
Compositional Verification of Concurrent
Systems by Combining Bisimulations

Frédéric Lang1, Radu Mateescu1, and Franco Mazzanti2

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP†, LIG, 38000 Grenoble, France
2 ISTI-CNR, Pisa, Italy

Abstract. One approach to verify a property expressed as a modal µ-
calculus formula on a system with several concurrent processes is to build
the underlying state space compositionally (i.e., by minimizing and re-
composing the state spaces of individual processes, keeping visible only
the relevant actions occurring in the formula), and check the formula on
the resulting state space. It was shown previously that, when checking the
formulas of the Ldsbr

µ fragment of µ-calculus (consisting of weak modal-
ities only), individual processes can be minimized modulo divergence-
preserving branching (divbranching) bisimilation. In this paper, we re-
fine this approach to handle formulas containing both strong and weak
modalities, so as to enable a combined use of strong or divbranching
bisimulation minimization on concurrent processes depending whether
they contain or not the actions occurring in the strong modalities of the
formula. We extend Ldsbr

µ with strong modalities and show that the com-
bined minimization approach preserves the truth value of formulas of the
extended fragment. We implemented this approach on top of the CADP
verification toolbox and demonstrated how it improves the capabilities
of compositional verification on realistic examples of concurrent systems.

1 Introduction

We consider the problem of verifying a temporal logic property on a concurrent
system P1 || ... || Pn consisting of n processes composed in parallel. We work in
the action-based setting, the property being specified as a formula ϕ of the modal
µ-calculus (Lµ) [18] and the processes Pi being described in a language with
process algebraic flavour. A well-known problem is the state-space explosion that
happens when the system state space exceeds the available computer memory.

Compositional verification is a set of techniques and tools that have proven
efficient to palliate state-space explosion in many situations [11]. These tech-
niques may be either independent of the property, i.e., focus only on the con-
struction of the system state space, such as compositional state space construc-
tion [22,29,32,31,14,33,19]. Alternatively, they may depend on the property, e.g.,
verification of the property on the full system is decomposed in the verifica-
tion of properties on (expectedly smaller) sub-systems, such as in compositional

† Institute of Engineering Univ. Grenoble Alpes

reachability analysis [36,4], assume-guarantee reasoning [28], or partial model
checking [1].

Nevertheless, the frontier between property-independent and property-depen-
dent techniques is loose. In compositional state space construction, to be able to
reduce the system size, a set of actions is selected and a suitable equivalence rela-
tion (e.g., strong bisimulation, branching bisimulation, or divergence-preserving
branching bisimulation — divbranching for short) is chosen, restricting the set
of properties preserved after hiding the selected actions and reducing the system
w.r.t. the selected relation. Therefore, there is still a dependency between the
state space construction and the set of properties that can be verified. Given a
formula ϕ of Lµ to be verified on the system, Mateescu & Wijs [24] have pushed
this idea and shown how to extract a maximal hiding set of actions and an
equivalence relation (either strong or divbranching bisimulation) automatically
from ϕ, thus inviting the compositional state space construction technique to the
table of property-dependent reductions. To select the equivalence relation from
the formula, they have identified an Lµ fragment named Ldsbr

µ , which is adequate
with divbranching bisimulation [24]. This fragment consists of Lµ restricted to
weak modalities, which match actions preceded by arbitrary sequences of hid-
den actions, as opposed to traditional strong modalities 〈α〉ϕ0 and [α]ϕ0, which
match only a single action satisfying α. If ϕ belongs to Ldsbr

µ , then the system
can be reduced for divbranching bisimulation; otherwise, it can be reduced for
strong bisimulation, the weakest equivalence relation preserving full Lµ.

In this paper, we revisit and refine this approach to accommodate Lµ for-
mulas containing both strong and weak modalities. To do so, we define a logic
named Lstrong

µ (As), which extends Ldsbr
µ with strong modalities matching only

the actions belonging to a given set As of strong actions. The set As induces
a partition of the processes P1 || ... || Pn into those containing at least one
strong action, and those that do not. We show that a formula ϕ of Lstrong

µ (As)
is still preserved if the processes containing strong actions are reduced modulo
strong bisimulation and the other ones modulo divbranching bisimulation. We
also provide guidelines for extracting the set As from particular Lµ formulas en-
coding the operators of widely-used temporal logics, such as CTL [5], ACTL [26],
PDL [9], and PDL-∆ [30]. This combined use of bisimulations to reduce differ-
ent parts of the same system makes possible a fine-tuning of the compositional
state space construction by going smoothly from strong bisimulation (when all
modalities are strong) to divbranching bisimulation (when As is empty, as in
the previous approach based on Ldsbr

µ). We implemented this approach on top
of the CADP verification toolbox [12], and demonstrated how it improves the
capabilities of compositional verification on two realistic case studies, namely the
TFTP plane-ground communication protocol specified in [13] and the parallel
CTL benchmark of the RERS’2018 challenge.

The paper is organized as follows. Section 2 recalls some definitions. Section 3
defines Lstrong

µ (As) and proves the main result of its adequacy with the combined
use of strong and divbranching bisimulations. Section 4 presents the experimental
results obtained on the two case studies. Finally, Section 5 contains concluding

remarks and directions of future work. Formal proofs and code of case studies
are available at http://doi.org/10.5281/zenodo.2634148.

2 Background

2.1 LTS compositions and reductions

We consider systems whose behavioural semantics can be represented using an
LTS (Labelled Transition System).

Definition 1 (LTS). Let A denote an infinite set of actions, including the
invisible action τ , which denotes internal behaviour. All other actions are called
visible. An LTS is a tuple (Σ,A,−→, pinit), where Σ is a set of states, A ⊆ A
is a set of actions, −→ ⊆ Σ × A × Σ is the (labelled) transition relation, and

pinit ∈ Σ is the initial state. We write p
a−→ p′ if (p, a, p′) ∈ −→ and p

τ∗−→ p′

if there is a (possibly empty) sequence of τ -transitions from p to p′, i.e., states

p0, . . . , pn (n ≥ 0) such that p = p0, p′ = pn, and pi
τ−→ pi+1 for i = 0, . . . , n−1.

LTS can be composed in parallel and their actions can be abstracted away us-
ing the parallel composition and hiding operators defined below. Prior to hiding,
an action mapping operator is also introduced for the generality of the approach.

Definition 2 (Parallel composition of LTS). Let P = (ΣP , AP ,−→P , pinit),
Q = (ΣQ, AQ,−→Q, qinit), and Async ⊆ A \ {τ}. The parallel composition of P
and Q with synchronization on Async, “P |[Async]| Q”, is defined as (ΣP ×
ΣQ, AP ∪AQ,−→, (pinit , qinit)), where (p, q)

a−→ (p′, q′) if and only if either (1)

p
a−→ p′, q′ = q, and a /∈ Async, or (2) p′ = p, q

a−→ q′, and a /∈ Async, or (3)

p
a−→ p′, q

a−→ q′, and a ∈ Async.

Definition 3 (Action mapping). Let P = (ΣP , AP ,−→P , pinit) and a to-
tal function ρ : AP → 2A. We write ρ(AP) for the image of ρ, defined by⋃
a∈AP

ρ(a). We write ρ(P) for the action mapping ρ applied to P , defined as the

LTS (ΣP , ρ(AP),−→′P , pinit) where −→′P = {(p, a′, p′) | p a−→P p′ ∧ a′ ∈ ρ(a)}.
An action mapping ρ is admissible if τ ∈ AP =⇒ ρ(τ) = {τ}.

Action mapping enables a single action a to be mapped onto the empty set
of actions, onto a single action a′, or onto more than one actions a′0, . . . , a

′
n+1

(n ≥ 0). In the first case, every transition labelled by a is removed. In the second
case, a is renamed into a′. In the third case, every transition labelled by a is
replaced by n + 2 transitions with same source and target states, labelled by
a′0, . . . , a

′
n+1. Action hiding is a special case of admissible action mapping.

Definition 4 (Action hiding). Let P = (ΣP , AP ,−→P , pinit) and A ⊆ A \
{τ}. We write “hide A in P” for the LTS ρ(P), where ρ is the admissible action
mapping defined by (∀a ∈ AP ∩A) ρ(a) = {τ} and (∀a ∈ AP \A) ρ(a) = {a}.

http://doi.org/10.5281/zenodo.2634148

Parallel composition and admissible action mapping subsume all abstrac-
tion and composition operators encodable as networks of LTS [20,11,7], such
as the parallel composition, hiding, renaming, and cut (or restriction) operators
of CCS [25], CSP [2], mCRL [15], LOTOS [16], E-LOTOS [17], and LNT [3],
as well as synchronization vectors3. In the sequel, we write P1 || . . . ||Pn for
any expression composing P1, . . . , Pn using these operators. Given any partition
of P1, . . . , Pn into arbitrary subsets P1 and P2, it is always possible to rewrite
P1 || . . . || Pn in the form (||Pi∈P1

Pi) || (||Pj∈P2
Pj), even for non-associative par-

allel composition operators (e.g., |[. . .]|), using appropriate action mappings4.
LTS can be compared and reduced with respect to well-known bisimulation

relations. In this paper, we consider strong bisimulation [27] and divbranching
bisimulation, which itself derives from branching bisimulation [34,35].

Definition 5 (Bisimulations). A strong bisimulation is a symmetric relation

R ⊆ Σ × Σ such that if (p1, p2) ∈ R then: for all p1
a−→ p′1, there exists p′2

such that p2
a−→ p′2 and (p′1, p

′
2) ∈ R. A branching bisimulation is a symmetric

relation R ⊆ Σ × Σ such that if (p1, p2) ∈ R then: for all p1
a−→ p′1, either

a = τ and (p′1, p2) ∈ R, or there exists a sequence p2
τ∗−→ p′2

a−→ p′′2 such that
(p1, p

′
2) ∈ R and (p′1, p

′′
2) ∈ R. A divergence-preserving branching bisimulation

(divbranching bisimulation for short) is a branching bisimulation R such that if

(p01, p
0
2) ∈ R and there is an infinite sequence p01

τ−→ p11
τ−→ p21

τ−→ . . . with

(pi1, p
0
2) ∈ R for all i ≥ 0, then there is an infinite sequence p02

τ−→ p12
τ−→ p22

τ−→
. . . such that (pi1, p

j
2) ∈ R for all i, j ≥ 0. Two states p1 and p2 are strongly

(resp. branching, divbranching) bisimilar, written p1 ∼ p2 (resp. p1 ∼br p2,
p1 ∼dsbr p2), if there exists a strong (resp. branching, divbranching) bisimulation
R such that (p1, p2) ∈ R. Two LTS P1 and P2 are strongly (resp. branching,
divbranching) bisimilar, written P1 ∼ P2 (resp. P1 ∼br P2, P1 ∼dsbr P2), if their
initial states are strongly (resp. branching, divbranching) bisimilar.

Strong, branching, and divbranching bisimulations are congruences for par-
allel composition and admissible action mapping. This allows reductions to be
applied at any intermediate step during the state space construction, thus poten-
tially reducing the overall cost of reduction. However, since processes may con-
strain each other by synchronization, composing LTS two by two following the
algebraic structure of the composition expression and applying reduction after
each composition can be orders of magnitude less efficient than other strategies
in terms of the largest intermediate LTS. Finding an optimal strategy is difficult.
One generally relies on heuristics to select a subset of LTS to compose at each
step of the compositional reduction. In this paper, we will use the smart reduction
heuristic [6,11], which is implemented within the SVL [10] tool of CADP [12].

3 For instance, the composition of P and Q where action a of P synchronizes with
either b or c of Q, can be written as ρ(P) |[b, c]|Q, where ρ maps a onto {b, c}.

4 For instance, P1 |[a]| (P2 |[]|P3) is equivalent to ρ0((ρ1(P1) |[a1]| ρ2(P2)) |[a2]| ρ3(P3))
—observe the different associativity— where ρ1 maps a onto {a1, a2}, ρ2 renames a
into a1, ρ3 renames a into a2, and ρ0 renames a1 and a2 into a.

This heuristic tries to find an efficient composition order by analysing the syn-
chronization and hiding structure of the composition expression.

2.2 Temporal logics

Definition 6 (Modal µ-calculus [18]). The modal µ-calculus (Lµ) is built
from action formulas α and state formulas ϕ, whose syntax and semantics w.r.t.
an LTS P = (Σ,A,−→, pinit) are defined as follows:

α ::= a [[a]]A = {a}
| false [[false]]A = ∅
| α1 ∨ α2 [[α1 ∨ α2]]A = [[α1]]A ∪ [[α2]]A
| ¬α0 [[¬α0]]A = A \ [[α0]]A

ϕ ::= false [[false]]P δ = ∅
| ϕ1 ∨ ϕ2 [[ϕ1 ∨ ϕ2]]P δ = [[ϕ1]]P δ ∪ [[ϕ2]]P δ
| ¬ϕ0 [[¬ϕ0]]P δ = Σ \ [[ϕ0]]P δ

| 〈α〉ϕ0 [[〈α〉ϕ0]]P δ = {s ∈ Σ | ∃s a−→ s′.a ∈ [[α]]A ∧ s′ ∈ [[ϕ0]]P δ }
| X [[X]]P δ = δ(X)

| µX.ϕ0 [[µX.ϕ0]]P δ =
⋃
k≥0 Φ0

k
P,δ(∅)

where X ∈ X are propositional variables denoting sets of states, δ : X → 2Σ is a
context mapping propositional variables to sets of states, [] is the empty context,
δ[U/X] is the context identical to δ except for variable X, which is mapped to
state set U , the functional Φ0P,δ : 2Σ → 2Σ associated to the formula µX.ϕ0 is
defined as Φ0P,δ(U) = [[ϕ0]]P δ[U/X], and Φk means k-fold application. We write
P |= ϕ (read P satisfies ϕ) for p0 ∈ [[ϕ]]P [].

Action formulas α are built from actions and boolean operators. State formulas
ϕ are built from boolean operators, the possibility modality 〈α〉ϕ0 denoting the
states with an outgoing transition labeled by an action satisfying α and leading
to a state satisfying ϕ0, and the minimal fixed point operator µX.ϕ0 denoting
the least solution of the equation X = ϕ0 interpreted over 2Σ .

The usual derived operators are defined as follows: boolean connectors true =
¬false and ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2); necessity modality [α]ϕ0 = ¬〈α〉 ¬ϕ0; and
maximal fixed point operator νX.ϕ0 = ¬µX.¬ϕ0[¬X/X], where ϕ0[¬X/X] is
the syntactic substitution of X by ¬X in ϕ0. Syntactically, 〈〉 and [] have the
highest precedence, followed by ∧, then ∨, and finally µ and ν. To have a well-
defined semantics, state formulas are syntactically monotonic [18], i.e., in every
subformula µX.ϕ0, all occurrences of X in ϕ0 fall in the scope of an even number
of negations. Thus, negations can be eliminated by downward propagation.

Although Lµ subsumes most action-based logics, its operators are rather low-
level and lead to complex formulas. In practice, temporal logics or extensions of
Lµ with higher-level operators are used, avoiding (or at least reducing) the use of
fixed point operators and modalities. We review informally some of these logics
(whose operators can be translated to Lµ), which will be useful in the sequel.

Propositional Dynamic Logic with Looping The logic PDL-∆ [30] introduces the
modalities 〈β〉ϕ0 and 〈β〉@, where β is a regular formula defined as follows:

β ::= ϕ? | α | β1 · β2 | β1|β2 | β∗0
Regular formulas β denote sets of transition sequences in an LTS: the testing
operator ϕ? denotes all zero-step sequences consisting of states satisfying ϕ; α
denotes all one-step sequences consisting of a transition labeled by an action sat-
isfying α; the concatenation β1 ·β2, choice β1|β2, and transitive-reflexive closure
β∗0 operators have their usual semantics transposed to transition sequences.

The regular diamond modality 〈β〉ϕ0 denotes the states with an outgoing
transition sequence satisfying β and leading to a state satisfying ϕ0. The infinite
looping operator 〈β〉@ denotes the states having an outgoing transition sequence
consisting of an infinite concatenation of subsequences satisfying β.

Action Computation Tree Logic The logic ACTL\X (ACTL without next oper-
ator) [26] introduces four temporal operators, whose semantics can be found in
terms of Lµ formulas in [8,24], where α1, α2 are interpreted over visible actions:

E(ϕ1 α1Uϕ2),E(ϕ1 α1Uα2 ϕ2),A(ϕ1 α1Uϕ2),A(ϕ1 α1Uα2 ϕ2)

A transition sequence satisfies the path formula ϕ1 α1
Uα2

ϕ2 if it contains a
visible transition whose action satisfies α2 and whose target state satisfies ϕ2,
whereas at any moment before this transition, ϕ1 holds and all visible actions
satisfy α1. A sequence satisfies ϕ1 α1

Uϕ2 if it contains a state satisfying ϕ2 and at
any moment before, ϕ1 holds and all visible actions satisfy α1. A state satisfies
E(ϕ1 α1

Uα2
ϕ2) (resp. E(ϕ1 α1

Uϕ2)) if it has an outgoing sequence satisfying
ϕ1 α1

Uα2
ϕ2 (resp. ϕ1 α1

Uϕ2). It satisfies A(ϕ1 α1
Uα2

ϕ2) (resp. A(ϕ1 α1
Uϕ2)) if

all its outgoing sequences satisfy the corresponding path formula. The following
abbreviations are often used:

EFα(ϕ0) = E(true trueUα ϕ0) AGα(ϕ0) = ¬EF¬α(true) ∧ ¬E(true trueU¬ϕ0)

A state satisfies EFα(ϕ0) if it has an outgoing sequence leading to a transition
whose action satisfies α and target state satisfies ϕ0. A state satisfies AGα(ϕ0)
if none of its outgoing sequences leads to a transition labeled by an action not
satisfying α or to a state not satisfying ϕ0.

Computation Tree Logic The logic CTL [5] contains the following operators:

E(ϕ1 Uϕ2),A(ϕ1 Uϕ2),E(ϕ1 Wϕ2),A(ϕ1 Wϕ2),EF(ϕ0),AG(ϕ0),AF(ϕ0),EG(ϕ0)

A state satisfies E(ϕ1 Uϕ2) (resp. A(ϕ1 Uϕ2)) if some of (resp. all) its outgoing
sequences lead to states satisfying ϕ2 after passing only through states satisfying
ϕ1. It satisfies E(ϕ1 Wϕ2) (resp. A(ϕ1 Wϕ2)) if some of (resp. all) its outgoing
sequences either contain only states satisfying ϕ1, or lead to states satisfying ϕ2

after passing only through states satisfying ϕ1. A state satisfies EF(ϕ0) (resp.
AF(ϕ0)) if some of (resp. all) its outgoing sequences lead to states satisfying
ϕ0. A state satisfies EG(ϕ0) (resp. AG(ϕ0)) if some of (resp. all) its outgoing
sequences contain only states satisfying ϕ0.

2.3 Compositional property-dependent LTS reductions

Given a formula ϕ ∈ Lµ and a composition of processes P1 || . . . ||Pn, [24] shows
two results that allow an LTS equivalent to P1 || . . . ||Pn to be reduced compo-
sitionally, while preserving the truth value of ϕ. The first result is a procedure,
called maximal hiding, which extracts systematically from ϕ a set of actions
H(ϕ) that are not discriminated by any action formula occurring in ϕ. It is
shown that P1 || . . . || Pn |= ϕ if and only if hide H(ϕ) in (P1 || . . . || Pn) |= ϕ.
The second result is the identification of a fragment of Lµ, called Ldsbr

µ , which
is strictly more expressive than µACTL\X5 and adequate with divbranching
bisimulation. This fragment is defined as follows.

Definition 7 (Modal µ-calculus fragment Ldsbr
µ [24]). By convention, we

use the symbols ατ and αa to denote action formulas such that τ ∈ [[ατ]]A and
τ /∈ [[αa]]A. The fragment Ldsbr

µ of Lµ is defined as the set of formulas that are
semantically equivalent to some formula of the following language:

ϕ ::= false | ϕ1 ∨ ϕ2 | ¬ϕ0 | X | µX.ϕ0

| 〈(ϕ1?.ατ)∗〉ϕ2 | 〈(ϕ1?.ατ)∗.ϕ1?.αa〉ϕ2 | 〈ϕ1?.ατ 〉@

The ultra-weak modality 〈(ϕ1?.ατ)∗〉ϕ2, weak modality 〈(ϕ1?.ατ)∗.ϕ1?.αa〉ϕ2,
and weak infinite looping modality 〈ϕ1?.ατ 〉@ are shorthand notations for the
respective Lµ formulas µX.ϕ2 ∨ (ϕ1 ∧ 〈ατ 〉X), µX.ϕ1 ∧ (〈αa〉ϕ2 ∨ 〈ατ 〉X), and
νX.ϕ1 ∧ 〈ατ 〉X. Derived operators are also defined as follows:

[(ϕ1?.ατ)∗]ϕ2 = ¬〈(ϕ1?.ατ)∗〉 ¬ϕ2

[ϕ1?.ατ] a = ¬〈ϕ1?.ατ 〉@
[(ϕ1?.ατ)∗.ϕ1?.αa]ϕ2 = ¬〈(ϕ1?.ατ)∗.ϕ1?.αa〉 ¬ϕ2

Depending on the Lµ fragment ϕ belongs to, it is thus possible to determine
whether the system can or cannot be reduced for divbranching bisimulation.

3 Combining Bisimulations Compositionally

The above approach is a mono-bisimulation approach: either the formula is in
Ldsbr
µ and then the system is entirely reduced for divbranching bisimulation, or it

is not and then the system is entirely reduced for strong bisimulation. We show
in this section that, even if the formula is not in Ldsbr

µ , it may still be possible to
reduce some processes among the parallel processes P1, . . . , Pn for divbranching
instead of strong bisimulation. This approach relies on the fact that, in general,
an arbitrary temporal logic formula ϕ may be rewritten in a form that contains
both weak modalities, as those present in Ldsbr

µ , and non-weak modalities of Lµ
(called strong modalities in this context).

5 µACTL\X denotes ACTL\X plus fixed points. The authors of [24] claim that Ldsbr
µ is

as expressive as µACTL\X, but they omit that the 〈ϕ1?.ατ 〉@ weak infinite looping
modality cannot be expressed in µACTL\X.

To do so, we characterize a family of fragments of Lµ, each of which is written
Lstrong
µ (As), where As is the set of actions that can be matched by strong modal-

ities. We then prove that if ϕ belongs to Lstrong
µ (As) and some process Pi does

not contain any action from the set As, then Pi can be reduced for divbranching
bisimulation. Throughout this section, we assume that the concurrent system
P1 || . . . || Pn is fixed, and we write A for the set of actions occurring in the
system.

3.1 The Lstrong
µ (As) fragments of Lµ

Definition 8 (Lstrong
µ (As)). Let As ⊆ A be a fixed set of actions, called strong

actions, and let αs denote any action formula such that [[αs]]A ⊆ As, called
a strong action formula. The fragment Lstrong

µ (As) of Lµ is defined as the set
of formulas that are semantically equivalent to some formula of the following
language:

ϕ ::= false | ϕ1 ∨ ϕ2 | ¬ϕ0 | 〈αs〉ϕ0 | X | µX.ϕ0

| 〈(ϕ1?.ατ)∗〉ϕ2 | 〈(ϕ1?.ατ)∗.ϕ1?.αa〉ϕ2 | 〈ϕ1?.ατ 〉@

We call 〈αs〉ϕ0 a strong modality. Lstrong
µ (As) is the fragment of Lµ consisting

of formulas expressible in a form where strong modalities match only actions in
As. Its formal relationship with Ldsbr

µ and Lµ is given in Theorem 1.

Theorem 1. The following three propositions hold trivially: Lstrong
µ (∅) = Ldsbr

µ ,
Lstrong
µ (A) = Lµ, and if As ⊂ A′s then Lstrong

µ (As) ⊂ Lstrong
µ (A′s).

Given ϕ ∈ Lµ, there exists a (not necessarily unique, see Theorem 3 page 10)
minimal set As such that ϕ ∈ Lstrong

µ (As). Obviously, Lstrong
µ (As) is not adequate

with divbranching bisimulation when As is not empty, as illustrated by the
following example.

Example 1. Consider the LTS P , P ′, Q, and Q′ depicted in Figure 1. P ′ (resp.
Q′) denotes the minimal LTS equivalent to P (resp. Q) for divbranching bisimu-
lation. The formula ϕ = [(true?.true)∗.true?.a1] [a2] false of Lstrong

µ ({a2}) (which
is equivalent to the PDL formula [true∗.a1.a2] false) expresses that the system
does not contain two successive transitions labelled by a1 and a2 respectively. ϕ
does not belong to Ldsbr

µ . Indeed, P |[a1]| Q satisfies ϕ because a1 is necessarily
followed by a τ transition, but P ′ |[a1]| Q′ (which is isomorphic to Q′) does not.

3.2 Applying divbranching bisimulation to selected components

The following theorem states the main result of this paper, namely that every
component process containing no strong action can be replaced by any div-
branching equivalent process, without affecting the truth value of the formula6.

6 Theorem 2 generalizes easily to more general compositions P ||Q (with admissible
action mappings) if Q does not contain any action that maps onto a strong action.

P = p0
a1 // p1

τ

bb Q = q0
a1 // q1

τ // q2

a2

gg P ′ = p′0 a1

xx
Q′ = q′0

a1 // q′1

a2

bb

P |[a1]| Q = (p0, q0)
a1 // (p1, q1)

τ //

τ

��

(p1, q2)
a2 //

τ

��

(p1, q0)

τ

vv

(p0, q1)
τ // (p0, q2)

a2

VV

Fig. 1. LTS used in Examples 1 and 2

Theorem 2. Let P = (ΣP , AP ,→P , pinit), Q = (ΣQ, AQ,−→Q, qinit), Q
′ =

(ΣQ′ , AQ′ ,−→Q′ , q
′
init), Async ⊆ A, and ϕ ∈ Lstrong

µ (As). If AQ ∩ As = ∅ and
Q ∼dsbr Q

′, then P |[Async]|Q |= ϕ if and only if P |[Async]|Q′ |= ϕ.

Proof. The proof looks like the one in [24], showing that divbranching bisimu-
lation preserves the properties of Ldsbr

µ , but reasoning concerns product states
and additionally handles the case of strong modalities. ut

Note that τ may belong to As. If so, every Pi containing τ cannot be reduced
for divbranching bisimulation. On the contrary, processes that do not contain
strong actions do not contain τ . Reducing them for divbranching bisimulation
is thus allowed, but coincides with strong bisimulation reduction. In the end,
all τ -transitions of the system are preserved, as expected for the truth value of
formulas containing strong modalities matching τ to be preserved.

Example 2. In Example 1, P does not contain a2, the only strong action of the
system. Thus, ϕ can be checked on P ′ |[a1]| Q (which is isomorphic to Q and has
only 3 states) instead of P |[a1]| Q (6 states), while preserving its truth value.

Theorem 2 is consistent with Andersen’s partial model checking [1] and the
mono-bisimulation approach [24]. Given P ||Q such that the strong actions of
ϕ occur only in P , one can observe that the quotient ϕ//P (defined in [1,21])
belongs to Ldsbr

µ , because quotienting removes all strong modalities, leaving only
weak modalities in the quotiented formula. It follows that Q, on which ϕ//P has
to be checked, can be reduced for divbranching bisimulation. This observation
could serve as an alternative proof of Theorem 2.

3.3 Identifying strong actions in derived operators

In the general case, identifying a minimal set of strong actions is not easy, if
even feasible. One cannot reasonably assume that formulas are written in the

obscure Lstrong
µ (As) syntax (see Ex. 1) and that the remaining strong modalities

cannot be turned to weak ones. Instead, users shall continue to use “syntactic
sugar” extensions of Lµ, with operators of e.g., CTL, ACTL, PDL, or PDL-∆. In
Lemma 1, we provide patterns that can be used to prove that a formula written
using one of those operators belongs to a particular instance of Lstrong

µ (As).

Lemma 1. Let ϕ0, ϕ1, ϕ2 ∈ Lstrong
µ (As), τ ∈ [[ατ]]A, τ /∈ [[αa]]A, [[αs]]A ⊆

As, and α0, α1, α2 be any action formulas. The following formulas belong to
Lstrong
µ (As) (the list may be not exhaustive):

1. Modal µ-calculus:
〈αs〉ϕ0 [αs]ϕ0 ¬ϕ0 ϕ1 ∨ ϕ2 ϕ1 ∧ ϕ2 ϕ1 ⇒ ϕ2

2. Propositional Dynamic Logic:
〈α∗τ 〉ϕ0 [α∗τ]ϕ0 〈α∗τ · αa〉ϕ0 [α∗τ · αa]ϕ0 〈ατ 〉@ [ατ] a

3. Action Computation Tree Logic:
A(ϕ1 α1Uϕ2) A(ϕ1 α1Uα2 ϕ2) AGα0(ϕ0)
E(ϕ1 α1

Uϕ2) E(ϕ1 α1
Uα2

ϕ2) EFα0
(ϕ0)

4. Computation Tree Logic:
A(ϕ1 Uϕ2) A(ϕ1 Wϕ2) AG(ϕ0) AF(ϕ0)
E(ϕ1 Uϕ2) E(ϕ1 Wϕ2) EF(ϕ0) EG(ϕ0)
A([αa]ϕ1 Uϕ2) A([αa]ϕ1 Wϕ2) AG([αa]ϕ0) EF(〈αa〉ϕ0)
AG(ϕ1 ∨ [αa]ϕ2) EF(ϕ1 ∧ 〈αa〉ϕ2)

Example 3. Let a1, a2, and a3 be visible actions and recall that A denotes the
set of all actions of the system. Lemma 1 allows the following to be shown (this
is left as an exercise):

〈true∗.a1.(¬a2)∗.a3〉 true ∈ Lstrong
µ (∅) [true] false ∈ Lstrong

µ (A)
A(〈a1〉 true ¬a2Ua3 true) ∈ Lstrong

µ ({a1}) AG([a1] false) ∈ Lstrong
µ (∅)

E(true trueUτ true) ∈ Lstrong
µ (A) 〈a∗1.a2〉 true ∈ Lstrong

µ ({a1, a2})
E(true trueU 〈τ〉 true) ∈ Lstrong

µ ({τ}) [a1.a2] false ∈ Lstrong
µ ({a1, a2})

EF(〈a1〉 true ∧ 〈a2〉 true) ∈ Lstrong
µ ({a1}) EF(〈a1〉 〈a2〉 true) ∈ Lstrong

µ ({a2})
EF(〈a1〉 true ∧ 〈a2〉 true) ∈ Lstrong

µ ({a2}) EF(〈¬a1〉 true) ∈ Lstrong
µ (A \ {a1})

Theorem 3. There is not a unique minimal set As such that ϕ ∈ Lstrong
µ (As).

Proof. EF(〈a1〉 true ∧ 〈a2〉 true) ∈ Lstrong
µ ({a1}) ∩ Lstrong

µ ({a2}), because it is se-
mantically equivalent to both formulas EF(〈(〈a1〉 true?.true)∗.〈a1〉 true?.a2〉 true)
and EF(〈(〈a2〉 true?.true)∗.〈a2〉 true?.a1〉 true). Yet, it is not in Lstrong

µ (∅) as it has
not the same truth value on the divbranching equivalent LTS P and P ′ below:

P = p0

a1

a2 <<

τ
$$

p1 P ′ = q0
a1 //

τ

''
q1 q2

a2oo

τ

gg

Thus, {a1} and {a2} are non-unique minimal sets of strong actions. ut

4 Applications

We consider two examples to illustrate our new verification approach combining
strong and divbranching bisimulation and show how it can reduce both time
and memory usage when associated to the smart reduction heuristic. In both
examples, the aim is to perform a set of verification tasks, each consisting in
checking a formula ϕ on a system of parallel processes P1 || . . . || Pn. Since our
approach can only improve the verification of formulas containing both strong
and weak modalities, we consider only the pairs of formulas and systems such
that the formula is part of Lstrong

µ (As) for some minimal As that is not empty
and that is strictly included in the set of visible actions of the system7. For each
verification task, we compare the largest LTS size, the verification time, and the
memory peak obtained using the following two approaches:

Mono-bisimulation approach: ϕ is verified on hide H(ϕ) in (P1 || . . . || Pn)
(where H(ϕ) is the maximal hiding set mentioned in Sect. 2.3) reduced
compositionally for strong bisimulation (since ϕ is not in Ldsbr

µ) using the
smart reduction heuristic.

Refined approach combining bisimulations: The set {P1, . . . , Pn} is par-
titioned in two groups Ps and Pw such that Pi ∈ Ps if it contains actions
in As and Pi ∈ Pw otherwise, so that P1 || . . . || Pn can be rewritten
in the equivalent form (||Pi∈Ps

Pi) || (||Pj∈Pw
Pj). The set AI of actions on

which at least one process of Ps and one process of Pw synchronize (inter-
group synchronization) is then identified. Using the smart reduction heuris-
tic, hide H(ϕ) \AI in ||Pi∈PsPi (corresponding to the processes containing
strong actions) is reduced compositionally for strong bisimulation, leading
to a first LTS Ps, and hide H(ϕ) \ AI in ||Pj∈Pw

Pj (corresponding to the
processes containing no strong action) is reduced compositionally for di-
vbranching bisimulation, leading to a second LTS Pw. Finally, ϕ is verified
on hide H(ϕ) ∩AI in (Ps |[AI]| Pw) reduced for strong bisimulation.

All experiments were done on a 3GHz/12GB RAM/8-core Intel Xeon computer
running Linux, using the specification languages and 32-bit versions of tools
provided in the CADP toolbox [12] version 2019-a “Pisa”.

4.1 Trivial File Transfer Protocol

The TFTP (Trivial File Transfer Protocol) case-study8 addresses the verification
of an avionic communication protocol between a plane and the ground [13].
It comprises two instances (A and B) of a process named TFTP, connected
through a FIFO buffer. Since the state space is very large in the general case, the
authors defined five scenarios named A, B, C, D, and E, depending on whether

7 Otherwise, our approach coincides with the mono-bisimulation approach of [24]. In
all the examples addressed in this section, there is always a unique minimal set As,
whose identification is made easy using Lemma 1.

8 Specification available at ftp://ftp.inrialpes.fr/pub/vasy/demos/demo_05

ftp://ftp.inrialpes.fr/pub/vasy/demos/demo_05

Nr. Property

08 [true∗ · a1 · a2] false

09 [true∗ · a1 · a2 · ((a3 · (¬a4)∗ · a5)|(a6 · (¬a7)∗ · a8))] false

14 [true∗ · a1 · a2 · (¬a3)∗ · a4 · a5] false

16 [(¬a1)∗ · a2 · (¬a3)∗ · a4] 〈((¬a5)∗ · a6 · a7) · ((¬a5)∗ · a6 · a7)〉 true
17 Same shape as property Nr. 16

Table 1. TFTP properties (strong action formulas are highlighted)

each instance may write and/or read a file. The system corresponding to each
scenario is a parallel composition of eight processes. The requirements consist
of 29 properties parameterized by the identity of a TFTP instance, defined in
MCL [23] (an implementation of the alternation-free modal µ-calculus including
PDL-∆ modalities and macro definitions enabling the construction of libraries of
operators), 24 of which belong to Ldsbr

µ . The remaining five, namely properties
08, 09, 14, 16, and 17, contain both weak and strong modalities. The shape of
these properties is described in Table 1, where we do not provide the details of the
action formulas, but instead denote them by letters a1, a2, . . ., where τ /∈ [[ai]]A
for all i. Strong action formulas are highlighted and one shows easily that the
other are weak using Lemma 1-2.

We consider 31 among a potential of 50 verification tasks (five properties, five
scenarios, and two instances) as some properties are not relevant to every TFTP
instance and scenario (e.g., in a scenario where one TFTP instance only receives
messages, checking a property concerning a message emission is irrelevant). All 31
verification tasks return true and the strong actions occur in only three (although
not the same three) out of the eight parallel processes.

Fig. 2. Experimental results of the TFTP case-study

Figure 2 shows that the refined approach always reduces LTS size (for both
intermediate and final LTS), memory and time following similar curves, up to a
factor 7 (the vertical axis is on a logarithmic scale). Time does not include LTS
generation of the component processes from their LNT specification, which takes
only a few seconds and is common to both approaches. In these experiments,
time is dominated by the last step of generation and minimization, whereas
memory usage is dominated by minimization.

Nr. Property Result

101#21 AG([A21] [A23] [A4] [true] false) false

101#22 AG([A3]AF(〈A2〉 true)) false

101#23 AG(〈A20〉 true⇒ 〈A20〉A([A23] falseW 〈A8〉 true)) true

102#21 EF(AG([A5] false)) true

102#22 EG([A35]E([A23] false U 〈A35〉 true)) false

102#23 AG([A22]A([A8] false U 〈A22〉 true)) false

103#21 AG([A11]A([A2] falseW 〈A6〉 true)⇒ [A11]A([A5] falseW 〈A6〉 true)) true

103#22 EG([A14] false ∧ (〈A18〉 true⇒ [A18]EG([A21] false ∧ EF(〈A19〉 true)))) true
= EG([A14] false ∧ [A18]EG([A21] false ∧ EF(〈A19〉 true)))

103#23 AG(〈A34〉 true⇒ [A34]A([A68] falseW 〈A59〉 true)) false
= AG([A34]A([A68] falseW 〈A59〉 true))

Table 2. RERS 2018 properties (strong action formulas are highlighted)

4.2 Parallel benchmark of the RERS 2018 challenge

The RERS (Rigorous Examination of Reactive Systems)9 challenge is an in-
ternational competition on a benchmark of verification tasks. Since 2018 (8th
edition), the challenge features a set of parallel problems where systems are syn-
chronizing LTS and properties are expressed using CTL and modalities. This
section illustrates the benefits of our approach on these problems.

The benchmark comprises three specifications of concurrent systems, num-
bered 101, 102, and 103, each accompanied by three properties to be checked,
numbered p#21, p#22, and p#23, where p is the system number. Thus, nine ver-
ification tasks have to be solved. The properties are presented in Table 2, where
the strong action formulas are highlighted. One easily shows that all other ac-
tion formulas are weak using Lemmas 1-1 and 1-4. However, for 103#22 and
103#23, the identity (〈α〉 true ⇒ [α]ϕ) = ([α] false ∨ [α]ϕ) = [α]ϕ (because
[α] false =⇒ [α]ϕ for all ϕ) was applied to obtain the simplified formulas oc-
curring after the = sign in the table. For 102#23, this simplification allowed us
to prove that A34 is not a strong action, unlike what appears at first sight.

9 http://rers-challenge.org

http://rers-challenge.org

Task #act #hide #sact #proc #sproc #sync relation

101#21 24 21 24 9 9 - strong

101#22 24 22 1 9 4 11 combination

101#23 24 21 2 9 3 9 combination

102#21 28 27 0 20 0 - divbranching

102#22 28 26 2 20 10 14 combination

102#23 28 26 1 20 4 12 combination

103#21 70 66 2 34 8 12 combination

103#22 70 66 3 34 6 18 combination

103#23 70 67 1 34 7 10 combination

Table 3. Some numbers about the RERS 2018 parallel benchmark

Table 3 gives, for each of the nine verification tasks, the number #act of
actions in the system, the number #hide of actions in the maximal hiding set,
the number #sact of strong actions, the number #proc of parallel processes, the
number #sproc of processes in the strong group, the number #sync of inter-
group actions, and the best reduction relation among strong bisimulation, di-
vbranching bisimulation, or a combination of both. We observe that:

– The set of weak actions of 101#21 is empty due to the presence of the “true”
strong action formula, whereas the set of strong actions of 102#21 is empty,
i.e., the property belongs to Ldsbr

µ . In both cases, our approach coincides
with the mono-bisimulation approach. The verification of 101#21 (reduced
for strong bisimulation) takes 75 seconds, with a memory peak of 11 MB and
a largest LTS of 83, 964 states and 374, 809 transitions. The verification of
102#21 (reduced for divbranching bisimulation) takes 261 seconds, with a
memory peak of 22 MB and a largest LTS of 243 states and 975 transitions.

– 101#22, 101#23, 102#22, 102#23, 103#21, 103#22, and 103#23 contain
both weak and strong actions. They are used to evaluate our approach.

Table 4 compares the performance of verifying the latter seven verification tasks
using the approaches described above. LTS sizes are given in kilostates, memory
in megabytes, and time in seconds. Tasks using more than 3 GB of memory
were aborted. We see that our approach reduces both time and memory usage
and allows all problems of the challenge to be solved, whereas using strong
bisimulation alone fails in five out of those seven tasks.

The negligible reductions in time and memory usage observed for tasks
101#22 and 101#23 are due to the fact that time and memory usage are domi-
nated by the algorithm in charge of selecting a sub-set of processes to be com-
posed and reduced (implemented in smart reduction). The complexity of this
algorithm does not depend on the state space size, but on the number of actions
and parallel processes, which is almost the same using both approaches. When
considering larger examples, memory usage gets dominated by minimisation.
In particular, for tasks 102#22, 102#23, 103#21, and 103#23 (and likely also
103#22), memory usage is reduced by several orders of magnitude.

Strong bisimulation Combined bisimulations
Kstates verif. Kstates verif.

Task largest final MB sec. largest final MB sec.

101#22 84 77 10 77 1.4 1.4 10 72

101#23 84 77 11 80 0.5 0.5 8 73

102#22 - - - - 611 585 57 295

102#23 - - - - 17 9.8 22 260

103#21 - - - - 734 313 101 604

103#22 - - - - 14,143 14,141 1575 2533

103#23 - - - - 122 122 35 566

Table 4. Experimental results of the RERS 2018 parallel benchmark

Note that some of these tasks can be verified more efficiently using non-
compositional approaches, such as on-the-fly model checking, in cases where
proofs or counter-examples can be detected much before having explored the
full state space. The main drawback of maximal hiding is that the generated
counter-examples are given only in terms of the actions visible in the formula,
which abstracts out a lot of intermediate transitions. However, this is the price
to pay for being able to verify most of the tasks, such as 103#21, for which
on-the-fly verification aborts due to memory exhaustion.

5 Conclusion and Future Work

In this paper, we proposed a compositional verification approach that extends the
state of the art [24] and consists of three steps: First, so-called strong actions are
identified, corresponding to those actions of the system that the formula cannot
match using weak modalities in the sense of the Lµ fragment Ldsbr

µ adequate
with divbranching bisimulation. These actions are used to partition the parallel
processes into those containing strong actions and the others. Second, maximal
hiding and compositional reduction are used to minimize the composition of
processes not containing strong actions for divbranching bisimulation, and the
other processes for strong bisimulation. Finally, the property is verified on the
reduced system.

The originality of this approach is to combine strong and divbranching bisim-
ulation, as opposed to the mono-bisimulation approach of [24]. We proved it cor-
rect by characterizing a family of fragments of the logic Lµ, called Lstrong

µ (As),
parameterized by the set As of strong actions. We also showed under which
conditions action-based branching-time temporal logic formulas containing well-
known operators from the logics CTL, ACTL, PDL, and PDL-∆ are part of
Lstrong
µ (As) when As is fixed. In the future, it might be worth investigating

whether more operators can be considered, e.g., from the linear-time logic LTL.
This approach may significantly improve the verification performance for

systems containing both processes with and without strong actions, as illustrated

by two case-studies. In particular, it allowed the whole parallel CTL benchmark
of the RERS 2018 challenge to be solved on a standard computer.

Identifying (close to minimal) sets of strong actions for arbitrary formulas
manually is a cumbersome task, prone to errors. We shall investigate ways to
compute such sets automatically. As illustrated by verification task 103#23 of
RERS 2018, the problem is not purely syntactic: considering non-trivial semantic
equivalences may prove useful to eliminate actions that appear strong at first
sight. Yet, we trust that the presented approach has potential to be implemented
in automated software tools, such as those available in the CADP toolbox.

References

1. Henrik Reif Andersen. Partial Model Checking. In Proceedings of the 10th Annual
IEEE Symposium on Logic in Computer Science LICS (San Diego, California,
USA), pages 398–407. IEEE Computer Society Press, June 1995.

2. Stephen D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communi-
cating Sequential Processes. Journal of the ACM, 31(3):560–599, July 1984.

3. David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Christine McK-
inty, Vincent Powazny, Frédéric Lang, Wendelin Serwe, and Gideon Smeding. Ref-
erence Manual of the LNT to LOTOS Translator (Version 6.7). INRIA, Grenoble,
France, July 2017.

4. S. C. Cheung and J. Kramer. Enhancing Compositional Reachability Analysis
with Context Constraints. In Proceedings of the 1st ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (Los Angeles, CA, USA),
pages 115–125. ACM Press, December 1993.

5. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-
State Concurrent Systems using Temporal Logic Specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, April 1986.

6. Pepijn Crouzen and Frédéric Lang. Smart Reduction. In Dimitra Giannakopoulou
and Fernando Orejas, editors, Proceedings of Fundamental Approaches to Software
Engineering (FASE’11), Saarbrücken, Germany, volume 6603 of Lecture Notes in
Computer Science, pages 111–126. Springer, March 2011.

7. Sander de Putter, Anton Wijs, and Frédéric Lang. Compositional Model Checking
is Lively — Extended Version, 2018. Submitted to Science of Computer Program-
ming.

8. Alessandro Fantechi, Stefania Gnesi, and Gioia Ristori. From ACTL to µ-calculus
(extended abstract). In Proceedings of the Workshop on Theory and Practice in
Verification. ERCIM, 1992.

9. Michael J. Fischer and Richard E. Ladner. Propositional Dynamic Logic of Regular
Programs. Journal of Computer and System Sciences, 18(2):194–211, September
1979.

10. Hubert Garavel and Frédéric Lang. SVL: a Scripting Language for Compositional
Verification. In Myungchul Kim, Byoungmoon Chin, Sungwon Kang, and Dan-
hyung Lee, editors, Proceedings of the 21st IFIP WG 6.1 International Conference
on Formal Techniques for Networked and Distributed Systems (FORTE’01), Cheju
Island, Korea, pages 377–392. Kluwer Academic Publishers, August 2001. Full
version available as INRIA Research Report RR-4223.

11. Hubert Garavel, Frédéric Lang, and Radu Mateescu. Compositional Verification of
Asynchronous Concurrent Systems Using CADP. Acta Informatica, 52(4):337–392,
April 2015.

12. Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2011:
A Toolbox for the Construction and Analysis of Distributed Processes. Springer In-
ternational Journal on Software Tools for Technology Transfer (STTT), 15(2):89–
107, April 2013.

13. Hubert Garavel and Damien Thivolle. Verification of GALS Systems by Com-
bining Synchronous Languages and Process Calculi. In Corina Pasareanu, editor,
Proceedings of the 16th International SPIN Workshop on Model Checking of Soft-
ware (SPIN’09), Grenoble, France, volume 5578 of Lecture Notes in Computer
Science, pages 241–260. Springer, June 2009.

14. Susanne Graf and Bernhard Steffen. Compositional Minimization of Finite State
Systems. In Edmund M. Clarke and Robert P. Kurshan, editors, Proceedings of the
2nd Workshop on Computer-Aided Verification (CAV’90), Rutgers, New Jersey,
USA, volume 531 of Lecture Notes in Computer Science, pages 186–196. Springer,
June 1990.

15. Jan Friso Groote and Alban Ponse. The Syntax and Semantics of µCRL. CS-R
9076, Centrum voor Wiskunde en Informatica, Amsterdam, 1990.

16. ISO/IEC. LOTOS – A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization – Information Processing Systems – Open Sys-
tems Interconnection, Geneva, September 1989.

17. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization – Information Tech-
nology, Geneva, September 2001.

18. D. Kozen. Results on the Propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

19. Jean-Pierre Krimm and Laurent Mounier. Compositional State Space Generation
from LOTOS Programs. In Ed Brinksma, editor, Proceedings of the 3rd Interna-
tional Workshop on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’97), University of Twente, Enschede, The Netherlands, volume
1217 of Lecture Notes in Computer Science. Springer, April 1997. Extended version
with proofs available as Research Report VERIMAG RR97-01.

20. Frédéric Lang. EXP.OPEN 2.0: A Flexible Tool Integrating Partial Order, Com-
positional, and On-the-fly Verification Methods. In Judi Romijn, Graeme Smith,
and Jaco van de Pol, editors, Proceedings of the 5th International Conference on
Integrated Formal Methods (IFM’05), Eindhoven, The Netherlands, volume 3771
of Lecture Notes in Computer Science, pages 70–88. Springer, November 2005. Full
version available as INRIA Research Report RR-5673.

21. Frédéric Lang and Radu Mateescu. Partial Model Checking using Networks of
Labelled Transition Systems and Boolean Equation Systems. Logical Methods in
Computer Science, 9(4):1–32, October 2013.

22. J. Malhotra, S. A. Smolka, A. Giacalone, and R. Shapiro. A Tool for Hierarchical
Design and Simulation of Concurrent Systems. In Proceedings of the BCS-FACS
Workshop on Specification and Verification of Concurrent Systems, Stirling, Scot-
land, UK, pages 140–152. British Computer Society, July 1988.

23. Radu Mateescu and Damien Thivolle. A Model Checking Language for Concurrent
Value-Passing Systems. In Jorge Cuellar, Tom Maibaum, and Kaisa Sere, editors,
Proceedings of the 15th International Symposium on Formal Methods (FM’08),

Turku, Finland, volume 5014 of Lecture Notes in Computer Science, pages 148–
164. Springer, May 2008.

24. Radu Mateescu and Anton Wijs. Property-Dependent Reductions Adequate with
Divergence-Sensitive Branching Bisimilarity. Science of Computer Programming,
96(3):354–376, 2014.

25. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
26. R. De Nicola and F. W. Vaandrager. Action versus State Based Logics for Tran-

sition Systems. In Semantics of Concurrency, volume 469 of Lecture Notes in
Computer Science, pages 407–419. Springer, 1990.

27. David Park. Concurrency and Automata on Infinite Sequences. In Peter Deussen,
editor, Theoretical Computer Science, volume 104 of Lecture Notes in Computer
Science, pages 167–183. Springer, March 1981.

28. Amir Pnueli. In Transition from Global to Modular Temporal Reasoning about
Programs. Logic and Models of Concurrent Systems, 13:123–144, 1984.

29. Krishan K. Sabnani, Aleta M. Lapone, and M. Ümit Uyar. An Algorithmic Pro-
cedure for Checking Safety Properties of Protocols. IEEE Transactions on Com-
munications, 37(9):940–948, September 1989.

30. R. Streett. Propositional Dynamic Logic of Looping and Converse. Information
and Control, (54):121–141, 1982.

31. Kuo-Chung Tai and Pramod V. Koppol. An Incremental Approach to Reachability
Analysis of Distributed Programs. In Proceedings of the 7th International Work-
shop on Software Specification and Design, Los Angeles, CA, USA, pages 141–150,
Piscataway, NJ, December 1993. IEEE Press.

32. Kuo-Chung Tai and Pramod V. Koppol. Hierarchy-Based Incremental Reachabil-
ity Analysis of Communication Protocols. In Proceedings of the IEEE International
Conference on Network Protocols, San Francisco, CA, USA, pages 318–325, Pis-
cataway, NJ, October 1993. IEEE Press.

33. Antti Valmari. Compositional State Space Generation. In Grzegorz Rozenberg,
editor, Advances in Petri Nets 1993 – Papers from the 12th International Confer-
ence on Applications and Theory of Petri Nets (ICATPN’91), Gjern, Denmark,
volume 674 of Lecture Notes in Computer Science, pages 427–457. Springer, 1993.

34. R. J. van Glabbeek and W. Peter Weijland. Branching-Time and Abstraction in
Bisimulation Semantics (extended abstract). CS R8911, Centrum voor Wiskunde
en Informatica, Amsterdam, 1989. Also in proc. IFIP 11th World Computer
Congress, San Francisco, 1989.

35. Rob J. van Glabbeek and W. Peter Weijland. Branching Time and Abstraction in
Bisimulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

36. Wei Jen Yeh and Michal Young. Compositional Reachability Analysis Using Pro-
cess Algebra. In Proceedings of the ACM SIGSOFT Symposium on Testing, Anal-
ysis, and Verification (SIGSOFT’91), Victoria, British Columbia, Canada, pages
49–59. ACM Press, October 1991.

Appendix

This appendix is organized as follows. Section A contains the proof of Theorem 2
(page 9). Section B contains the proof of Lemma 1 (page 9). Section C contains
the detailed performance data collected from the TFTP experiment presented
in Section 4.1.

Note to referees

An archive was created at http://doi.org/10.5281/zenodo.2634149. It con-
tains the experimental material (TFTP and RERS case-studies) and a PDF of
this appendix. If the paper is accepted, the URL of the archive will be given in
the paper, so that readers can access this companion material and this appendix
will be corrected according to the reviewer’s comments (if any).

A Proof of Theorem 2 (page 9)

To show Theorem 2, we first need the following Lemma, which simply lifts a
standard property of branching and divbranching bisimulations up to the level
of product states:

Lemma 2. In P |[Async]|Q, if (p0, q0)
a−→ (p1, q1) and q′0 ∼dsbr q0 then there

exists a state q′1 such that q′1 ∼dsbr q1 and either:

– a = τ , p0 = p1, q0 ∼dsbr q1, and q′1 = q′0, or
– there exists q′′0 , ..., q

′′
n (n ≥ 0) such that q′′0 = q′0, for all i ∈ 0..n−1, q′′i+1 ∼dsbr

q′0, (p0, q
′′
i)

τ−→ (p0, q
′′
i+1), and (p0, q

′′
n)

a−→ (p1, q
′
1).

Graphically, this means that one of the diagrams below holds, where solid lines
denote universal quantification whereas dotted lines denote existential quantifi-
cation:

(p0, q0)
a=τ //

∼dsbr

(p1, q1) =

∼dsbr

(p0, q1)

(p0, q
′
0) = (p1, q

′
1)

– or –

(p0, q0)
a //

∼dsbr

(p1, q1)

∼dsbr

(p0, q
′
0) = (p0, q

′′
0)

τ //

∼dsbr

(p0, q
′′
1)

τ //

...∼dsbr ...

. . .
τ // (p0, q′′n)

a // (p1, q′1)

http://doi.org/10.5281/zenodo.2634149

Proof. From the definition of P |[Async]|Q and the fact that (p0, q0)
a−→ (p1, q1),

there are three possible cases:

1. a ∈ Async , p0
a−→ p1, and q0

a−→ q1, or

2. a /∈ Async , p0
a−→ p1, and q1 = q0, or

3. a /∈ Async , p1 = p0, and q0
a−→ q1

Instead of considering those three cases, we merge cases 1 and 3 (where q0
a−→

q1, whatever p0 does), which have a similar proof, into a single case. Thus we
consider the following two cases, the first one corresponding to case 2 of the
above enumeration, and the second one corresponding to cases 1 and 3:

– q1 = q0, a /∈ Async , and p0
a−→ p1. Take q′1 = q′0. We have q′1 ∼dsbr q1 because

q′1 = q′0, q′0 ∼dsbr q0, and q0 = q1. The second item of the lemma (bottom
diagram) is verified with n = 0, q′′0 = q′′n = q′0, and (p0, q

′′
0) = (p0, q

′′
n) =

(p0, q
′
0)

a−→ (p1, q
′
0) = (p1, q

′
1).

– q0
a−→ q1 (and either a /∈ Async and p1 = p0, or a ∈ Async and p0

a−→ p1).
Then since q′0 ∼dsbr q0, we have by definition of ∼dsbr :
• Either a = τ and q0 ∼dsbr q1. Since τ /∈ Async , we have p0 = p1. Then,

we can take q′1 = q′0. Indeed, q′1 ∼dsbr q1 because q′1 = q′0, q′0 ∼dsbr q0,
and q0 ∼dsbr q1. The first item of the lemma (top diagram) is verified.

• Or there exists q′′0 , ..., q
′′
n (n ≥ 0) such that q′′0 = q′0, for all i ∈ 0..n − 1,

q′′i+1 ∼dsbr q′0, q′′i
τ−→ q′′i+1, and q′′n

a−→ q′1. In this case, we also have

(p0, q
′′
i)

τ−→ (p0, q
′′
i+1) and (p0, q

′′
n)

a−→ (p1, q
′
1), i.e., the second item of

the lemma (bottom diagram) is verified.
ut

We draw the reader’s attention to the fact that the top diagram of Lemma 2
concerns only the case (p0, q0)

τ−→ (p0, q1) deriving from a transition q0
τ−→

q1 where q0 ∼dsbr q1. The bottom diagram concerns all other cases, including
(p0, q0)

τ−→ (p1, q0) deriving from p0
τ−→ p1 where p0 ∼dsbr p1. We now show

the main theorem:

Theorem 2 Let P = (ΣP , AP ,→P , pinit), Q = (ΣQ, AQ,−→Q, qinit), Q′ =
(ΣQ′ , AQ′ ,−→Q′ , q

′
init), Async ⊆ A, and ϕ ∈ Lstrong

µ (As). If AQ ∩ As = ∅ and
Q ∼dsbr Q

′, then P |[Async]|Q |= ϕ if and only if P |[Async]|Q′ |= ϕ.

Proof. We prove that, given p ∈ ΣP , q ∈ ΣQ, and q′ ∈ ΣQ′ such that q ∼dsbr q
′,

(p, q) satisfies ϕ if and only if (p, q′) satisfies ϕ. We show this claim by struc-
tural induction on the formula ϕ. Since we work on finite LTS, every formula
containing a fixed point operator µ can be expanded into an equivalent formula
by unfolding the fixed point a bounded number of times. This way, we do not
have to consider fixed points and propositional variables in this proof, and con-
texts δ mapping propositional variables to sets of states are always empty in the
semantics of formulas. For conciseness, we write [[ϕ]] instead of [[ϕ]]P |[Async]|Q[]
and [[ϕ]]P |[Async]|Q′ [], respectively, as the LTS “P |[Async]|Q” or “P |[Async]|Q′”

to which the semantics apply is clear from the context. Note that since the claim
is symmetric, it is sufficient to prove one implication only. We thus assume that
(p, q) ∈ [[ϕ]] and prove that (p, q′) ∈ [[ϕ]].

– Case ϕ = false. It is obvious that both (p, q) /∈ [[ϕ]] and (p, q′) /∈ [[ϕ]].
– Case ϕ = ϕ1 ∨ ϕ2. By definition, either (p, q) ∈ [[ϕ1]] or (p, q) ∈ [[ϕ2]]. If

(p, q) ∈ [[ϕ1]] (resp. [[ϕ2]]) then (p, q′) ∈ [[ϕ1]] (resp. [[ϕ2]]) by the induction
hypothesis. Therefore, (p, q′) ∈ [[ϕ1 ∨ ϕ2]].

– Case ϕ = ¬ϕ0. By definition, (p, q) /∈ [[ϕ0]]. By the induction hypothesis,
(p, q′) /∈ [[ϕ0]] and thus (p, q′) ∈ [[¬ϕ0]].

– Case ϕ = 〈αs〉ϕ0. By definition, there exists a ∈ [[αs]]A such that (p, q)
a−→

(p1, q1) and (p1, q1) ∈ [[ϕ0]].
Since [[αs]]A ⊆ As, AQ ∩ As = ∅, and a ∈ [[αs]]A, we have a /∈ AQ (and

hence, a /∈ Async). Therefore, q = q1, p
a−→ p1, and (p, q′)

a−→ (p1, q
′).

Since q′ ∼dsbr q and (p1, q) ∈ [[ϕ0]], we have by the induction hypothesis
(p1, q

′) ∈ [[ϕ0]]. As a consequence, (p, q′) ∈ [[〈αs〉ϕ0]].
– Case ϕ = 〈(ϕ1?.ατ)∗〉ϕ2. By definition, there exist m ≥ 0, pi ∈ ΣP , qi ∈ ΣQ,

and ai ∈ [[ατ]]A (i ∈ 0..m), such that (p, q) = (p0, q0), (pm, qm) ∈ [[ϕ2]], and

for all 0 ≤ i < m, (pi, qi)
ai−→ (pi+1, qi+1) and (pi, qi) ∈ [[ϕ1]]. We show that

the same holds from state (p, q′), i.e., there exists a sequence of transitions
matching ατ and passing through states satisfying ϕ1, until reaching a state
satisfying ϕ2. By the induction hypothesis, (p, q′) = (p0, q

′
0) ∈ [[ϕ1]]. Consider

one transition (pi, qi)
ai−→ (pi+1, qi+1). We know that (pi, qi) ∈ [[ϕ1]]. Assume

that there exists q′i ∼dsbr qi. Substituting ai for a, (pi, qi) for (p0, q0), and
(pi+1, qi+1) for (p1, q1) in the two diagrams of Lemma 2, it appears clearly
that there exists a state q′i+1 such that q′i+1 ∼dsbr qi+1. Moreover, by the
induction hypothesis, every state divbranching equivalent to (pi, qi) in the
bottom sequence of the diagrams is in [[ϕ1]]. Finally, note that τ ∈ [[ατ]] by
definition, so that each of the τ -transitions in the bottom sequence of the
second diagram thus matches ατ . Moreover, (pm, qm) ∈ [[ϕ2]] and q′m ∼dsbr

qm, so by the induction hypothesis, we have also (pm, q
′
m) ∈ [[ϕ2]].

– Case ϕ = 〈(ϕ1?.ατ)∗.ϕ1?.αa〉ϕ2. Since 〈(ϕ1?.ατ)∗.ϕ1?.αa〉ϕ2 is equivalent
to 〈(ϕ1?.ατ)∗〉 〈(ϕ1?.τ)∗.ϕ1?.αa〉ϕ2 and since we have already considered
the case ϕ = 〈(ϕ1?.ατ)∗〉ϕ2 above, we only have to consider the case ϕ =
〈(ϕ1?.τ)∗.ϕ1?.αa〉ϕ2, i.e., ατ = τ . By definition, there exist m ≥ 0, pi ∈
ΣP , qi ∈ ΣQ (i ∈ 0..m + 1) and a ∈ [[αa]]A, such that (p, q) = (p0, q0),

(pm, qm)
a−→ (pm+1, qm+1), (pm+1, qm+1) ∈ [[ϕ2]], and for all 0 ≤ i < m,

(pi, qi)
τ−→ (pi+1, qi+1) and (pi, qi) ∈ [[ϕ1]]. The reasoning is similar to

the previous case. It is important to note that the transition (pm, qm)
a−→

(pm+1, qm+1) necessarily has a counterpart in the built sequence, since a ∈
[[αa]]A and τ /∈ [[αa]]. Therefore this transition cannot be an inert transition
and the first case of Lemma 2 does not apply here.

– Case ϕ = 〈ϕ1?.ατ 〉@. By definition, there exists an infinite sequence of

states (p0, q0)
a0−→ (p1, q1)

a1−→ . . . (pi, qi)
ai−→ . . ., such that p0 = p, q0 = q,

and for all i > 0, (pi, qi) ∈ [[ϕ1]] and ai ∈ [[ατ]]. The reasoning is similar

to the previous case. It is important to note that a sequence of infinite
τ -transitions (when ai = τ for all i > 0) cannot collapse into an empty
sequence, as guaranteed by divbranching bisimulation.

ut

B Proof of Lemma 1 (page 10)

Lemma 1-1 (Modal µ-calculus) Assume ϕi ∈ Lstrong
µ (As) (i = 0, 1, 2) and

[[αs]]A ⊆ As. Then the following hold:

1. 〈αs〉ϕ0 ∈ Lstrong
µ (As)

2. [αs]ϕ0 ∈ Lstrong
µ (As)

3. ¬ϕ0 ∈ Lstrong
µ (As)

4. ϕ1 ∨ ϕ2 ∈ Lstrong
µ (As)

5. ϕ1 ∧ ϕ2 ∈ Lstrong
µ (As)

6. ϕ1 ⇒ ϕ2 ∈ Lstrong
µ (As)

Proof. Immediate from the definition of Lstrong
µ (As) (see Def. 8) and the well-

known identities ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2) and ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2. ut

Lemma 1-2 (Propositional Dynamic Logic) Assume that ϕ0 ∈ Lstrong
µ (As),

τ ∈ [[ατ]]A, and τ /∈ [[αa]]. Then the following hold:

1. 〈α∗τ · αa〉ϕ0 ∈ Lstrong
µ (As)

2. [α∗τ · αa]ϕ0 ∈ Lstrong
µ (As)

3. 〈α∗τ 〉ϕ0 ∈ Lstrong
µ (As)

4. [α∗τ]ϕ0 ∈ Lstrong
µ (As)

5. 〈ατ 〉@ ∈ Lstrong
µ (As)

6. [ατ] a ∈ Lstrong
µ (As)

Proof. It was shown in [24] that these weak PDL-∆ modalities can be en-
coded in Ldsbr

µ when ϕ0 ∈ Ldsbr
µ . The proposed encoding also holds when

ϕ0 ∈ Lstrong
µ (As). As this encoding does not add more strong modalities than

already present in ϕ0, then these properties belong to Lstrong
µ (As). ut

Lemma 1-3 (Action Computation Tree Logic) Assume that ϕi ∈ Lstrong
µ (As)

(i = 1, 2). Then the following hold:

1. E(ϕ1 α1Uϕ2) ∈ Lstrong
µ (As)

2. E(ϕ1 α1Uα2 ϕ2) ∈ Lstrong
µ (As)

3. A(ϕ1 α1Uϕ2) ∈ Lstrong
µ (As)

4. A(ϕ1 α1Uα2 ϕ2) ∈ Lstrong
µ (As)

5. AGα0(ϕ0) ∈ Lstrong
µ (As)

6. EFα0
(ϕ0) ∈ Lstrong

µ (As)

Proof. It was shown in [24] that the operators of ACTL\X can be encoded using
the weak modalities of Ldsbr

µ . Therefore, the only strong modalities that remain
in these formulas are those occurring in ϕ1 and ϕ2, which by definition match
only labels in As. Therefore, these formulas belong to Lstrong

µ (As). ut

In order to prove Lemma 1-4, we need the following lemma:

Lemma 3. E(ϕ1 α1
Uα2

ϕ2) = E(ϕ1 α1
Uϕ1 ∧ 〈α2〉ϕ2) if τ /∈ [[α2]]A.

Proof. This lemma is easily proven by showing that the modal µ-calculus def-
initions of the left-hand-side and right-hand-side formulas are equivalent. First
note that since τ /∈ [[α2]]A, we have [[α2]]A = [[α2]]A \ {τ} = [[α2 ∧ ¬τ]]A and thus
〈α2〉ϕ = 〈α2 ∧ ¬τ〉ϕ for any formula ϕ. We then have the following:

E(ϕ1 α1
Uϕ1 ∧ 〈α2〉ϕ2)

= µX.(ϕ1 ∧ 〈α2〉ϕ2) ∨ (ϕ1 ∧ 〈α1 ∨ τ〉X) by definition of E(U)
= µX.ϕ1 ∧ (〈α2〉ϕ2 ∨ 〈α1 ∨ τ〉X) by factorization of ϕ1

= µX.ϕ1 ∧ (〈α2 ∧ ¬τ〉ϕ2 ∨ 〈α1 ∨ τ〉X) from 〈α2〉ϕ2 = 〈α2 ∧ ¬τ〉ϕ2

= E(ϕ1 α1Uα2 ϕ2) by definition of E(U)

ut

Lemma 1-4 (Computation Tree Logic) Assume that ϕi ∈ Lstrong
µ (As) (i =

0, 1, 2) and τ /∈ [[αa]]A. Then the following hold:

1. E(ϕ1 Uϕ2) ∈ Lstrong
µ (As)

2. A(ϕ1 Uϕ2) ∈ Lstrong
µ (As)

3. AG(ϕ0) ∈ Lstrong
µ (As)

4. EF(ϕ0) ∈ Lstrong
µ (As)

5. AF(ϕ0) ∈ Lstrong
µ (As)

6. EG(ϕ0) ∈ Lstrong
µ (As)

7. E(ϕ1 Wϕ2) ∈ Lstrong
µ (As)

8. A(ϕ1 Wϕ2) ∈ Lstrong
µ (As)

9. A([αa]ϕ1 Uϕ2) ∈ Lstrong
µ (As)

10. A([αa]ϕ1 Wϕ2) ∈ Lstrong
µ (As)

11. AG([αa]ϕ0) ∈ Lstrong
µ (As)

12. EF(〈αa〉ϕ0) ∈ Lstrong
µ (As)

13. AG(ϕ1 ∨ [αa]ϕ2) ∈ Lstrong
µ (As)

14. EF(ϕ1 ∧ 〈αa〉ϕ2) ∈ Lstrong
µ (As)

Proof. CTL operators are defined on LTS in terms of ACTL\X operators as
follows:

E(ϕ1 Uϕ2) = E(ϕ1 trueUϕ2) (Ctl1)
A(ϕ1 Uϕ2) = A(ϕ1 trueUϕ2) (Ctl2)

EF(ϕ0) = E(true trueUϕ0) (Ctl3)
AG(ϕ0) = ¬E(true trueU¬ϕ0) (Ctl4)
AF(ϕ0) = A(true trueUϕ) (Ctl5)
EG(ϕ0) = ¬A(true trueU¬ϕ) (Ctl6)

E(ϕ1 Wϕ2) = E(ϕ1 Uϕ2) ∨ EG(ϕ1) (Ctl7)
A(ϕ1 Wϕ2) = ¬E(¬ϕ2 U¬ϕ1 ∧ ¬ϕ2) (Ctl8)

In addition, there is the following identity, which is easily proven by showing
that the modal µ-calculus definitions of the left-hand-side and right-hand-side
formulas are equivalent:

A(ϕ1 Uϕ2) = ¬E(¬ϕ2 W¬ϕ1 ∧ ¬ϕ2) (Ctl9)

We also use the following standard identity of the modal µ-calculus:

¬[α]ϕ0 = 〈α〉 ¬ϕ0 (Mcl1)

Items 1 to 8 are a direct consequence of Lemma 1-3 and the fact that these
operators can be translated to ACTL\X, as shown by equations (Ctl1) to (Ctl8).
The proof of Items 9 to 14 follows:

9. A([αa]ϕ1 Uϕ2)
= ¬E(¬ϕ2 W¬[αa]ϕ1 ∧ ¬ϕ2) By (Ctl9)
= ¬(E(¬ϕ2 U¬[αa]ϕ1 ∧ ¬ϕ2) ∨ EG(¬ϕ2)) By (Ctl7)
= ¬(E(¬ϕ2 U 〈αa〉 ¬ϕ1 ∧ ¬ϕ2) ∨ EG(¬ϕ2)) By (Mcl1)
= ¬(E(¬ϕ2 trueU 〈αa〉 ¬ϕ1 ∧ ¬ϕ2) ∨ EG(¬ϕ2)) By (Ctl1)
= ¬(E(¬ϕ2 trueUαa ¬ϕ1) ∨ EG(¬ϕ2)) By Lemma 3 and τ /∈ [[αa]]A
which is in Lstrong

µ (As) following Item 6 and Lemmas 1-1 and 1-3.

10. A([αa]ϕ1 Wϕ2)
= ¬E(¬ϕ2 U¬[αa]ϕ1 ∧ ¬ϕ2) By (Ctl8)
= ¬E(¬ϕ2 U 〈αa〉 ¬ϕ1 ∧ ¬ϕ2) By (Mcl1)
= ¬E(¬ϕ2 trueU 〈αa〉 ¬ϕ1 ∧ ¬ϕ2) By (Ctl1)
= ¬E(¬ϕ2 trueUαa ¬ϕ1) By Lemma 3 and τ /∈ [[αa]]A
which is in Lstrong

µ (As) following Lemmas 1-1 and 1-3.

11. AG([αa]ϕ0)
= ¬E(true trueU¬[αa]ϕ0) By (Ctl4)
= ¬E(true trueU 〈αa〉 ¬ϕ0) By (Mcl1)
= ¬E(true trueUαa

¬ϕ0) By Lemma 3 and τ /∈ [[αa]]A
which is in Lstrong

µ (As) following Lemmas 1-1 and 1-3. This is also a con-
sequence of AG(ϕ1 ∨ [αa]ϕ2) ∈ Lstrong

µ (As) (shown below), replacing ϕ1 by
false and ϕ2 by ϕ0.

12. EF(〈αa〉ϕ0)
= E(true trueU 〈αa〉ϕ0) By (Ctl3)
= E(true trueUαa

ϕ0) By Lemma 3 and τ /∈ [[αa]]A
which is in Lstrong

µ (As) following Lemmas 1-1 and 1-3. This is also a con-
sequence of EF(ϕ1 ∧ 〈αa〉ϕ2) ∈ Lstrong

µ (As) (shown below), replacing ϕ1 by
true and ϕ2 by ϕ0.

13. AG(ϕ1 ∨ [αa]ϕ2) = ¬EF(¬ϕ1 ∧ 〈αa〉 ¬ϕ2), which is shown to belong to
Lstrong
µ (As) below.

14. EF(ϕ1 ∧ 〈αa〉ϕ2) is semantically equivalent to EF(〈(ϕ1?.true)∗.ϕ1?.αa〉ϕ2),
which belongs to Lstrong

µ (As). Indeed, if EF(ϕ1∧〈αa〉ϕ2) is true, then there is
a reachable state satisfying ϕ1 ∧ 〈αa〉ϕ2, by definition of EF. This state also
satisfies 〈(ϕ1?.true)∗.ϕ1?.αa〉ϕ2, after an empty sequence of steps match-
ing (ϕ1?.true)∗. On the other hand, if there is a reachable state satisfy-
ing 〈(ϕ1?.true)∗.ϕ1?.αa〉ϕ2, then there is a reachable state satisfying both
ϕ1 and 〈αa〉ϕ2, by definition of the weak modality, i.e, the LTS satisfies
EF(ϕ1 ∧ 〈αa〉ϕ2).

ut

C Detailed performance data of the TFTP case-study

Table 5 presents the detailed performance data obtained on the TFTP case-
study, which served as input to generate the curves of Figure 2 (page 12).
Parameters P , S, and I correspond respectively to the property number, the
scenario, and the TFTP instance. LTS sizes are given in kilostates, memory
in megabytes, and time in seconds. Time does not include LTS generation of
the component processes from their LNT specification, which is quite fast (a
few seconds) and shared by both the mono-bisimulation approach and the com-
bined bisimulations approach. The column “Ratio Strong/Combined” shows the
gain obtained by applying the combined bisimulations approach rather than the
mono-bisimulation approach with respect to largest LTS size, memory peak, and
time.

Strong bisimulation Combined bisimulations Ratio Strong/Combined
Kstates verif. Kstates verif. Kstates verif.

P S I largest final MB sec. largest final MB sec. largest final MB sec.

08 A A 1783 1197 136 66 746 503 60 32 2.4 2.4 2.3 2.1

14 A A 1783 1495 138 83 770 639 62 31 2.3 2.3 2.2 2.7

08 A B 1783 1295 143 91 347 281 30 17 5.1 4.6 4.8 5.4

17 A B 1783 1191 138 76 1000 694 79 44 1.8 1.7 1.7 1.7

08 B A 792 636 62 38 347 289 30 18 2.3 2.2 2.1 2.1

08 B B 792 707 62 40 174 130 17 13 4.6 5.4 3.6 3.1

14 B B 792 720 65 47 174 134 17 14 4.6 5.4 3.8 3.4

16 B B 792 613 63 35 456 356 38 22 1.7 1.7 1.7 1.6

08 C A 30926 16924 2393 2274 8448 4471 660 575 3.7 3.8 3.4 4.0

09 C A 30965 16935 2540 2305 7940 7516 636 666 3.9 2.3 4.0 3.5

14 C A 30965 22772 2417 3033 8679 6141 688 706 3.6 3.7 3.5 4.3

17 C A 30992 16935 2527 1873 19269 10833 1502 1164 1.6 1.6 1.7 1.6

08 C B 30926 16853 2391 2257 7995 4176 617 417 3.9 4.0 3.9 5.4

09 C B 30953 16998 2538 2271 7326 6931 589 502 4.2 2.5 4.3 4.5

14 C B 30953 22710 2410 2635 8146 5683 637 601 3.8 4.0 3.8 4.4

17 C B 30992 16998 2529 1913 18033 10173 1406 1155 1.7 1.7 1.8 1.7

08 D A 36447 19136 2934 2703 9655 5824 783 623 3.8 3.3 3.7 4.3

09 D A 36447 18731 3152 2903 9636 8607 808 865 3.8 2.1 3.9 3.4

17 D A 36447 18731 2971 2262 22203 11926 1793 1545 1.6 1.6 1.7 1.5

08 D B 36447 19062 2933 2787 7405 3498 568 464 4.9 5.4 5.2 6.0

09 D B 36478 19243 3110 2650 5495 5153 443 412 6.6 3.7 7.0 6.4

14 D B 36478 22237 3002 3264 7533 3986 588 589 4.8 5.6 5.1 5.5

16 D B 36478 19243 3161 2303 15576 7830 1204 1232 2.3 2.5 2.6 1.9

08 E A 17035 10646 1315 1046 4970 3257 388 287 3.4 3.3 3.4 3.6

09 E A 17035 10375 1397 1312 4856 4620 392 310 3.5 2.2 3.6 4.2

14 E A 17035 12759 1327 1346 5081 3983 400 384 3.4 3.2 3.3 3.5

16 E A 17035 10376 1399 897 10723 6643 832 736 1.6 1.6 1.7 1.2

08 E B 17035 10529 1318 1177 4735 3033 369 253 3.6 3.5 3.6 4.7

09 E B 17035 10401 1402 1130 4471 4267 363 320 3.8 2.4 3.9 3.5

14 E B 17035 12725 1329 1342 4810 3714 377 283 3.5 3.4 3.5 4.7

16 E B 17035 10402 1396 1033 9987 6202 773 793 1.7 1.7 1.8 1.3

Table 5. Results of the TFTP case-study

	Compositional Verification of Concurrent Systems by Combining Bisimulations

