are fixed, the number of requests in

a set is bounded by construction.



Example 3. The CCI of Figure 3 contains four ports: two ACE ports, each com-
municating with an ACE master, one ACE-Lite port communicating with an
ACE-Lite master, and one AXI port communicating with the shared memory.

3.7 Requirements on the Global Ordering of Transaction

The ACE specification includes some global requirements concerning system-
level coherency for the implementation of any ACE-compliant interconnect. Fol-
lowing a constraint-oriented specification style, our LNT model integrates these
global requirements as dedicated processes (one process per requirement and
memory line), composed in parallel with the remainder of the model. Hence,
those processes monitor the system and have a global view of all transactions.
There are two kinds of global requirements:

– Coherency between caches (called horizontal coherency) [1, section C4.10]:
When two masters attempt to write to the same memory line simultaneously
(i.e., the second transaction begins before the end of the first transaction),
then the interconnect must ensure a strict order of the transactions. Con-
cretely, while handling a snoop transaction, the constraint process ensures
that a subset of snoop transactions (relative to the same memory line) are
not handled before the end of the first transaction.

– Coherency between the memory and caches (called vertical coherency) [1,
section C6.5.3]: Data received from caches must be written to the memory
in the correct order. The constraint process monitors write transactions,
prohibiting that an old data overwrites a more recent one.

3.8 State Space Generation

For our analysis, we consider several SoC configurations, each consisting of a
shared memory, one ACE-Lite master, and two ACE masters, with two cache
lines each. To focus on coherency issues, the first cache lines of each ACE master
execute transactions concerning the same memory line (this is suitable accord-
ing to [8]). Each master initiates at most one transaction (chosen from a set of
allowed transactions); thus, the second cache lines of each ACE master never
initiate a transaction (but answer snoop requests). We selected subsets of trans-
action that could create problems for properties to verify.

For each considered configuration, Table 1 gives the size of the corresponding
LTS. Columns one, two, and three give the set of transactions that master 1
(respectively, master 2, or the ACE-Lite master) are allowed to initiate. Column
four tells whether the model includes the processes enforcing the global ordering
requirements; we generate LTSs for models without the corresponding constraint
processes to study their impact on the properties of the system. An LTS of the
model with global constraints is included in the one without global constraints
with respect to strong bisimulation (i.e., the constraints only removed behaviors),
but the state space may be larger because a state now also integrates the current
state of the control process.



Table 1. Experimental results: state space generation and verification

allowed transactions global LTS size properties
m1 m2 lite constraints states transitions ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

S0 {A} S0 yes 93,481,270 308,087,560
√ √ √ √ √

S0 {A} S0 no 105,376,971 351,344,207
√ √ √ √

×
S0 ∅ S0 yes 7,518,552 21,227,610

√ √ √ √ √

S1 ∅ S1 yes 3,685,311 10,649,422
√ √ √ √ √

S1 ∅ S1 no 3,127,707 9,121,134
√ √

× × ×
S2 S2 ∅ yes 3,545,801 11,122,536

√ √ √ √ √

S2 S2 ∅ no 2,819,505 9,095,620
√ √

× ×
√

S3 ∅ S′
3 yes 1,834,195 5,170,829

√ √ √ √ √

S3 ∅ S′
3 no 1,437,412 4,547,398

√ √ √ √
×

S4 S4 ∅ yes 560,299 1,669,886
√ √ √ √ √

S4 S4 ∅ no 599,971 1,780,634
√ √

× × ×
S5 S5 ∅ yes 40,983 63,922

√ √ √ √ √

S5 S5 ∅ no 55,439 98,688
√ √ √ √ √

In the table above, we use those sets of allowed transactions:
S0 = set of all ACE (respectively ACE-Lite) transactions
S1 = {MakeUnique,ReadOnce,ReadUnique,WriteBack}
S2 = {MakeInvalid,MakeUnique,ReadShared,ReadUnique,WriteBack}
S3 = {MakeUnique,WriteBack}, S′

3 = {ReadOnce}
S4 = {CleanInvalid,CleanShared,ReadUnique,WriteBack}
S5 = {MakeInvalid,MakeUnique,WriteBack}

4 Validation

We verify several system-level properties on our model of the ACE-compliant
SoC presented in Example 2. We start by validating the complete and correct
execution of separate transactions, then we verify the coherency of the cache
states, and finally we check data integrity in the system.

We express all these properties in Model Checking Language (MCL) [15], an
extension of the modal µ-calculus with high-level operators aimed at improv-
ing expressiveness and conciseness of formulæ. The main ingredients of MCL
are parametrized fixed points, action patterns enabling to extract data values
from LTS transition labels, modalities on transition sequences described using
extended regular expressions and programming language constructs, and an in-
finite looping operator specifying fairness. The EVALUATOR 4.0 model checker
of CADP can verify MCL properties on the fly, based on the local resolution
of Boolean equation systems, which has a linear-time complexity for (data-less)
alternation-free and fairness formulæ. We wrote also several macros to simplify
writing properties for industrial users.

4.1 Complete Execution of Transactions

To verify that every transaction inevitably finishes, we use the following two
liveness formulæ (ϕ1 and ϕ2):



[ true * . { AR ?op:String ?n:Nat ?l:Nat ... } ] inev ( { R !op !n !l } )

[ true * . { AW ?op:String ?n:Nat ?l:Nat ... } ] inev ( { B !op !n !l } )

These formulæ use the macro inev (L), which expresses that a transition labeled
with L will eventually occur. This macro can be defined as follows:

macro inev (L) = mu X . ( < true > true and [ not L ] X ) end_macro

The first (respectively second) formula requires that each action AR (respectively
AW) is eventually followed by an action R (respectively B). Note the capture of
the exchanged values into the variables op, n, and l in the first action predicate
(using the LNT-like syntax “?variable:Type”, where Type is one of the prede-
fined types of MCL) and the use of the captured values in the second action
predicate.

4.2 Cache Coherency

To verify the coherency of the ACE states of all the caches of the system, we
have to translate the state-based properties to action-based properties, using the
ACE state offer added to transactions issued by cache lines (see Section 3.2).
To simplify the formulæ and to reduce verification complexity, we rename these
transitions using a unique gate G keeping only useful offers.

Two safety formulæ express coherency. The first one (ϕ3), requires that if a
cache line is in the state ACE UD then all other cache lines containing the same
memory line must be in the state ACE I:

[ true * .

{G ?m1:Nat ?indM:Nat "ACE_UD"} .

( not ({G !m1 !indM ?s1:String where s1<>"ACE_UD"}) ) * .

{G ?m2:Nat !indM ?s2:String where (m2<>m1) and (s2<>"ACE_I")}

] false

The second formulæ (ϕ4) is similar to ϕ3 and requires that if a cache line is
in the state ACE SD then all other cache lines containing the same memory line
must be either in the state ACE SC or the state ACE I.

[ true * .

{G ?m1:Nat ?indM:Nat "ACE_SD"} .

( not ({G !m1 !indM ?s1:String where s1<>"ACE_SD"}) ) * .

{G ?m2:Nat !indM ?s2:String

where (m2<>m1) and (s2<>"ACE_I") and (s2<>"ACE_SC")}

] false

4.3 Data Integrity

To verify the data integrity of the system, we use a safety property (ϕ5), which
enforces a correct order of write operations to the shared memory:



[ true * .

{ W !"WRITEBACK" ?c:Nat ?l:Nat ?d:Nat } .

( not { W !"WRITEBACK" !"0" !l !d !c } ) * .

{ W !"WRITEBACK" !"0" !l !d !c } .

(

( not { AC ?any of String ?any of Nat !c ?any of Nat !l } ) and

( not { W ?any of String !"0" !l ?any of Nat ?any of Nat } )

) * .

{ W ?any of String !"0" !l ?h:Nat ?any of Nat where h<>d }

] false

Once a master c initiates a WriteBack transaction to a memory line l of a data
d, and effectively written to memory (which has port number 0), the property
forbids a data h different from d to be written to the same memory line l without
previously receiving a snoop request concerning line l.9

4.4 Model-Checking Results

The verification results of the properties presented in Sections 4.1 to 4.3 on the
LTSs of Section 3.8 are given in columns seven to eleven of Table 1. All LTSs
including the global ordering requirements satisfy (

√
) all five properties.

For LTSs without global ordering constraints, coherency (ϕ3 and ϕ4) and
data integrity (ϕ5) properties may not be satisfied (×). In this case, EVALUA-
TOR 4.0 generates minimal counterexample sequences, which correspond to sce-
narios to be tested (using an industrial testbench) on any implementation of an
ACE-compliant interconnect. This interests STMicroelectronics, because these
intricate test cases challenge the (complex) implementation of the coherency
constraints in an interconnect.

5 Related Work

Formal verification techniques, e.g., (symbolic) model checking and theorem
proving, has been often applied to the verification of hardware designs of cache
coherence protocols, using various modeling languages, temporal logics, and ver-
ification tools [17, 13]. Most works [4, 6, 7, 9, 12, 16, 18, 20, 21] concern elaborated
protocols using more complex topologies than the fully connected snoop topol-
ogy of our LNT model. The principal differences to our work are that we focus
on a generic interconnect that includes the behavior of all correct implementa-
tions and that we study a heterogeneous SoC, rather than verifying a partic-
ular coherency protocol for a homogeneous system. Notice that the notion of
a component without cache (ACE-Lite) snooping components with caches was
introduced by the ACE specification.

9 The number of parameters differs for the rendezvous on gate W between the CCI
and the memory and those between a master and the CCI: for the former, the fifth
parameter corresponds to index of the initiator



The only paper dedicated to the formal verification of the ACE specification
is a methodological guide [19], which shows the benefits of high-level modeling
of system-level cache coherency using Jasper’s formal verification tools. Our
approach differs from [19] by addressing heterogeneous systems (in particular
ACE-Lite masters) and by presenting validation results on an example.

6 Conclusion

We developed a generic formal LNT model of the recent ACE specification [1].
The constraint-oriented specification style proved helpful in the modeling of
general requirements expressed in natural language. Our model has been found
valuable by STMicroelectronics architects, because it enables interactive and
backtrackable step-by-step system-level simulation (using the OCIS tool) of all
ACE-compliant behaviors. We expressed correctness properties as temporal logic
formulæ (in MCL) and verified them automatically (using the EVALUATOR 4.0
tool). Hence, we found that formal verification techniques can be used for the
analysis of heterogeneous coherent SoCs.

This work can be pursued along several directions. First, the generic inter-
connect model can be used to analyze the impact of a coherent interconnect in a
model of a concrete SoC. This requires to refine the models of masters and slaves
to match those used in the SoC. Second, the formal model can be used to guide
test and validation, as a reference model for co-simulation or by (automatically)
extracting interesting test scenarios [11, 5]. For instance, the counterexamples of
Section 4 seem interesting test cases for any ACE-compliant interconnect. STMi-
croelectronics has expressed interest in both directions, as they address issues
faced in the development of future products.
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