
appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
65

21
--

F
R

+
E

N
G

Th„emes BIO et COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Computation Tree Regular Logic for
Genetic Regulatory Networks

Radu Mateescu — Pedro T. Monteiro —

Estelle Dumas — Hidde de Jong

N° 6521

Mai 2008

Centre de recherche INRIA Grenoble – Rhône-Alpes
Inovallée, 655, avenue de l’Europe, Montbonnot, 38334 Saint Ismier Cedex (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Computation Tree Regular Logic for

Genetic Regulatory Networks

Radu Mateescu* , Pedro T. Monteiro** ,

Estelle Dumas*** , Hidde de Jong****

Thèmes BIO et COM — Systèmes biologiques et Systèmes communicants

Projets Ibis et Vasy

Rapport de recherche n° 6521 — Mai 2008 — 53 pages

Abstract: Model checking has proven to be a useful analysis technique not only for concur-
rent systems, but also for the genetic regulatory networks (Grns) that govern the functioning
of living cells. The applications of model checking in systems biology have revealed that tem-
poral logics should be able to capture both branching-time and fairness properties (needed
for specifying multistability and oscillation properties, respectively). At the same time, they
should have a user-friendly syntax easy to employ by non-experts. In this report, we define
Computation Tree Regular Logic (Ctrl), an extension of Ctl with regular expressions and
fairness operators that attempts to match these criteria. Ctrl subsumes both Ctl and
Ltl, and has a reduced set of temporal operators indexed by regular expressions, inspired
from the modalities of Propositional Dynamic Logic (Pdl). We also develop a translation
of Ctrl into Hennessy-Milner Logic with Recursion (HmlR), an equational variant of the
modal µ-calculus. This has allowed us to obtain an on-the-fly model checker with diagnostic
for Ctrl by directly reusing the verification technology available in the Cadp toolbox. We
illustrate the application of the Ctrl model checker by analyzing the Grn controlling the
carbon starvation response of Escherichia coli.

Key-words: genetic regulatory networks, model checking, system biology, temporal logic,
verification

* Radu.Mateescu@inria.fr
** Pedro.Monteiro@inria.fr

*** Estelle.Dumas@inria.fr
**** Hidde.de-Jong@inria.fr

Logique régulière du temps arborescent

pour les réseaux de régulation génique

Résumé : La vérification par logique temporelle (model checking) s’est révélée comme étant
une technique d’analyse utile non seulement pour les systèmes concurrents, mais également
pour les réseaux de régulation génique (Rrgs) qui gouvernent le fonctionnement des cel-
lules vivantes. Les applications du model checking en biologie systémique ont souligné le
fait que les logiques temporelles utilisées devraient capturer à la fois des aspects arbores-
cents et d’équité (nécessaires pour spécifier des propriétés de multistabilité et respectivement
d’oscillation), tout en ayant une syntaxe simple et intuitive, facile d’emploi pour les non-
spécialistes. Dans ce rapport, nous définissons Computation Tree Regular Logic (Ctrl),
une extension de Ctl avec des expressions régulières et des opérateurs d’équité qui vise
à répondre à ces critères. Ctrl subsume à la fois Ctl et Ltl, et possède un ensemble
réduit d’opérateurs temporels indexés par des expressions régulières, inspirés des modalités
de Propositional Dynamic Logic (Pdl). Nous définissons également une traduction de Ctrl
vers la logique de Hennessy-Milner avec récursion (HmlR), une variante équationnelle du
µ-calcul modal, qui a permis d’obtenir un évaluateur à la volée avec diagnostic pour Ctrl en
réutilisant directement la technologie de vérification disponible dans la bôıte à outils Cadp.
Nous illustrons l’application de l’évaluateur pour Ctrl avec l’exemple du Rrg contrôlant
la réponse au manque de carbone chez Escherichia coli.

Mots-clés : réseaux de régulation génique, model checking, biologie systémique, logique
temporelle, vérification

Computation Tree Regular Logic for Genetic Regulatory Networks 3

1 Introduction

Explicit state verification has been mostly applied to the analysis of concurrent systems in en-
gineering. Recently, however, biological regulatory networks have been recognized as special
cases of concurrent systems as well, which has opened the way for the application of formal
verification technology in the emerging field of systems biology (see [29, 54] for reviews).
The networks controlling cellular functions consist of genes, proteins, small molecules, and
their mutual interactions. Most of these networks are large and complex, thus defying our
capacity to understand how the dynamic behavior of the cell emerges from the structure of
interactions. A large number of mathematical formalisms have been proposed to describe
these networks [23], giving rise to models that can be directly or indirectly mapped to Kripke
structures.

The representation of the dynamics of biological regulatory networks by means of Kripke
structures enables the application of formal verification techniques to the analysis of proper-
ties of the networks. In particular, such properties can be formulated as queries in temporal
logic, and verified by means of model checking algorithms on the Kripke structures. Exam-
ples of the kind of properties that biologists are interested in include the following:� Is the basal glycerol production level combined with rapid closure of Fps1 sufficient to

explain an initial glycerol accumulation after osmotic shock? [43]� Once a cell has executed Start, does it slip back into G1 phase and repeat Start?
Or rather, must it execute a Finish to return to G1? [19].� Does Shc phosphorylation exhibit a relative acceleration with decreasing Egf concen-
tration and show a decline over time? [56]

Several applications of model checking exists in the bioinformatics and systems biology lit-
erature [3, 6, 10, 13, 16, 17, 30]. In our previous work [8, 10], we have developed Genetic
Network Analyzer (Gna), a tool for the qualitative simulation of genetic regulatory networks,
and connected it to state-of-the-art model checkers like NuSmv [20] and Cadp [33].

All of the above approaches express the properties of interest in classical temporal logics like
Ctl [21] and Ltl [48]. The application to actual biological systems brought a few properties
of the network dynamics to the fore that are not easily expressed in these logics. For in-
stance, questions about multistability are important in the analysis of biological regulatory
networks [59], but difficult (or impossible) to express in Ltl. Ctl is capable of dealing
with branching time, important for multistability and other properties of non-deterministic
models. However, it does not do a good job when faced with questions about cycles in a
Kripke structure. Such cycles may correspond to sustained or damped oscillations in the con-
centration of molecular species, underlying cellular rhythms [19, 47]. Ctl is not expressive
enough to specify the occurrence of oscillations of indefinite length, a special kind of fairness
property [10]. An obvious solution would be to consider Ctl∗ [26] or the propositional µ-
calculus [44], both of which subsume Ctl and Ltl; however, these powerful branching-time
logics are complex to understand and use by non-experts. More generally, it is not easy

RR n° 6521

4 Mateescu, Monteiro, Dumas & de Jong

to express observations in temporal logic. Often these take the form of patterns of events
corresponding to variations of system parameters (protein concentrations, their derivatives,
etc.), which can be compared with the model predictions and thus help validate the model.
Observations are conveniently and concisely formulated in terms of regular expressions, but
these are not provided by standard temporal logics such as Ctl and Ltl.

In this report, we aim at providing a temporal specification language that allows expressing
properties of biological interest and strikes a suitable compromise between expressive power,
user-friendliness, and complexity of model checking. In order to achieve this objective, we
propose a specification language named Ctrl (Computation Tree Regular Logic), which ex-
tends Ctl with regular expressions and fairness operators. Ctrl is more expressive than
previous extensions of Ctl with regular expressions, such as Rctl [12] and RegCtl [14],
whilst having a simpler syntax due to a different choice of primitive temporal operators,
inspired from dynamic logics like Pdl [28]. Ctrl also subsumes Ctl, Ltl, and Pdl-∆ [57]
allowing in particular the concise expression of bistability and oscillation properties. Al-
though Ctrl was primarily designed for describing properties of regulatory networks in
system biology, it also enables a succinct formulation of typical safety, liveness, and fairness
properties useful for the verification of concurrent systems in other domains.

As regards the evaluation of Ctrl formulas on Kripke structures, we attempt to avoid the
effort of building a model checker from scratch by reusing as much as possible existing verifi-
cation technology. We adopt as verification engine Cadp [33], a state-of-the-art verification
toolbox for concurrent asynchronous systems that provides, among other functionalities, on-
the-fly model checking and diagnostic generation for µ-calculus formulas on labeled transition
systems (Ltss). In order to reuse this technology, we have to move from the state-based set-
ting (Ctrl and Kripke structures) to the action-based setting (µ-calculus and Ltss). The
translation from Kripke structures to Ltss is done in the standard way [21], simply by mi-
grating information from states to transition labels without changing the structure of the
model, i.e., keeping the same states and transition relations. The translation from Ctrl to
an action-based logic is carried out by considering as target language HmlR [46], an alter-
native equational representation of the modal µ-calculus which is also accepted as input by
the Evaluator 3.6 [51] model checker of Cadp. HmlR yields a more succinct translation
than plain µ-calculus due to the possibility of factoring out common subformulas using fixed
point equations. Moreover, the equational representation of HmlR is closer to the boolean
equation systems (Bess) used as intermediate formalism by the verification engine, namely
the Cæsar Solve [50] generic library for local Bes resolution. Once the translator from
Ctrl to HmlR is available, its connection with Evaluator 3.6 results in the immediate
availability of an on-the-fly model checker equipped with full diagnostic features (generation
of examples and counterexamples).

The Ctrl model checking procedure obtained in this way has a linear-time complexity
w.r.t. the size of the formula and the Kripke structure for a significant part of the logic.
This part notably subsumes Pdl-∆ and allows the multistability and oscillation properties
to be captured. The inevitability operator of Ctrl and its infinitary version (inevitable
looping) has an exponential worst-case complexity w.r.t. the size of its regular subformula;
this complexity becomes linear, however, when the regular subformula is “deterministic” in

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 5

a way similar to finite automata. In practice, the usage of Ctrl and the model checker
reveals that properties of biological interest can be expressed and verified efficiently. We
illustrate this on the analysis of a model of the regulatory network (Grn) controlling the
carbon starvation response of E. coli.

Report outline. Section 2 defines the syntax and semantics of Ctrl and discusses its
expressiveness w.r.t. existing widely-used logics. Section 2.4 defines the regular equation
systems (Ress), an intermediate equational form into which Ctrl formulas will be trans-
lated. Sections 3.1 and 3.2 present the translations from Ctrl to Ress and then to modal
equation systems (Mess). Section 4 formulates the model checking of a Mes on a Kripke
structure as the resolution of a boolean equation system (Bes). We show how this is per-
formed on-the-fly using specialized algorithms and indicate the complexity of the model
checking procedure. Section 5 describes the implementation of the Ctrl model checker in
connection with Cadp and illustrates its application on the example of E. coli . Section 6
provides some concluding remarks and directions for future work. Appendix A contains the
proofs of the translation phases from Ctrl to Mess.

2 Syntax and Semantics

2.1 Computation Tree Regular Logic

Ctrl is interpreted on Kripke structures, which provide a natural formal description of
concurrent systems, including biological regulatory networks. A Kripke structure is a tuple
K = 〈S,P,L, T, s0〉, where: S is the set of states; P is a set of atomic propositions (predicates
over states); L : S → 2P is the state labeling (each state s is associated with the atomic
propositions satisfied by s); T ⊆ S × S is the transition relation; and s0 ∈ S is the initial
state. Transitions (s1, s2) ∈ T are also noted s1 →T s2 (the subscript T is omitted if it is
clear from the context). The transition relation T is assumed to be total, i.e., for each state
s1 ∈ S, there exists a transition s1 →T s2. A path π = s0s1 . . . sk . . . is an infinite sequence
of states such that si →T si+1 for every i ≥ 0. The i-th state of a path π is noted πi. The
interval going from the i-th state of a path π to the j-th state of π inclusively (where i ≤ j)
is noted πi,j. An interval π0,i is called prefix of π. For each state s ∈ S, Path(s) denotes
the set of all paths going out of s, i.e., the paths π such that π0 = s. In the sequel, we
assume the existence of a Kripke structure K = 〈S,P,L, T, s0〉, on which all formulas will
be interpreted.

The syntax and semantics of Ctrl are defined in Figure 1. The logic contains two kinds of
entities: state formulas (noted ϕ) and regular formulas (noted ρ), which characterize prop-
erties of states and intervals, respectively. State formulas are built from atomic propositions
p ∈ P by using standard boolean operators and the EF, AF, EF∞, AF∞ temporal operators
indexed by regular formulas ρ. Regular formulas are built from state formulas by using
standard regular expression operators.

RR n° 6521

6 Mateescu, Monteiro, Dumas & de Jong

Syntax
State formulas:

ϕ ::= p (atomic proposition)
| ¬ϕ | ϕ1 ∨ ϕ2 (boolean connectors)
| EFρϕ (potentiality)
| AFρϕ (inevitability)
| EF∞

ρ (potential looping)

| AF∞
ρ (inevitable looping)

Regular formulas:
ρ ::= ϕ (one-step interval)

| ρ1.ρ2 (concatenation)
| ρ1|ρ2 (choice)
| ρ∗ (iteration 0 or more times)

Semantics
State formulas:

[[p]]K = {s ∈ S | p ∈ L(s)}
[[¬ϕ]]K = S \ [[ϕ]]K

[[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K
[[EFρϕ]]K = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ [[ϕ]]K}
[[AFρϕ]]K = {s ∈ S | ∀π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ [[ϕ]]K}
[[EF∞

ρ]]K = {s ∈ S | ∃π ∈ PathK(s).∀j ≥ 0.∃i ≥ 0.π0,i |=K ρj}
[[AF∞

ρ]]K = {s ∈ S | ∀π ∈ PathK(s).∀j ≥ 0.∃i ≥ 0.π0,i |=K ρj}

Regular formulas:
πi,j |=K ϕ iff j = i+ 1 ∧ πi |=K ϕ
πi,j |=K ρ1.ρ2 iff ∃k ∈ [i, j].πi,k |=K ρ1 ∧ πk,j |=K ρ2

πi,j |=K ρ1|ρ2 iff πi,j |=K ρ1 ∨ πi,j |=K ρ2

πi,j |=K ρ∗ iff ∃k ≥ 0.πi,j |=K ρk

Figure 1: Syntax and semantics of Ctrl

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 7

The interpretation [[ϕ]]K of a state formula denotes the set of states of the Kripke structure K
that satisfy ϕ. The interpretation of regular formulas is defined by the satisfaction relation
|=K , which indicates whether an interval πi,j of a path in a Kripke structure K satisfies
a regular formula ρ (notation πi,j |=K ρ). The notation ρj (where j ≥ 0) stands for the
concatenation ρ . . . ρ, where ρ occurs j times. The semantics of boolean operators is defined
in the standard way. A state satisfies the potentiality formula EFρϕ iff it has an outgoing
path containing a prefix satisfying ρ and leading to a state satisfying ϕ. A state satisfies
the inevitability formula AFρϕ iff all of its outgoing paths contain a prefix satisfying ρ and
lead to a state satisfying ϕ. A state satisfies the potential looping formula EF∞

ρ iff it has
an outgoing path consisting of an infinite concatenation of intervals satisfying ρ. A state
satisfies the inevitable looping formula AF∞

ρ iff all of its outgoing paths consist of an infinite
concatenation of intervals satisfying ρ. An interval satisfies the one-step interval formula ϕ iff
it consists of two states, the first of which satisfies ϕ. An interval satisfies the concatenation
formula ρ1.ρ2 if it is the concatenation of two subintervals, the first one satisfying ρ1 and the
second one satisfying ρ2. An interval satisfies the choice formula ρ1|ρ2 iff it satisfies either ρ1,
or ρ2. An interval satisfies the iteration formula ρ∗ iff it is the concatenation of (0 or more)
subintervals satisfying ρ. By definition, an empty interval πi,i satisfies ρ0 for any regular
formula ρ. A Kripke structure K satisfies a state formula ϕ (notation K |= ϕ) iff s0 ∈ [[ϕ]]K .

Figure 2 shows several derived operators on states and intervals defined in order to facilitate
the specification of properties. The trajectory operator EGρϕ and the invariance operator
AGρϕ are defined as duals of inevitability and potentiality operators, respectively, similarly
to the their Ctl counterparts (obtained by dropping the ρ formulas). They express that
for some (resp. each) path going out of a state, all of its prefixes satisfying ρ lead to states
satisfying ϕ. The potential saturation operator EG⊣

ρ and the inevitable saturation operator

AG⊣
ρ express that some (resp. each) path going out of a state contains a prefix satisfying ρ∗

such that no other larger prefix satisfies ρ∗; in other words, only a finite number of intervals
satisfying ρ can be concatenated at the beginning of the path. The empty interval operator
nil is defined as the iteration (0 or more times) of the false proposition; an interval satisfies
the formula nil iff it contains a single state. The iteration (1 or more times) operator ‘+’ is
defined in the standard way; an interval satisfies ρ+ iff it is the concatenation of (1 or more)
intervals satisfying ρ.

For technical reasons related to the translation of Ctrl formulas to Mess in the model check-
ing process (Section 3), we need to extend the grammar of state formulas with propositional
variables X ∈ X , which denote sets of states:

ϕ ::= X | p | . . .

Propositional variables are interpreted w.r.t. a Kripke structure K by an environment δ :
X → 2S , which is a partial function mapping propositional variables to state sets. The
interpretation of state formulas must be extended in order to take into account the presence
of propositional variables: [[ϕ]]Kδ denotes the set of states satisfying ϕ in the context of
δ, which must map every variable occurring in ϕ to a state set. The interpretation of
propositional variables is defined as follows:

[[X]]Kδ = δ(X)

RR n° 6521

8 Mateescu, Monteiro, Dumas & de Jong

true = p ∨ ¬p (true, p ∈ P)
false = ¬true (false)

ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2) (conjunction)
ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2 (implication)
ϕ1 ⇔ ϕ2 = (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1) (equivalence)

EGρϕ = ¬AFρ¬ϕ (trajectory)
AGρϕ = ¬EFρ¬ϕ (invariance)
EG⊣

ρ = ¬AF∞
ρ (potential saturation)

AG⊣
ρ = ¬EF∞

ρ (inevitable saturation)

nil = false
∗ (empty interval)

ρ+ = ρ.ρ∗ (iteration 1 or more times)

Figure 2: Derived (boolean, temporal, and regular) operators of Ctrl

The interpretation of the other state formulas defined in Figure 1 does not change, except
that an extra parameter δ is added to the interpretation [[]]. In the sequel, we assume that
all occurrences of propositional variables are positive, i.e., they fall under an even number of
negations. This condition (ensured during the translation to Mess) is called syntactic mono-
tonicity and was proposed initially to ensure the well-definedness of propositional µ-calculus
formulas [44].

For simplicity, we first transform state formulas in positive normal form (Pnf) by propa-
gating the negations downwards until they reach the atomic formulas (i.e., propositions p or
variables X) by applying the rules in Figure 2. Given that state formulas are syntactically
monotonic, negations can occur after propagation only in front of atomic propositions p; for
convenience, we also include in the set P the negations of all propositions p, as well as the
boolean constants true and false. State formulas in Pnf are thus composed of atomic propo-
sitions, disjunctions and conjunctions, and all primitive and derived temporal operators of
Ctrl defined in Figures 1 and 2.

2.2 Examples of temporal properties

We illustrate below the use of Ctrl operators for specifying typical temporal properties of
communication protocols and concurrent systems. Other examples of properties, concerning
the behaviour of genetic regulatory networks, can be found in Section 5.2.

Safety properties. Informally, these properties specify that “something bad never hap-
pens” during the execution of the system. They can be expressed in Ctrl by identifying the
sequences of states corresponding to safety violations, characterizing them using a regular
formula ρ, and forbidding their existence in the Kripke structure by checking the formula
AGρfalse. For example, the Ctrl formula below expresses the alternation between emissions

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 9

and receptions of messages in a communication protocol that behaves as a one-slot buffer:

AG((nil | (true∗.rcv)).(¬snd)∗.rcv) | (true∗.snd .(¬rcv)∗.snd)false

where the atomic propositions snd and rcv indicate the emission and reception of a message,
respectively. The first alternative in the regular subformula above forbids the occurrence of
a reception before the first message was emitted and also the occurrence of two consecutive
receptions without an emission in between. The second alternative requires that a reception
must occur between every two consecutive emissions.

This property can also be specified in Ctl using 5 temporal operators:

¬E[¬snd U rcv] ∧ AG(rcv ⇒ ¬E[¬snd U rcv]) ∧ AG(snd ⇒ ¬E[¬rcv U snd])

where AG ϕ = ¬E[true U ¬ϕ] is the invariance operator of Ctl.

Liveness properties. Informally, these properties specify that “something good even-
tually happens” during the execution of the system. They can be expressed in Ctrl by
capturing the desirable sequences of states, characterizing them using a regular formula ρ,
and expressing their potential or inevitable presence in the Kripke structure by means of
the EFρ and AFρ operators, respectively. For instance, the Ctrl property below states that
every time a message is emitted, then it will be eventually received after a finite number of
transmission errors:

AGtrue∗.sndAF(true∗.err)∗.rcv true

This property cannot be specified in Ctl because of the presence of two nested ∗ operators
in the regular subformula of the AF operator.

Fairness properties. Informally, these properties specify the progression of all the con-
current processes present in the system, which may be competing for the access to shared
resources. In Ctrl, fairness properties can be expressed by identifying the infinite execution
sequences denoting the starvation of a certain process, characterizing them using the EF∞

ρ

operator, and forbidding their presence in the Kripke structure. The Ctrl formula below
specifies that after a process has requested the access to a shared resource, it cannot be
indefinitely preempted in getting access to the resource by another process:

¬EFtrue∗.req1
EF

∞
(¬get1)∗.req2.(¬get1)∗.get2

where the atomic propositions req i and get i denote the request and the access of process i
to the resource, respectively. An equivalent formulation of this property can be rewritten
by propagating the negation through the temporal operators using the dualities shown in
Figure 2:

AGtrue∗.req1
AG

⊣
(¬get1)

∗.req2.(¬get1)∗.get2

This property cannot be expressed in Ctl because it involves the repetition of alternating
req2 and get2, but can be expressed in Ltl using 5 temporal operators:

G(req1 ⇒ ((get1 R ¬req2) ∨ (¬get1 U ((req2 ∧ (get1 R ¬get2)) ∨ (get2 ∧ (get1 R ¬req2))))))

where ϕ1 R ϕ2 = ¬(¬ϕ1 U ¬ϕ2) is the release operator of Ltl.

RR n° 6521

10 Mateescu, Monteiro, Dumas & de Jong

2.3 Expressiveness

Ctrl is a natural extension of Ctl [21], whose main temporal operators can be described
using the EF and AF operators of Ctrl as follows:

E[ϕ1 U ϕ2] = EFϕ∗

1
ϕ2 A[ϕ1 U ϕ2] = AFϕ∗

1
ϕ2

The until operator U of Ctl is not primitive in Ctrl; this is a difference w.r.t. other
extensions of Ctl, such as Rctl [12] and RegCtl [14], which keep the U operator primitive
as in the original logic.

Ctrl also subsumes Ltl [48], because the potential looping operator EF∞ is able to capture
the acceptance condition of Büchi automata. Assuming that the atomic proposition p char-
acterizes the accepting states in a Büchi automaton (represented as a Kripke structure), the
formula below expresses the existence of an infinite sequence passing infinitely often through
an accepting state:

EF
∞
true∗.p.true+

The + operator is necessary in order to avoid empty sequences consisting of a single state
satisfying p. Of course, the EF∞ operator does not allow a direct translation of the Ltl
operators, but may serve as an intermediate form for model checking Ltl formulas; in this
respect, this operator is similar to the “never claims” used for specifying properties in the
early versions of the Spin model checker [37].

Thus, Ctrl subsumes both Ctl and Ltl. This subsumption is strict, since these two
logics are uncomparable w.r.t. their expressive power (i.e., each one can describe properties
unexpressible in the other one) [21]. In fact, the Ctrl fragment containing the boolean
connectors and the temporal operators EF and EF∞ can be seen as a state-based variant of
Pdl-∆ [57], which has been shown to be more expressive than Ctl∗ [62].

As regards other existing extensions of Ctl with regular operators, Ctrl subsumes RegCtl,
whose U operator indexed by a regular formula can be expressed using the EF operator of
Ctrl as follows:

E[ϕ1 U
ρ ϕ2] = EFρ & ϕ∗

1
ϕ2

The & operator stands for the intersection of regular formulas; although this operator is not
present in Ctrl, its occurrence above can be expanded in terms of the regular operators
available in Ctrl by applying the rules below:

ϕ′ & ϕ∗ = ϕ′ & ϕ (ρ1.ρ2) & ϕ∗ = (ρ1 & ϕ∗).(ρ2 & ϕ∗)
(ρ1|ρ2) & ϕ∗ = (ρ1 & ϕ∗)|(ρ2 & ϕ∗) (ρ1

∗) & ϕ∗ = (ρ1 & ϕ∗)∗

The subsumption of RegCtl is strict because the U operator of RegCtl cannot describe an
infinite concatenation of intervals satisfying a regular formula ρ, which is specified in Ctrl
using the EF∞

ρ operator. In [14] it is shown that RegCtl is more expressive than Rctl [12],
the extension of Ctl with regular expressions underlying the Sugar [11] specification lan-
guage; consequently, Ctrl also subsumes Rctl.

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 11

2.4 Regular and modal equation systems

To apply our model checking method, we need to translate Ctrl state formulas into an
equational representation, which is more suitable than the tree-like representation under-
lying the syntax definition in Figure 1. As intermediate language, we use regular equation
systems (Ress), which are the propositional counterpart of the PdlR (Pdl with recursion)
specifications introduced in [51]. The syntax and semantics of Ress are defined in Figure 3.
Equation blocks B are sets of fixed point equations having propositional variables X ∈ X
in the left-hand sides and Ctrl state formulas (possibly containing propositional variables)
in the right-hand sides. All equations of a block have the same fixed point sign σ ∈ {µ, ν},
where µ and ν denote minimal and maximal fixed points, respectively. The free and bound
variables in a block list are defined as follows:

fv(ε) = ∅ bv(ε) = ∅
fv(B.BL)= (fv(B) \ bv(BL)) ∪ fv(BL) bv(B.BL)= bv(B) ∪ bv(BL)

fv({Xi
σ
= ϕi}1≤i≤n)=

⋃n
i=1 fv(ϕi) bv({Xi

σ
= ϕi}1≤i≤n)= {X1, ...,Xn}

The set fv(ϕi) contains all propositional variables occurring in ϕi. A block list BL is closed
if fv(BL) = ∅. In the sequel, we consider that all nonempty block lists B.BL satisfy the
following conditions: bv(B) ∩ bv(BL) = ∅ (normal form) and fv(B) ⊆ bv(B) ∪ bv(BL)
(alternation-free). In a block list B.BL, block B depends upon another block B′ of BL
if fv(B) ∩ bv(B′) 6= ∅, i.e., B contains a free variable bound in B′. The alternation-free
condition means that there are no cyclic dependencies between equation blocks, and block
B depends only upon the blocks contained in BL, placed at his right in the list B.BL. In a
Res R = 〈X,BL〉, BL is assumed to be nonempty and closed. X is called the main variable
and must be bound in the first block of BL.

Syntax
R ::= 〈X,BL〉 (regular equation system)

BL ::= ε | B.BL (equation block list)

B ::= {Xi
σ
= ϕi}1≤i≤n (equation block)

Semantics
[[〈X,BL〉]]K = ([[BL]]K)(X)

[[ε]]Kδ = []
[[B.BL]]Kδ = [[B]]K(δ ⊘ [[BL]]Kδ) ⊘ [[BL]]Kδ

[[{Xi
σ
= ϕi}1≤i≤n]]Kδ = [(σΦδ)1/X1, ..., (σΦδ)n/Xn]

where Φδ : (2S)n → (2S)n, Φδ(U1, ..., Un) = 〈[[ϕi]]K(δ ⊘ [U1/X1, ..., Un/Xn])〉1≤i≤n

Figure 3: Syntax and semantics of regular equation systems

The interpretation of a Res R = 〈X,BL〉 on a Kripke structure K = 〈S,P,L, T, s0〉 is the
value of variable X as obtained by solving the block list BL. The interpretation [[BL]]Kδ of
a block list in the context of an environment δ is another environment assigning state sets to

RR n° 6521

12 Mateescu, Monteiro, Dumas & de Jong

all variables bound in BL. Since the blocks of BL depend upon each other from left to right,
the interpretation of BL can be defined inductively, by solving the blocks from right to left.
The notation δ ⊘ [U1/X1, ..., Un/Xn] stands for the extension of δ with [U1/X1, ..., Un/Xn],
i.e., an environment identical to δ except for variables X1, ...,Xn, which are mapped to the
state sets U1, ..., Un, respectively. The empty environment is noted []. The interpretation of
an equation block B is the environment mapping the variables bound in B to the state sets
given by the corresponding fixed point of the functional associated to the block. When BL is
closed, the δ environment is omitted. The state formulas in the right-hand sides of equations
are assumed to be syntactically monotonic, which according to Tarski’s theorem [58] ensures
the well-definedness of the functionals associated to blocks.

A modal equation system (Mes) M = 〈X,BL〉 is a Res where all Ctrl temporal operators
occurring in the right-hand sides of equations contain only atomic regular formulas, i.e.,
without any regular operator (‘.’, ‘|’, ‘∗’). Mess are the propositional counterpart of the
HmlR (Hml with recursion) specifications, proposed in [46] as an equivalent equational
definition of the modal µ-calculus. In our setting, Mess are suitable as target language for
translating Ctrl formulas, since they are sufficiently close to the boolean equation systems
used to represent the model checking problem.

3 Translation from CTRL to modal equation systems

The translation of a Ctrl state formula ϕ into a Mes involves two steps: first the formula
is translated into a Res, and then the Res is transformed to a Mes. These two steps are
purely syntactic, i.e., they do not depend upon the Kripke structure on which the formulas
and the equation systems are interpreted.

3.1 Translation to regular equation systems

The translation of a Ctrl state formula ϕ into a Res is defined by the syntactic function
t(ϕ) = 〈tX(ϕ), tBL(ϕ)〉 given in Figure 4. The two components tX(ϕ) and tBL(ϕ) denote
the main variable and the equation block list produced by t(ϕ), respectively. For each
translation rule, X denotes a “fresh” propositional variable, different from all the other
variables contained in ϕ and in t(ϕ). The notation BL1;BL2 indicates the concatenation of
two equation block lists BL1, BL2 and is defined inductively as follows: ε;BL2 = BL2, and
(B.BL1);BL2 = B.(BL1;BL2).

For simplicity, in the translation of propositional constants we omitted the empty block list,
i.e., we wrote {X

µ
= p} instead of {X

µ
= p}.ε. If ϕ does not contain propositional variables,

then bv(tBL(ϕ)) = ∅, i.e., the block list produced by the translation is closed. The translation
given in Figure 4 preserves the interpretation of formulas, as stated by the proposition below.

Proposition 1 (Translation from CTRL to RESs) Let K be a Kripke structure and ϕ
a state formula of Ctrl. Then:

[[ϕ]]Kδ = [[t(ϕ)]]Kδ

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 13

for any propositional environment δ.

t(p) = 〈X, {X
µ
= p}〉

t(ϕ1 ∨ ϕ2) = 〈X, {X
µ
= tX(ϕ1) ∨ tX(ϕ2)}.(tBL(ϕ1); tBL(ϕ2))〉

t(ϕ1 ∧ ϕ2) = 〈X, {X
µ
= tX(ϕ1) ∧ tX(ϕ2)}.(tBL(ϕ1); tBL(ϕ2))〉

t(EFρϕ) = 〈X, {X
µ
= EFρtX(ϕ)}.tBL(ϕ)〉

t(AFρϕ) = 〈X, {X
µ
= AFρtX(ϕ)}.tBL(ϕ)〉

t(EGρϕ) = 〈X, {X
ν
= EGρtX(ϕ)}.tBL(ϕ)〉

t(AGρϕ) = 〈X, {X
ν
= AGρtX(ϕ)}.tBL(ϕ)〉

t(EF∞
ρ) = 〈X, {X

ν
= EFρX}〉

t(AF∞
ρ) = 〈X, {X

ν
= AFρX}〉

t(EG⊣
ρ) = 〈X, {X

µ
= EGρX}〉

t(AG⊣
ρ) = 〈X, {X

µ
= AGρX}〉

Figure 4: Translation of Ctrl formulas into Ress

To illustrate the translation of Ctrl formulas into Ress, we consider a branching-time
property of biological interest, called bistability property [59, 25], which specifies that after
an initial state, two different equilibrium states can be potentially reached. This property
can be expressed in Ctrl by the following formula:

AGtrue∗.init(EFtrue∗eql1 ∧ EFtrue∗eql2)

where the atomic propositions init , eql1, and eql2 denote the initial state and the two equi-
librium states, respectively. By applying the translation defined in Figure 4 to this formula,
we obtain the Res below:

〈X, {X
ν
= AGtrue∗.initY }.{Y

µ
= Z1 ∧ Z2}.

{Z1
µ
= EFtrue∗U1}.{U1

µ
= eql1}.{Z2

µ
= EFtrue∗U2}.{U2

µ
= eql2}.ε〉

The occurrence of the ‘;’ operator produced by the translation of EFtrue∗eql1 ∧ EFtrue∗eql2
was expanded in terms of the ‘.’ operator using the definition of ‘;’.

The size (number of variables and operators) of the Res t(ϕ) produced by the translation
is linear in the size (number of operators) of the formula ϕ, because every rule given in
Figure 4 creates, for each operator present in ϕ, one block containing a single equation with
one operator in its right-hand side.

For simplicity, the translation of a state formula ϕ given in Figure 4 does not take care of the
state subformulas ψ that may occur inside the regular formulas ρ. However, these subformu-
las must also be translated into Ress in order to be evaluated on a Kripke structureK during
the model checking procedure. This is done by applying the translation recursively on every
subformula ψ of a regular formula ρ, yielding an additional Res t(ψ) = 〈tX(ψ), tBL(ψ)〉.

RR n° 6521

14 Mateescu, Monteiro, Dumas & de Jong

In practice, the block list tBL(ψ) of each additional Res t(ψ) is concatenated to the block
list tBL(ϕ) of the Res t(ϕ), and the main variable tX(ψ) replaces the occurrence of the
corresponding subformula ψ, as illustrated by the formula below:

EF(AGtrue∗p)
∗q

whose translation yields the following Res:

〈X, {X
µ
= EFY ∗Z}.{Z

µ
= q}.{Y

ν
= AGtrue∗U}.{U

ν
= p}.ε〉

However, in order to simplify notations, we can exploit the fact that the Ress produced by
translating the subformulas ψ are closed, and hence their main variables can be evaluated
independently from the Res t(ϕ). This allows to safely replace each subformula ψ by a
“fresh” atomic proposition pψ, whose interpretation on K is obtained by evaluating the

main variable tX(ψ) of the Res t(ψ). On the example above, the Res becomes 〈X, {X
µ
=

EFr∗Z}.{Z
µ
= q}.ε〉, where r has the same interpretation as the variable Y of the additional

Res 〈Y, {Y
ν
= AGtrue∗U}.{U

ν
= p}.ε〉. Therefore, in the sequel we will restrict ourselves to

Ress in which the regular formulas occurring in the right-hand sides of equations are built
only upon atomic propositions.

3.2 Translation to modal equation systems

Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block. An equation block {Xn

σ
= ψn, Yj

σ
= ψj}n<j≤m

is suitable for the substitution of equation Xn
σ
= ϕn if fv(ψn) ∪

⋃m
j=n+1 fv(ψj) = fv(ϕn) and

⋃n
i=1 fv(ϕi) ∩ {Yn+1, ..., Ym} = ∅. The notation {Xi

σ
= ϕi}1≤i≤n[Xn

σ
= ϕn := Xn

σ
= ψn, Yj

σ
=

ψj}n<j≤m] represents the syntactic substitution of the equation Xn
σ
= ϕn by the equations

{Xn
σ
= ψn, Yj

σ
= ψj}n<j≤m in B. This definition of substitution, which allows to replace

only the last equation of a block, is general enough: since all equations of a block have the
same fixed point sign, their order does not influence the values of the variables defined in
the block, and therefore any equation of the block can be substituted by bringing it in the
last position.

The translation of the Res equation blocks into Mess is performed by repeatedly applying
various transformations on the equation block, most of them being substitutions of equations.

3.2.1 Operators EFρ and AGρ

In order to translate the equation blocks of the form {X
µ
= EFρY } and {X

ν
= AGρY } into

Mess, we eliminate the regular expressions ρ by repeatedly applying appropriate substitu-
tions. Each equation containing an EFρ or AGρ operator in its right-hand side is substituted
with a suitable equation block containing simpler regular formulas, as defined in Figure 5
(Z and U are “fresh” propositional variables).

The application of any substitution given in Figure 5 preserves the interpretation of equation
blocks, as stated by the proposition below:

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 15

Equation Substitution block

X
µ
= EFρ1.ρ2Y {X

µ
= EFρ1Z,Z

µ
= EFρ2Y }

X
µ
= EFρ1|ρ2Y {X

µ
= Z ∨ U,Z

µ
= EFρ1Y,U

µ
= EFρ2Y }

X
µ
= EFρ∗Y {X

µ
= Y ∨ Z,Z

µ
= EFρX}

X
ν
= AGρ1.ρ2Y {X

ν
= AGρ1Z,Z

ν
= AGρ2Y }

X
ν
= AGρ1|ρ2Y {X

ν
= Z ∧ U,Z

ν
= AGρ1Y,U

ν
= AGρ2Y }

X
ν
= AGρ∗Y {X

ν
= Y ∧ Z,Z

ν
= AGρX}

Figure 5: Substitutions for the EFρ and AGρ operators

Proposition 2 (Substitution of EF and AG) Let K be a Kripke structure and B1 =

{Xi
µ
= ϕi}1≤i≤n, B2 = {Xi

ν
= ϕi}1≤i≤n be two equation blocks. Then, for any proposi-

tional environment δ, the interpretation of B1 (resp. B2) w.r.t. δ does not change when a
substitution given in the upper part (resp. the lower part) of Figure 5 is applied.

By repeatedly applying these substitutions, all occurrences of regular operators in the right-
hand sides of the equations can be eliminated. For the Res encoding the bistability property,
this translation yields the following Mes:

〈X, {X
ν
= Y1 ∧ Y2, Y1

ν
= AGinitY, Y2

ν
= AGtrueX}.{Y

µ
= Z1 ∧ Z2}.

{Z1
µ
= U1 ∨ Z3, Z3

µ
= EFtrueZ1}.{U1

µ
= eql1}.

{Z2
µ
= U2 ∨ Z4, Z4

µ
= EFtrueZ2}.{U2

µ
= eql2}.ε〉

The equation block {X
ν
= AGtrue∗.initY } was translated by successively applying the first and

the third substitutions in the lower part of Figure 5.

The size of the Mes equation block resulting from the translation of a Res equation block
B of the form {X

µ
= EFρY } (resp. {X

ν
= AGρY }) remains linear w.r.t. the size of B (and

hence linear w.r.t. the size of the initial Ctrl formula ϕ), since each substitution in Figure 5
replaces a regular operator by at most two variables and two temporal operators EF (resp.
AG).

3.2.2 Operators AFρ and EGρ

The translation of the equation blocks {X
µ
= AFρY } and {X

ν
= EGρY } into Mess is more

complicated than the translation of their EFρ and AGρ counterparts, because the substitutions
given in Figure 5 to eliminate the regular expressions ρ are no longer valid for the AFρ and

EGρ operators. We consider below only blocks of the form {X
µ
= AFρY }, the processing of

their EGρ counterparts being dual.

The translation of the {X
µ
= AFρY } equation blocks into Mess consists of three steps. First,

the Res is temporarily transformed in potentiality form {X
µ
= EFρY } and subsequently

RR n° 6521

16 Mateescu, Monteiro, Dumas & de Jong

translated into a potentiality Mes by eliminating the regular expression ρ using the substi-
tutions given in Section 3.2.1. Then, the resulting Mes is transformed in guarded form, by
eliminating all unguarded (i.e., not preceded by a temporal operator) occurrences of vari-
ables in the right-hand sides of equations. Finally, the guarded Mes is determinized, by
replacing all occurrences of EF operators in the right-hand sides of equations by appropriate
occurrences of AF operators in order to retrieve the interpretation of the initial equation
block {X

µ
= AFρY }.

We will illustrate each step of the translation on the following example of equation block:

{X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y }.

Translation to potentiality form

The difficulty of translating an equation block {X
µ
= AFρY } into a Mes stems from the

fact that all transition sequences going out of a state have to satisfy ρ before reaching a
state satisfying Y , whereas the substitutions in Figure 5 allow to eliminate ρ on individual
sequences only. To avoid this difficulty, we switch temporarily to the potentiality form
{X

µ
= EFρY }, we eliminate ρ by applying the substitutions, and we continue working with

the resulting potentiality Mes, which characterizes the existence of individual sequences
satisfying ρ. The size of this Mes is linear w.r.t. the size of the initial block {X

µ
= AFρY },

as stated in Section 3.2.1. Figure 6 shows the potentiality Mes obtained from the equation
block considered above by switching to potentiality form and applying the substitutions in
Figure 5 (all equations have the sign µ, which was omitted for simplicity).

X = EF(q|p∗)∗Z1 X = Z3 ∨ Z1 X = Z3 ∨ Z1

Z3 = EFq|p∗X Z3 = Z4 ∨ Z5 Z3 = Z4 ∨ Z5

Z5 = EFqX Z5 = EFqX
Z4 = EFp∗X Z4 = Z6 ∨X Z4 = Z6 ∨X

Z6 = EFpZ4 Z6 = EFpZ4

Z1 = EFqr∗Z2 Z1 = EFqZ7 Z1 = EFqZ7

Z7 = EFr∗Z2 Z7 = Z8 ∨ Z2 Z7 = Z8 ∨ Z2

Z8 = EFrZ7 Z8 = EFrZ7

Z2 = EFp∗|q∗Y Z2 = Z9 ∨ Z10 Z2 = Z9 ∨ Z10

Z9 = EFp∗Y Z9 = Z11 ∨ Y Z9 = Z11 ∨ Y
Z11 = EFpZ9 Z11 = EFpZ9

Z10 = EFq∗Y Z10 = Z12 ∨ Y Z10 = Z12 ∨ Y
Z12 = EFqZ10 Z12 = EFqZ10

Figure 6: Translation of {X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y } to a potentiality Mes

The right-hand sides of the equations of the potentiality Mes may contain unguarded oc-
currences of propositional variables (i.e., not preceded by any EF operator), such as variable

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 17

Z1 in the equation X = Z3 ∨ Z1. These occurrences will be eliminated in the next step of
the translation.

Translation to guarded form

The translation of a potentiality Mes into guarded form consists in eliminating all unguarded
occurrences of variables in the right-hand sides of equations, by applying the lemma below.

Lemma 1 (Absorption) Let K be a Kripke structure and B = {Xi
µ
= ϕi}1≤i≤n be an

equation block such that ϕn = Xn ∨ ϕ and Xn 6∈ fv(ϕ). Then:

[[{Xi
µ
= ϕi}1≤i≤n[Xn

µ
= Xn ∨ ϕ := Xn

µ
= ϕ]]]Kδ = [[{Xi

µ
= ϕi}1≤i≤n]]Kδ

for any propositional environment δ.

The equations of a potentiality Mes have two possible forms, according to the right-hand side
formulas produced by the rules in Figure 5: either unguarded (i.e., containing disjunctions
of variables in their right-hand side), or guarded (i.e., containing a single occurrence of an
EF operator in their right-hand side). The elimination of unguarded occurrences of variables
is carried out by Algorithm 1.

Algorithm 1 Translation of a potentiality Mes to guarded form

for all unguarded equations X
µ
=
∨

j

Xj do

Eliminate X among Xj by applying the absorption lemma
for all unguarded occurrences of X in the rsh of other equations do

Substitute X by
∨

j

Xj

end for
end for
for all guarded equations X

µ
= EFpXj do

Substitute X by EFpXj in all unguarded equations
end for

The first loop of Algorithm 1 applies the absorption lemma and the idempotency of disjunc-
tion on each unguarded equation defining a variable X in order to eliminate the unguarded
occurrences of X, and afterwards expands inline all unguarded occurrences of X in all the
other equations of the Mes. After executing the first loop on the potentiality Mes given in
Figure 6, we obtain the Mes shown in Figure 7.

Upon termination of the first loop, the formulas in the right-hand sides of equations may
contain only unguarded occurrences of Y and of variables X defined by guarded equations of
the Mes. The second loop of the algorithm expands inline those variables, thus eliminating
all unguarded occurrences except those of Y . The result of applying the second loop on the
Mes in Figure 7 yields the Mes shown in Figure 8.

RR n° 6521

18 Mateescu, Monteiro, Dumas & de Jong

Initial list of 1st loop of Algorithm 1
unguarded eqns. Var. Updated equations

X = Z3 ∨ Z1 X: Z4 = Z6 ∨ Z3 ∨ Z1

Z2 = Z9 ∨ Z10 Z2: Z7 = Z8 ∨ Z9 ∨ Z10

Z3 = Z4 ∨ Z5 Z3: X = Z4 ∨ Z5 ∨ Z1

Z4 = Z6 ∨X Z4 = Z6∨Z4∨Z5 ∨ Z1

Z7 = Z8 ∨ Z2 Z4: X = Z6 ∨ Z5 ∨ Z1∨Z5∨Z1

Z9 = Z11 ∨ Y Z3 = Z1 ∨ Z5 ∨ Z6∨Z5

Z10 = Z12 ∨ Y Z9: Z2 = Z11 ∨ Y ∨ Z10

Z7 = Z8 ∨ Z11 ∨ Y ∨ Z10

Z10: Z2 = Z11 ∨ Y ∨ Z12∨Y
Z7 = Z8 ∨ Z11 ∨ Y ∨ Z12∨Y

Figure 7: Translation of a potentiality Mes in guarded form (1st part)

Equations after 2nd loop of Algorithm 1
the 1st loop Var. Updated equations

X = Z6 ∨ Z5 ∨ Z1 Z1: X = Z6 ∨ Z5 ∨ EFqZ7

Z2 = Z11 ∨ Y ∨ Z12 Z3 = EFqZ7 ∨ Z5 ∨ Z6

Z3 = Z1 ∨ Z5 ∨ Z6 Z4 = Z6 ∨ Z5 ∨ EFqZ7

Z4 = Z6 ∨ Z5 ∨ Z1 Z5: X = Z6 ∨ EFqX ∨ EFqZ7

Z7 = Z8 ∨ Z11 ∨ Y ∨ Z12 Z3 = EFqZ7 ∨ EFqX ∨ Z6

Z9 = Z11 ∨ Y Z4 = Z6 ∨ EFqX ∨ EFqZ7

Z10 = Z12 ∨ Y Z6: X = EFpZ4 ∨ EFqX ∨ EFqZ7

Z1 = EFqZ7 Z3 = EFqZ7 ∨ EFqX ∨ EFpZ4

Z5 = EFqX Z4 = EFpZ4 ∨ EFqX ∨ EFqZ7

Z6 = EFpZ4 Z8: Z7 = EFrZ7 ∨ Z11 ∨ Y ∨ Z12

Z8 = EFrZ7 Z11: Z2 = EFpZ9 ∨ Y ∨ Z12

Z11 = EFpZ9 Z7 = EFrZ7 ∨ EFpZ9 ∨ Y ∨ Z12

Z12 = EFqZ10 Z9 = EFpZ9 ∨ Y
Z12: Z2 = EFpZ9 ∨ Y ∨ EFqZ10

Z7 = EFrZ7 ∨ EFpZ9 ∨ Y ∨ EFqZ10

Z10 = EFqZ10 ∨ Y

Figure 8: Translation of a potentiality Mes in guarded form (2nd part)

The guarded Mess obtained by applying Algorithm 1 can be further simplified by eliminating
duplicate and unreachable equations. In the Mes shown in Figure 8, the equations defining
X, Z3 and Z4 have identical right-hand sides, and therefore variables Z4 and Z3 can be
replaced by X and their equations deleted. Also, some of the variables will no longer be
referenced after these substitutions, and therefore their equations can be safely removed.

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 19

Finally, variables can be renamed in order to have a proper numbering, leading to the Mes
shown in Figure 9.

X = EFpX ∨ EFqX ∨ EFqZ7

Z7 = EFrZ7 ∨ EFpZ9 ∨ EFqZ10 ∨ Y
Z10 = EFqZ10 ∨ Y
Z9 = EFpZ9 ∨ Y

X1 = EFpX1 ∨ EFqX1 ∨ EFqX2

X2 = EFpX4 ∨ EFqX3 ∨ EFrX2 ∨ Y
X3 = EFqX3 ∨ Y
X4 = EFpX4 ∨ Y

Figure 9: Guarded potentiality Mes after simplifications (left) and renaming (right)

This guarded Mes is equivalent to the equation block {X
µ
= EF(q|p∗)∗.(qr∗).(p∗|q∗)Y } used by

the translation in potentiality form of our running example. Intuitively, each variable defined
by this Mes denotes the suffix of a transition sequence in the Kripke structure satisfying the
regular formula indexing the EF operator. In this respect, guarded potentiality Mess are
similar to the equation systems defining the derivatives of regular expressions [15].

The guarded potentiality Mess produced by applying Algorithm 1 have at most the same
number of variables as the original Mess, but may present in the worst-case a quadratic
increase in the number of operators. However on practical examples, we observed that the
number of variables in the guarded Mess is much smaller than in the original Mess (thanks
to elimination of redundant equations) and the number of operators remains close to linear
w.r.t. the original Mess, and hence w.r.t. the size of the initial Ctrl formula.

Determinization

The last step of the translation consists in determinizing the guarded potentiality Mes
obtained so far in order to obtain a Mes with the same meaning as the initial Res {X

µ
=

AFρY }. Consider the following potentiality Mes in guarded form:

Xi
µ
=

n
∨

j=1

(hij ∧ EFpij
Xj) ∨ (hi ∧ Y)

1≤i≤n

where hij , hi ∈ Bool and pij ∈ P for all 1 ≤ i, j ≤ n. The coefficients hij and hi allow
to simplify notations: only the terms EFpij

Xj with their coefficients hij equal to true (and
similarly for the unguarded occurrences of Y with their hi equal to true) are present in the
right-hand sides of equations. An equation defining variable Xi is said to have the index i.
Note that the translation to guarded potentiality form may produce equations containing
guarded occurrences of Y , e.g., formulas EFpY in their right-hand sides; in this case, bringing

the Mes to the form above requires to introduce an extra equation Xn+1
µ
= Y and to replace

by Xn+1 all guarded occurrences of Y (but not its unguarded occurrences). The determinized

RR n° 6521

20 Mateescu, Monteiro, Dumas & de Jong

Mes corresponding to the guarded potentiality Mes above is defined as follows:

XI
µ
=

∨

∅⊂Q⊆prop(I)

AFQXvars(Q,I) ∨ (h(I) ∧ Y)

I⊆[1,n]

where:� prop(I)
d
= {pij | i ∈ I ∧ j ∈ [1, n] ∧ hij} is the set of atomic propositions occurring

as subscripts of EF operators in the equations of the guarded potentiality Mes having
their index in the set I.� vars(Q, I)

d
= {j ∈ [1, n] | ∃i ∈ I.(hij ∧ pij ∈ Q)} is the set of indexes of propositional

variables which occur in the right-hand side of some equation having its index in the
set I and whose corresponding EF operator is subscripted by some atomic proposition
contained in the set Q.� h(I)

d
= ∃i ∈ I.hi is equal to true iff Y occurs unguarded in some equation having its

index in the set I.

In the AF operators of the determinized Mes, the subscript Q stands for the conjunction of
all the atomic propositions contained in the set Q.

The determinization restores the meaning of the initial equation block {X
µ
= AFρY }, as

stated by the proposition below.

Proposition 3 (Determinization correctness) Let K be a Kripke structure, R = {X1
µ
=

AFρY } an equation block, and M the Mes obtained from R after translation in guarded
potentiality form and determinization. Then:

([[M]]Kδ)(X{1}) = ([[R]]Kδ)(X1)

for any propositional environment δ.

Figure 10 shows the determinized version of the guarded potentiality Mes produced by
the previous translation phases from the equation block {X

µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y }. For

conciseness, we represent index sets just by concatenating their elements, e.g., the set
{1, 2, 3} is denoted by 123. We observe that this Mes can be simplified by eliminating
duplicate equations (e.g., the equations defining variables X12,X123,X124 and those defining
X2,X23,X24,X234) and by absorbing certain operands using the identity AFpXI ∨AFpqXI =
AFpXI , yielding the Mes on the left of Figure 11. Finally, the right-hand side formulas of
some equations may occur as subformulas in other equations and can therefore be replaced
by their corresponding left-hand side variables, leading to the final determinized Mes shown
on the right of Figure 11. In practice, these simplifications can be carried out incrementally
as the equations are generated, avoiding the complete construction of the determinized Mes
prior to simplification. Moreover, sometimes it is possible to determine statically whether

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 21

X1
µ
= AFpX1 ∨ AFqX12 ∨ AFpqX12

X12
µ
= AFpX14 ∨ AFqX123 ∨ AFrX2 ∨ AFpqX1234 ∨ AFprX124 ∨ AFqrX123 ∨ AFpqrX1234 ∨ Y

X123
µ
= AFpX14 ∨ AFqX123 ∨ AFrX2 ∨ AFpqX1234 ∨ AFprX124 ∨ AFqrX123 ∨ AFpqrX1234 ∨ Y

X124
µ
= AFpX14 ∨ AFqX123 ∨ AFrX2 ∨ AFpqX1234 ∨ AFprX124 ∨ AFqrX123 ∨ AFpqrX1234 ∨ Y

X14
µ
= AFpX14 ∨ AFqX12 ∨ AFpqX124 ∨ Y

X1234
µ
= AFpX14 ∨ AFqX123 ∨ AFrX2 ∨ AFpqX1234 ∨ AFprX124 ∨ AFqrX123 ∨ AFpqrX1234 ∨ Y

X2
µ
= AFpX4 ∨ AFqX3 ∨ AFrX2 ∨ AFpqX34 ∨ AFprX24 ∨ AFqrX23 ∨ AFpqrX234 ∨ Y

X23
µ
= AFpX4 ∨ AFqX3 ∨ AFrX2 ∨ AFpqX34 ∨ AFprX24 ∨ AFqrX23 ∨ AFpqrX234 ∨ Y

X234
µ
= AFpX4 ∨ AFqX3 ∨ AFrX2 ∨ AFpqX34 ∨ AFprX24 ∨ AFqrX23 ∨ AFpqrX234 ∨ Y

X24
µ
= AFpX4 ∨ AFqX3 ∨ AFrX2 ∨ AFpqX34 ∨ AFprX24 ∨ AFqrX23 ∨ AFpqrX234 ∨ Y

X3
µ
= AFqX3 ∨ Y

X34
µ
= AFpX4 ∨ AFqX3 ∨ AFpqX34 ∨ Y

X4
µ
= AFpX4 ∨ Y

Figure 10: Determinized Mes produced from the equation block {X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y }

X1
µ
= AFpX1 ∨ AFqX12

X12
µ
= AFpX14 ∨ AFqX12 ∨ AFrX2 ∨ AFprX12 ∨ Y

X14
µ
= AFpX14 ∨ AFqX12 ∨ Y

X2
µ
= AFpX4 ∨ AFqX3 ∨ AFrX2 ∨ AFpqX34 ∨ Y

X3
µ
= AFqX3 ∨ Y

X34
µ
= AFpX4 ∨ AFqX3 ∨ AFpqX34 ∨ Y

X4
µ
= AFpX4 ∨ Y

X1
µ
= AFpX1 ∨ AFqX12

X12
µ
= AFrX2 ∨ AFprX12 ∨X14

X14
µ
= AFpX14 ∨ AFqX12 ∨ Y

X2
µ
= AFrX2 ∨X34

X34
µ
= AFpqX34 ∨X3 ∨X4

X3
µ
= AFqX3 ∨ Y

X4
µ
= AFpX4 ∨ Y

Figure 11: Determinized Mes of {X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y } after simplifications

certain atomic propositions are mutually exclusive, which allows to remove the AF operators
whose index subformulas contain those propositions together.

The determinization of a guarded potentiality Mes defined above is similar to the subset
construction procedure used for determinizing finite automata [1]. In the worst-case, the size

of the determinized Mes resulting from the translation of an equation block {X
µ
= AFρY }

is exponential w.r.t. the size (number of operators and atomic propositions) of the regular
formula ρ. However in practice, the size of determinized Mess obtained after simplifications
is close to linear w.r.t. the size of ρ, as illustrated by the final Mes shown in Figure 11.
When ρ is deterministic (i.e., each atomic proposition occurs only once in the right-hand
side of each equation of the guarded potentiality Mes used as intermediate form, and all
atomic propositions are mutually exclusive on the states of the Kripke structure), the size of
the resulting determinized Mes remains linear w.r.t. the size of ρ.

RR n° 6521

22 Mateescu, Monteiro, Dumas & de Jong

3.2.3 Operators EF∞
ρ , AF∞

ρ , EG⊣
ρ , and AG⊣

ρ

According to the rules given in Fig 4, the EF∞
ρ and AF∞

ρ operators are translated into equation

blocks of the form {X
ν
= EFρX} and {X

ν
= AFρX}, respectively. The interpretation of these

equation blocks is given by νΦe and νΦa, where the functionals Φe,Φa : 2S → 2S are defined
as follows:

Φe(U) = [[EFρX]]K [U/X] = ([[{X1
µ
= EFρX}]]K [U/X])(X1)

Φa(U) = [[AFρX]]K [U/X] = ([[{X1
µ
= AFρX}]]K [U/X])(X1).

The evaluation of the EF∞
ρ and AF∞

ρ operators requires to compute the maximal fixed points
of the functionals Φe and Φa, which are defined in turn as the minimal fixed points of the
functionals associated to the Ress Re = {X1

µ
= EFρX} and Ra = {X1

µ
= AFρX}. Therefore,

these operators belong to Lµ2, the µ-calculus fragment of alternation depth 2 [27], which
allows one level of mutual recursion between minimal and maximal fixed points1. The
complexity of checking Lµ2 formulas on a Kripke structure K is in general quadratic in
the size of K; however, we can exploit the particular structure of Re and Ra in order to
devise linear-time on-the-fly model checking algorithms for the EF∞

ρ operator and (when ρ
is deterministic) for the AF∞

ρ operator, as shown in Section 4.

The operators EG⊣
ρ and AG⊣

ρ are handled dually w.r.t. AF∞
ρ and EF∞

ρ , respectively.

4 On-the-fly model checking

Given a Kripke structure K = 〈S,P,L, T, s0〉 and a Ctrl state formula ϕ, the on-the-fly
model checking problem consists in determining whether the initial state s0 of K satisfies
ϕ by exploring the transition relation T in a forward manner starting at s0. Our objective
is to reuse the on-the-fly model checking technology already available in the setting of the
Mcl property specification language [52, 51], an extension of Lµ1 with various constructs,
among which the regular expressions and fairness operators of Pdl-∆. Mcl is interpreted
on labeled transition systems (Ltss) modeling the behaviour of concurrent programs writ-
ten in action-based specification languages, such as process algebras. The model checking
procedure of Mcl relies upon a translation to the alternation-free fragment of HmlR, which
is an equivalent equational representation of Lµ1. The on-the-fly model checking problem
of a HmlR specification on an Lts is subsequently rephrased as the local resolution of an
alternation-free boolean equation system (Bes), which is carried out using specialized linear-
time algorithms [50]. Therefore, in order to reuse this technology it is necessary to switch
from Kripke structures to Ltss and to translate Ctrl formulas into HmlR specifications.

Kripke structures are converted into Ltss in the classical way [21], i.e., for each state s, the
atomic propositions holding at s in the Kripke structure are migrated to the actions labeling
the transitions going out of s in the Lts. Formally, the Lts corresponding to a Kripke

1The EF
∞

ρ and AF
∞

ρ operators belong strictly to Lµ2 only when ρ contains iteration operators; otherwise,
they belong to Lµ1, the µ-calculus fragment of alternation depth 1, which has a linear-time model checking
complexity [22].

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 23

structure is defined as 〈S, 2P , {(s1, L(s1), s2) ∈ S × 2P × S | s1 →T s2}, s0〉, where 2P is the
set of actions (sets of atomic propositions). This translation is succinct, i.e., every state and
transition of the Kripke structure is mapped to a state and a transition of the Lts. It is also
suitable for on-the-fly verification because it can be carried out during a forward traversal
of the transition relation. As regards the translation of Ctrl state formulas to HmlR, we
briefly explain below how this is done for each temporal operator.

4.1 Operators EFρ, AFρ, EGρ, and AGρ

The formulas occurring in the Mess obtained from the EFρ, AFρ, EGρ, and AGρ operators
by applying the translation defined in Sections 3.1 and 3.2 contain combinations of atomic
propositions and basic modalities of the form EFpX, AFpX, EGpX, and AGpX, respectively.
To convert these Mess into HmlR specifications, we must replace each of these subformulas
by Hml modalities that have the same interpretation on the Lts corresponding to the original
Kripke structure. This is done as indicated in Table 1.

Table 1: Correspondence between Ctrl and Hml modalities

Ctrl formula Hml formula

p 〈p〉true

EFpX 〈p〉X

AGpX [p]X

AFpX 〈p〉true ∧ [true]X

EGpX 〈p〉true ⇒ 〈true〉X

This translation causes at most a linear increase in size of the HmlR specification w.r.t. the
Mes, each basic Ctrl modality being replaced by at most two Hml modalities. The resulting
HmlR specification is alternation-free, since it has the same equation block structure as the
Mes. Therefore, the on-the-fly model checking procedure obtained via a Bes encoding has
a linear-time complexity w.r.t. the size of the HmlR specification (hence, the size of the
Mes) and the size of the Lts (hence, the size of the Kripke structure) [22, 51].

4.2 Operators EF∞
ρ , AF∞

ρ , EG⊣
ρ , and AG⊣

ρ

As shown in Section 3.2.3, the looping and saturation operators of Ctrl lead to Mess of
alternation depth 2, a class having in general a quadratic model checking complexity w.r.t.
the size of the Kripke structure. However, given the simple structure of these Mess, we can
obtain linear-time on-the-fly model checking procedures by enhancing the Bes resolution
algorithms already available for solving disjunctive and conjunctive Bess [50], as explained
below. For conciseness, we do not present here in full detail the encoding of the model
checking problem in terms of Bess (see [22, 51, 50] for details) but instead we illustrate

RR n° 6521

24 Mateescu, Monteiro, Dumas & de Jong

it on examples. We consider only the looping operators EF∞
ρ and the AF∞

ρ operators, the

saturation operators AG⊣
ρ and EG⊣

ρ being handled dually.

4.2.1 Operator EF∞
ρ

The EF∞
ρ operator yields a Res of the form {X

ν
= EFρX}. To evaluate this Res on a Kripke

structure (or equivalently, the corresponding HmlR specification on the Lts derived from
the Kripke structure), we abusively switch its sign to µ and take care to preserve its original
meaning during the resolution of the Bes encoding the model checking problem. The Mes
obtained after applying the translation given in Section 3.2.1 contains only disjunctions and
EF operators, which yield diamond modalities in the HmlR specification. Therefore, the Bes
encoding the model checking problem is disjunctive, and could be solved using the algorithm
A4 proposed in [50].

If the EF∞
ρ formula is false, the solution of the {X

µ
= EFρX} is also false, since by switching

the sign from ν to µ we obtain an equation block with a “smaller” interpretation. If EF∞
ρ is

true, the Kripke structure contains an infinite sequence made of subsequences satisfying ρ,
which must end with a cycle because the set of states is finite. The model checking algorithm
must therefore detect the presence of such cycles and record that all the states occurring on
them satisfy EF∞

ρ . This cycle detection can be performed by the A4cyc algorithm proposed
in [52], which is an extended version of the A4 algorithm dedicated to disjunctive Bess.

Formula:

p q

q

10 2 3

4

X22

Ks:

Mes:

EF
∞
true∗.p.true∗.q

X0
µ
= X1

X1
µ
= EFpX2 ∨ EFtrueX1

X2
µ
= EFqX0 ∨ EFtrueX2

Bes: Xij = sj |= Xi X00

X10

X11

X24X23

X01 X21

X04

X13

X12

X14

Figure 12: Evaluation of a EF∞ formula using the A4cyc algorithm

Figure 12 illustrates the execution of A4cyc for checking a EF∞
ρ formula on a Kripke structure.

For simplicity, we show the verification by considering directly the Res and the Kripke
structure instead of the corresponding HmlR specification and Lts. The verification problem
is reformulated as the resolution of a Bes in which a variable Xij is true iff the state si of the
Kripke structure satisfies the propositional variable Xj of the Res. The Bes is represented

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 25

by means of its associated boolean graph [2], which gives a more intuitive representation of the
dependencies between boolean variables. The variable X0 of the Res was defined initially by
the equationX0

µ
= EFρX0 and therefore it plays a special role: every sequence of dependencies

in the boolean graph relating two variables X0j denotes a sequence of transitions matching
ρ in the Kripke structure. Algorithm A4cyc marks all variables X0j and searches for cycles
containing a marked variable: if such a cycle exists, then an infinite sequence satisfying ρ
exists in the Kripke structure and the formula is true. In the example shown on Figure 12,
the boolean graph associated to the disjunctive Bes contains a cycle (surrounded by the
dashed line) going through the marked variable X01, meaning that the property holds on
the Kripke structure.

The A4cyc algorithm has a linear time complexity w.r.t. the size of the boolean graph [52],
which makes the complexity of evaluating an EF∞

ρ formula linear w.r.t. the size of ρ and of
the Kripke structure.

4.2.2 Operator AF∞
ρ

Deterministic case. The AF∞
ρ operator yields a Res of the form {X

ν
= AFρX}. To eval-

uate this Res on a Kripke structure (or equivalently, the corresponding HmlR specification
on the Lts derived from the Kripke structure), we abusively keep its sign to ν and take
care to preserve its original meaning during the resolution of the Bes encoding the model
checking problem. The Mes obtained after applying the translation given in Section 3.2.2
(which should have a sign µ) contains disjunctions of AF operators, each of them yielding box
modalities in the HmlR specification. When ρ is deterministic, only one of the AF operators
in a right-hand side of an equation will apply on the current state, leading to a conjunctive
Bes, which could be solved using the algorithm A4 proposed in [50].

If the AF∞
ρ formula is true, the solution of the {X

ν
= AFρX} is also false, since by keeping

the sign equal to ν we obtain an equation block with a “larger” interpretation. If AF∞
ρ is

false, the Kripke structure contains a cycle in which one of the ∗-operators of ρ is “trapped”,
preventing the system to evolve eventually towards the end of the sequences satisfying ρ. The
model checking algorithm must therefore detect the presence of such cycles and record that
all the states occurring on them do not satisfy AF∞

ρ . This cycle detection can be performed
by a symmetric version of the A4cyc algorithm proposed in [52].

Figure 13 illustrates the execution of the symmetric version of A4cyc for checking a AF∞
ρ

formula on a Kripke structure. As before, the variable X0 of the Res, defined initially by the
equation X0

ν
= AFρX0 is marked in order to indicate that every sequence of dependencies in

the boolean graph relating two variables X0j denotes a sequence of transitions matching ρ in
the Kripke structure. The symmetric algorithm A4cyc marks all variables X0j and searches
for cycles not containing a marked variable: if such a cycle exists, then some sequence
satisfying a prefix of ρ in the Kripke structure cannot be extended in a finite number of steps
until the end of ρ is reached, and the formula is false. In the example shown on Figure 13,
the boolean graph associated to the conjunctive Bes contains a cycle (surrounded by the
dashed line) that does not contain any marked variable, meaning that the property is false.

RR n° 6521

26 Mateescu, Monteiro, Dumas & de Jong

Formula:

p r

r

10 2 3

4

p q

X00

X10

X11

X12 X14

X13 X01

Ks:

Mes:

AF∞
(p|q)∗.r

{

X0
ν
= X1

X1
ν
= AFpX1 ∨ AFqX1 ∨ AFrX0

}

Bes: Xij = sj |= Xi

Figure 13: Evaluation of a AF∞ deterministic formula using the symmetric A4cyc algorithm

The symmetric A4cyc algorithm has a linear time complexity w.r.t. the size of the boolean
graph [52], which makes the complexity of evaluating a deterministic AF∞

ρ formula linear
w.r.t. the size of ρ and of the Kripke structure.

Nondeterministic case. When ρ is nondeterministic, the Bes resulting from the transla-
tion above has a general shape, i.e., the right-hand sides of its equations contain both ∨ and
∧ connectors. In this case, one can apply the on-the-fly resolution algorithms dedicated to
Bess of alternation depth 2 [61]. These algorithms have a worst-case comlexity quadratic in
the size of the Bes, which yields a quadratic complexity w.r.t. the size of the Mes produced
by translating AFρX and the size of the Kripke structure.

4.3 Complexity

The complexity of the model checking procedure presented in Sections 3, 4.1, and 4.2 is
summarized in Table 2. The EFρ and EF∞

ρ operators, together with their respective duals

AGρ and AG⊣
ρ , are evaluated in linear-time w.r.t. the size of the formula and the size of

the Kripke structure. Moreover, the evaluation of these operators has a memory complexity
O(|ρ| · |S|), meaning that only the states (and not the transitions) of the Kripke structure are
stored; this is a consequence of using the memory-efficient Bes resolution algorithms A4 [50]
and A4cyc [52] dedicated to disjunctive and conjunctive Bess. This fragment of Ctrl is the
state-based counterpart of Pdl-∆ [57], which is more expressive than Ctl∗ [26]. Of course,
this does not yield a linear-time model checking procedure for Ctl∗ (nor for its fragment
Ltl), because the translation from Ctl∗ to Pdl-∆ is not succinct [62]. The advantage of the
linear-time model checking procedure for the EF∞

ρ potential looping operator (obtained due
to the Bes resolution algorithm A4cyc [52]) is to allow an efficient detection of complex cycles
in the Kripke structure, which describe oscillation properties [17]. The EF∞

ρ operator is also

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 27

useful for characterizing fairness properties in concurrent systems, such as the existence of
complex unfair executions in resource locking protocols [5].

Table 2: Complexity of model checking Ctrl operators on K = 〈S,P,L, T, s0〉

Operator Complexity
ρ deterministic ρ nondeterministic

EFρ AGρ O(|ρ| · (|S| + |T |))

AFρ EGρ O(|ρ| · (|S| + |T |)) O(2|ρ| · (|S| + |T |))
EF∞

ρ AG⊣
ρ O(|ρ| · (|S| + |T |))

AF∞
ρ EG⊣

ρ O(|ρ| · (|S| + |T |)) O(22|ρ| · (|S| + |T |)2)

The AFρ operator and its dual EGρ are evaluated in linear-time only when the regular sub-
formula ρ is deterministic (according to the definition given in Section 3.2.2 in terms of the
resulting Mes). In the general case, these operators are evaluated in exponential-time w.r.t.
the size of ρ (because of the determinization phase) but still in linear-time in the size of the
Kripke structure. In practice, the size of temporal formulas is much smaller than the size
of Kripke structures, which reduces the impact of the factor 2|ρ| on the total cost of model
checking. The usage of the AFρ operator for specifying properties of protocols and distributed
systems often involves regular subformulas ρ with a simple structure (without nested ∗ or |
operators, corresponding basically to the nested application of the AF inevitability operators
of Ctl), which lead to small-sized Mess after translation. Finally, the AF∞

ρ operator and

its dual EG⊣
ρ are evaluated in linear-time when ρ is deterministic (thanks to the symmetric

version of the A4cyc algorithm); in the general case, these operators are evaluated in doubly
exponential-time w.r.t. the size of ρ and in quadratic-time w.r.t. the size of the Kripke
structure. This complexity seems difficult to lower, since the Bess produced by translating
these operators are of alternation depth 2 and have a general shape (arbitrary nesting of
disjunctions and conjunctions in the right-hand sides of equations).

5 Implementation and Use

We implemented the model checking procedure for Ctrl described in Sections 3 and 4
by reusing as much as possible the on-the-fly verification technology available in the Cadp
toolbox [33]. This section presents the architecture of our Ctrl model checker and illustrates
its use for analyzing genetic regulatory networks.

5.1 An on-the-fly model checker for CTRL

The most direct way of obtaining a model checker for Ctrl is to take advantage of existing
verification technology. As verification engine, we use Cadp2 (Construction and Analysis

2http://www.inrialpes.fr/vasy/cadp

RR n° 6521

28 Mateescu, Monteiro, Dumas & de Jong

of Distributed Processes) [33], a state-of-the-art verification toolbox for concurrent asyn-
chronous systems. Cadp offers a wide range of functionalities assisting the user throughout
the design process: compilation and rapid prototyping, random execution, interactive and
guided simulation, model checking and equivalence checking, test generation, and perfor-
mance evaluation. The toolbox accepts as input process algebraic descriptions in Lotos [39]
or Chp [49], as well as networks of communicating automata in the Exp language [45].

The tools of Cadp operate on labeled transition systems (Ltss), which are represented either
explicitly (by their list of transitions) as compact binary files encoded in the Bcg (Binary
Coded Graphs) format, or implicitly (by their successor function) as C programs compli-
ant with the Open/Cæsar interface [31]. Cadp contains the on-the-fly model checker
Evaluator [51], which evaluates regular alternation-free µ-calculus (Lµreg

1) formulas on
implicit Ltss. The tool works by translating the verification problem in terms of the local
resolution of a Bes, which is done using the algorithms available in the generic Cæsar Solve
library [50]. Evaluator 3.6 uses HmlR as intermediate language: Lµreg

1 formulas are
translated into HmlR specifications, whose evaluation on implicit Ltss can be straightfor-
wardly encoded as a local Bes resolution. The tool generates full diagnostics (examples
and counterexamples) illustrating the truth value of the formulas, and is also equipped with
macro-definition mechanisms allowing the creation of reusable libraries of derived temporal
operators.

(.aut
.bcg
.c)

(.aut
 .bcg)

(.ctrl)

(.blk)

(.mcl)

ρ
ex

p
an

si
on

A
b
u
si

ve
ρ

ex
p
an

si
on

T
ra

n
sl

at
io

n

T
ra

n
sl

at
io

n
gu

ar
d
ed

fo
rm

D
et

er
m

in
iz

at
io

n

On-the-fly
resolution

Res Mes

Mes Mes Mes

Lµreg
1

HmlR

Bes

answer

Lts

Lts

Res

Ctrl

EFρ/AGρ

AFρ/EGρ

Ctrl translation

Cadp Evaluator

E
x
p
an

si
on

Figure 14: Ctrl translator and its connection to the Evaluator model checker of Cadp

In order to reuse the model checking features of Evaluator 3.6, we had the choice of
translating Ctrl formulas either to Lµreg

1 formulas, or to HmlR specifications. We adopted
the second solution because it leads to a more succinct translation and avoids the translation
step from Lµreg

1 to HmlR present in Evaluator. This technical choice motivated the
definition of the translation from Ctrl to Mess in the first place. The architecture of the
Ctrl translator (about 12, 000 lines of code) is shown in Figure 14. The tool takes as
input a Ctrl state formula and translates it to a Mes following the phases described in
Section 3, which are different for the EFρ and AFρ operators and their dual counterparts.

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 29

The Mes obtained is then converted into a HmlR specification by expanding the basic
Ctrl temporal operators in terms of Hml modalities as shown in Section 4.1. The resulting
HmlR specification is directly given as input to Evaluator 3.6, together with the Lts
corresponding to the Kripke structure.

The translator from Ctrl to HmlR has been completely implemented, using the compiler
construction technology based upon the Syntax3 system and the Lotos-Nt [34] language
proposed in [32], which was successfully used for developing several tools of Cadp.

5.2 Verification of genetic regulatory networks

Ctrl has been used for the analysis of so-called genetic regulatory networks (Grns), which
consist of genes, proteins, small molecules and their mutual interactions that together control
different functions of the cell. In order to better understand how a specific dynamic behavior
emerges from these interactions, and the role of each component in the network, a wide
variety of mathematical formalisms are available. The description of the dynamics of Grns
by means of these formalisms results in qualitative or quantitative, discrete or continuous,
stochastic or deterministic models [23].

Despite the enormous amount of information accumulated on the components and interac-
tions of Grns, numerical values for the kinetic parameters and the molecular concentrations
are usually absent. As a consequence, the above-mentioned models of Grns are difficult
to apply in practice. This has motivated the use of a special class of piecewise-linear (Pl)
differential equation models, originally introduced by [35]. The Pl models provide a coarse-
grained picture of the dynamics of Grns. They associate a protein concentration variable
to each of the genes in the network, and capture the switch-like character of gene regula-
tion by means of step functions that change their value at a threshold concentration of the
proteins. The advantage of using the Pl models is that the qualitative dynamics of the high-
dimensional systems are relatively straightforward to analyze, using inequality constraints
on the parameters rather than exact numerical values [9, 24].

In [9] it is shown how discrete abstractions can be used to convert the continuous dynamics of
the Pl systems into state transition graphs that are formally equivalent to Kripke structures.
The states of the graph correspond to hyperrectangular regions in the concentration space,
while the transitions arise from trajectories that enter one region from another. The atomic
propositions describe, among other things, the concentration bounds defining a region and
the trend of the variables inside the region (increasing, decreasing, or steady). The generation
of the state transition graph from the Pl model has been implemented in the computer tool
Gna (Genetic Network Analyzer) [10]. Gna is able to export the graph to standard model
checkers like NuSmv [20] and Cadp [33] in order to use formal verification techniques.

We analyse here properties of the carbon starvation response network in E. coli, using a
Pl model proposed in [55] (Figure 15). The dynamics of the system are described by 6
coupled Pl differential equations, and 48 inequality constraints on the parameter values.
We focus on one particular situation, a nutrient upshift after a period of starvation, leading

3Syntax is a trademark of INRIA.

RR n° 6521

30 Mateescu, Monteiro, Dumas & de Jong

to exponential growth of the bacterial population. From a single initial state, we compute
the reachable part of the graph consisting of 744 states. The graph contains several cycles,
one of which is terminal and corresponds to a (damped) oscillation of some of the protein
concentrations and the concentration of stable Rnas.

Activation

P1/P1’

CRP

P
Fis

P

P1 P2

P1 P2

TopA

P2

P1

Supercoiling

Activation

Abstract description of
a set of interactions

Inhibition

P

Carbon starvation signal

Synthesis of protein Fis
from gene fis

GyrAB

gyrAB

topA

crp

cya

stable RNAs

cAMP·CRP Cya

rrn

fis

Fis

fis

Figure 15: Network of key genes, proteins, and regulatory interactions involved in the Grn
controlling the carbon starvation response in E. coli [55].

In order to express the latter property in Ctrl, we have used a composition of the EF

and AF operators. The EF operator does not impose any restrictions on the path, whereas
the AF operator stipulates that once the cycle is reached, the concentration of stable Rnas
oscillates. This gives rise to the following formula:

EFtrue∗AFinTermCycle+.(inc rrn+.dec rrn+)+true (1)

where inTermCycle is a predicate denoting that a state is part of the terminal cycle, while
dec rrn (inc rrn) represent a decreasing (increasing) concentration of stable Rnas (which
are transcribed from the rrn operons). The Ctrl model checker returns false, indicating
that an oscillation of stable Rnas is not inevitable once the system has reached the terminal
cycle.

Replacing the AF operator by EF∞ results in the following Ctrl formula:

EFtrue∗EF
∞
inTermCycle+.(inc rrn+.dec rrn+)+

(2)

The Ctrl model checker returns true for this formula. The formula differs from the previous
one in two respects. It only specifies that it is possible (instead of necessary) that an
oscillation of the concentration of stable Rnas occurs in the terminal cycle. However, it
requires the oscillation to continue indefinitely, instead of allowing it to stop after a finite
number of periods. We can check a stricter property by asking that all paths in the graph
lead to the terminal cycle with an oscillating stable Rna concentration.

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 31

AGtrue∗EF
∞
inTermCycle+.(inc rrn+.dec rrn+)+

(3)

Formula 3 is false, confirming that some paths do not end up in this cycle. However, we can
impose a path restriction on the AG operator, to force the model checker to consider only
some of the paths:

AGtrue∗.inc F is+.dec Crp+.inTermCycleEF
∞
inTermCycle+.(inc rrn+.dec rrn+)+

(4)

The Ctrl model checker returns true for formula 4, proving that all paths satisfying the
restriction of an increase of the Fis concentration and a decrease of the Crp concentration,
reach the terminal cycle where the concentration of stable Rnas continues to oscillate.

The use of regular expressions in the above Ctrl formulas clearly demonstrates the con-
venience of being able to characterize a sequence of events. Due to the nested iteration
operators present in the regular formulas, the Ctrl formulas cannot be expressed using
standard temporal logics such as Ctl or Ltl. In addition, the EF∞

ρ operator enables a natu-
ral formulation of infinite repetitions of sequences defined by ρ, such as those corresponding
to oscillations in the E. coli example.

6 Conclusions and Future Work

Applications of model checking in system biology have demonstrated its usefulness for un-
derstanding the dynamic behaviour of regulatory networks in living cells, but also outlined
certain limitations in expressiveness and user-friendliness. Our work aims at alleviating these
limitations in order to promote the practical usage of model checking in the bioinformatics
and systems biology communities. The temporal logic Ctrl that we proposed, an extension
of Ctl with regular expressions and fairness operators, allows a natural and concise de-
scription of typical properties of biological interest, such as the presence of multistability or
oscillations in the concentrations of molecular species. We were able to obtain an on-the-fly
model checker for Ctrl by defining and implementing a translation from Ctrl to HmlR,
and by reusing the verification and diagnostic generation features of the Evaluator 3.6
model checker of Cadp. This modular architecture allowed us to reduce the development
effort and to take advantage of existing, robust model checking technology.

The extension of classical temporal logics with regular language constructs in order to in-
crease their expressiveness and user-friendliness is a long-standing line of research. One of
the first proposals in this direction was Etl [63], an extension of Ltl with regular gram-
mars, which is strictly more expressive than Ltl while still having the same complexity of
evaluation on Kripke structures. Another manner of increasing expressiveness is to enhance
temporal operators with automata on infinite sequences; this was attempted for Ctl∗ [60]
and Ctl [36]. Despite their expressive power, these extensions are difficult to implement
and use in practice because of their complex syntax.

RR n° 6521

32 Mateescu, Monteiro, Dumas & de Jong

A more user-friendly approach, which led to successful implementations, is to index tempo-
ral operators by regular expressions instead of automata. ForSpec [4] and Eagle [7] are
extensions of Ltl with regular expressions and data handling mechanisms, dedicated respec-
tively to hardware and runtime verification. Rctl [12] is an extension of Ctl with regular
expressions, which served subsequently as the basis of the Sugar [11] and Psl [38] speci-
fication languages used for hardware verification. RegCtl [14] is another extension of Ctl
with regular expressions, more expressive than Rctl, obtained by indexing the Until oper-
ator of Ctl with regular expressions. Our proposal is in line with these latter approaches,
but focuses on the translation of Ctrl to the modal µ-calculus, which among other things
allows us to reuse the on-the-fly verification technology available for the latter formalism.
This contrasts with the model checking approaches proposed for the other extensions of Ctl,
which are most of the time based on automata.

In this report, we have employed Ctrl for the verification of dynamic properties of Grns
modeled by piecewise-linear differential equations. The continuous dynamics of these models
can be converted into discrete state transition graphs that are formally equivalent to Kripke
structures. The computer tool Gna is able to generate the state transition graphs and export
them as Kripke structures to Cadp. This allows the use of Cadp for verifying properties of
the network expressed in Ctrl, as illustrated on the carbon starvation network in E. coli.

The application of Ctrl in systems biology and bioinformatics is not restricted to the class
of models considered in this paper though. Ctrl is interpreted on Kripke structures, which
provide a general description of dynamical systems that implicitly or explicitly underlie many
of the existing discrete formalisms used for the modeling of regulatory networks in the cell,
such as Boolean networks and their generalizations, Petri nets, and process algebras [18, 29].
In addition, other types of continuous models of regulatory networks, by defining appropriate
discrete abstractions, can possibly be mapped to Kripke structures as well. As a consequence,
Ctrl can be combined with many of the other approaches proposed for the application of
formal verification tools to biological regulatory networks [3, 6, 10, 13, 16, 17, 30].

We plan to continue our work on several directions. First, we will extend the
Cæsar Solve [50] library of Cadp with resolution algorithms handling Bess of alterna-
tion depth 2 [61] in order to obtain an on-the-fly evaluation of the AF∞

ρ operator when the
regular formula ρ is nondeterministic. Second, the translation from Ctrl to HmlR can be
optimized by adding static analysis features on the Gna atomic propositions in order to
reduce the size of the HmlR specifications produced. Third, a distributed version of the
Ctrl model checker can be obtained by coupling it with the distributed Bes resolution
algorithms proposed in [40, 41]. Fourth, we will develop tools to help non-expert users in
applying formal verification to the analysis of biological regulatory networks [53].

Acknowledgements

This research was funded by the Ec-Moan project no. 043235 of the Fp6-Nest-Path-Com
European program. Pedro T. Monteiro is also supported by the Fct program (PhD grant
Sfrh/Bd/32965/2006). Estelle Dumas is grateful to David Champelovier, Hubert Garavel,

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 33

Romain Lacroix, and Michel Page for their valuable assistance in developing the translator
from Ctrl to HmlR.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

[2] H. R. Andersen. Model checking and boolean graphs. Theoretical Computer Science,
126(1):3–30, April 1994.

[3] M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model building and model checking
for biochemical processes. Cell Biochemistry and Biophysics, 38(3):271–286, 2003.

[4] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-
Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The ForSpec temporal
logic: A new temporal property-specification language. In Joost-Pieter Katoen and
Perdita Stevens, editors, Proceedings of the 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems TACAS’02 (Grenoble, France),
volume 2280 of Lecture Notes in Computer Science, pages 296–211. Springer Verlag,
April 2002.

[5] T. Arts, C. Benac Earle, and J. Derrick. Development of a verified Erlang program
for resource locking. Springer International Journal on Software Tools for Technology
Transfer (STTT), 5(2–3):205–220, March 2004.

[6] J. Barnat, L. Brim, I. Cerná, S. Drazan, and D. Safranek. Parallel model checking large-
scale genetic regulatory networks with DiVinE. In From Biology to Concurrency and
Back, FBTC 2007, volume 194 of Electronic Notes in Theoretical Computer Science,
2008.

[7] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. In
Bernhard Steffen and Giorgio Levi, editors, Proceedings of the 5th International Confer-
ence on Verification, Model Checking, and Abstract Interpretation VMCAI’04 (Venice,
Italy), volume 2937 of Lecture Notes in Computer Science, pages 44–57. Springer Verlag,
January 2004.

[8] G. Batt, D. Bergamini, H. de Jong, H. Gavarel, and R. Mateescu. Model checking genetic
regulatory networks using GNA and CADP. In S. Graf and L. Mounier, editors, Eleventh
International SPIN Workshop on Model Checking of Software, SPIN 2004, volume 2989
of Lecture Notes in Computer Science, pages 158–163, Berlin, 2004. Springer-Verlag.

[9] G. Batt, H. de Jong, M. Page, and J. Geiselmann. Symbolic reachability analysis of
genetic regulatory networks using discrete abstractions. Automatica, 44(4):982–989,
2008.

RR n° 6521

34 Mateescu, Monteiro, Dumas & de Jong

[10] G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page, and D. Schnei-
der. Validation of qualitative models of genetic regulatory networks by model check-
ing: Analysis of the nutritional stress response in Escherichia coli. Bioinformatics,
21(Suppl 1):i19–i28, 2005.

[11] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The temporal
logic Sugar. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Proceedings of
the 13th International Conference on Computer Aided Verification CAV’2001 (Paris,
France), volume 2102 of Lecture Notes in Computer Science, pages 363–367. Springer
Verlag, July 2001.

[12] I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL formulas. In
Alan Hu and Moshe Y. Vardi, editors, Proceedings of the 10th International Conference
on Computer Aided Verification CAV’98 (Vancouver, BC, Canada), volume 1427 of
Lecture Notes in Computer Science, pages 184–194. Springer Verlag, June 1998.

[13] G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. Application of formal methods to
biological regulatory networks: Extending Thomas’ asynchronous logical approach with
temporal logic. Journal of Theoretical Biology, 229(3):339–348, 2004.

[14] T. Brázdil and I. Cerná. Model checking of RegCTL. Computers and Artificial Intelli-
gence, 25(1), 2006.

[15] J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.

[16] M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of signalling pathways
using the PRISM model checker. In G. Plotkin, editor, Computational Methods in
Systems Biology, CMSB-05, pages 79–90, Edinburgh, Scotland, 2005.

[17] N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schächter. Modeling and
querying biomolecular interaction networks. Theoretical Computer Science, 325(1):25–
44, 2004.

[18] C. Chaouiya. Petri net modelling of biological networks. Briefings in Bioinformatics,
8(4):210–219, 2007.

[19] K.C. Chen, L. Calzone, A. Csikasz-Nagy, F.R. Cross, B. Novak, and J.J. Tyson. Inte-
grative analysis of cell cycle control in budding yeast. Molecular Biology of the Cell,
15(8):3841–3862, 2004.

[20] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model
checker. Springer International Journal on Software Tools for Technology Transfer
(STTT), 2(4):410–425, April 2000.

[21] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[22] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. Formal Methods in System Design, 2(2):121–147,
April 1993.

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 35

[23] H. de Jong. Modeling and simulation of genetic regulatory systems: A literature review.
Journal of Computational Biology, 9(1):67–103, 2002.

[24] H. de Jong, J.-L. Gouzé, C. Hernandez, M. Page, T. Sari, and J. Geiselmann. Qualitative
simulation of genetic regulatory networks using piecewise-linear models. Bulletin of
Mathematical Biology, 66(2):301–340, 2004.

[25] D. Dubnau and R. Losick. Bistability in bacteria. Molecular Microbiology, 61(3):564–
572, 2006.

[26] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: On branching
versus linear time. In Proceedings of the 10th Annual ACM Symposium on Principles of
Programming Languages POPL’83 (Austin, Texas), pages 127–140, January 1983. Also
appeared in Journal of ACM, 33(1):151-178, 1986.

[27] E. Allen Emerson and C-L. Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus. In Proceedings of the 1st International Symposium on Logic in
Computer Science LICS’86, pages 267–278, 1986.

[28] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18(2):194–211, September 1979.

[29] J. Fisher and T.A. Henzinger. Executable cell biology. Nature Biotechnology,
25(11):1239–1250, 2007.

[30] J. Fisher, N. Piterman, A. Hajnal, and T.A. Henzinger. Predictive modeling of signaling
crosstalk during C. elegans vulval development. PLoS Computational Biology, 3(5):e92,
2007.

[31] H. Garavel. OPEN/CÆSAR: An open software architecture for verification, simulation,
and testing. In Bernhard Steffen, editor, Proceedings of the First International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems TACAS’98
(Lisbon, Portugal), volume 1384 of Lecture Notes in Computer Science, pages 68–84,
Berlin, March 1998. Springer Verlag. Full version available as INRIA Research Re-
port RR-3352.

[32] H. Garavel, F. Lang, and R. Mateescu. Compiler construction using LOTOS NT. In
Nigel Horspool, editor, Proceedings of the 11th International Conference on Compiler
Construction CC’2002 (Grenoble, France), volume 2304 of Lecture Notes in Computer
Science, pages 9–13. Springer Verlag, April 2002.

[33] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2006: A toolbox for the
construction and analysis of distributed processes. In Werner Damm and Holger Her-
manns, editors, Proceedings of the 19th International Conference on Computer Aided
Verification CAV’2007 (Berlin, Germany), volume 4590 of Lecture Notes in Computer
Science, pages 158–163. Springer Verlag, July 2007.

RR n° 6521

36 Mateescu, Monteiro, Dumas & de Jong

[34] H. Garavel and M. Sighireanu. Towards a second generation of formal description tech-
niques – rationale for the design of E-LOTOS. In Jan-Friso Groote, Bas Luttik, and Jos
van Wamel, editors, Proceedings of the 3rd International Workshop on Formal Meth-
ods for Industrial Critical Systems FMICS’98 (Amsterdam, The Netherlands), pages
187–230, 1998.

[35] L. Glass and S.A. Kauffman. The logical analysis of continuous non-linear biochemical
control networks. Journal of Theoretical Biology, 39(1):103–129, 1973.

[36] K. Hamaguchi, H. Hiraishi, and S. Yajima. Branching time regular temporal logic
for model checking with linear time complexity. In E. M. Clarke and R. P. Kurshan,
editors, Proceedings of the 2nd International Conference on Computer Aided Verification
CAV’90 (New Brunswick, New Jersey, USA), volume 531 of Lecture Notes in Computer
Science, pages 253–262, Berlin, June 1990. Springer Verlag.

[37] G. Holzmann. The SPIN Model Checker – Primer and Reference Manual. Addison-
Wesley, 2003.

[38] IEEE. PSL: Property specification language. Standard P1850, IEEE Computer Society,
2004.

[39] ISO/IEC. LOTOS — a formal description technique based on the temporal ordering of
observational behaviour. International Standard 8807, International Organization for
Standardization — Information Processing Systems — Open Systems Interconnection,
Genève, September 1989.

[40] C. Joubert and R. Mateescu. Distributed local resolution of boolean equation systems.
In Francisco Tirado and Manuel Prieto, editors, Proceedings of the 13th Euromicro
Conference on Parallel, Distributed and Network-Based Processing PDP’2005 (Lugano,
Switzerland). IEEE Computer Society, 2005.

[41] C. Joubert and R. Mateescu. Distributed on-the-fly model checking and test case gen-
eration. In Antti Valmari, editor, Proceedings of the 13th International SPIN Workshop
on Model Checking of Software SPIN’2006 (Vienna, Austria), volume 3925 of Lecture
Notes in Computer Science, pages 126–145. Springer Verlag, March–April 2006.

[42] S. C. Kleene. Introduction to Metamathematics. North-Holland, 1952.

[43] E. Klipp, B. Nordlander, R. Krüger, P. Gennemark, and S. Hohmann. Integrative model
of the response of yeast to osmotic shock. Nature Biotechnology, 23(8):975–982, 2005.

[44] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

[45] F. Lang. EXP.OPEN 2.0: A flexible tool integrating partial order, compositional, and
on-the-fly verification methods. In Jaco van de Pol, Judi Romijn, and Graeme Smith,
editors, Proceedings of the 5th International Conference on Integrated Formal Methods
IFM’2005 (Eindhoven, The Netherlands), volume 3771 of Lecture Notes in Computer
Science. Springer Verlag, 2005.

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 37

[46] K. G. Larsen. Proof systems for Hennessy-Milner logic with recursion. In Proceedings of
the 13th Colloquium on Trees in Algebra and Programming CAAP’88 (Nancy, France),
volume 299 of Lecture Notes in Computer Science, pages 215–230, Berlin, March 1988.
Springer Verlag.

[47] J.-C. Leloup and A. Goldbeter. Toward a detailed computational model for the mam-
malian circadian clock. Proceedings of the National Academy of Sciences of the USA,
100(12):7051–7056, 2003.

[48] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems,
volume I: Specification. Springer Verlag, 1992.

[49] A. J. Martin. Compiling communicating processes into delay-insensitive VLSI circuits.
Distributed Computing, 1(4):226–234, 1986.

[50] R. Mateescu. CÆSAR SOLVE: A generic library for on-the-fly resolution of alternation-
free boolean equation systems. Springer International Journal on Software Tools for
Technology Transfer (STTT), 8(1):37–56, February 2006. Full version available as IN-
RIA Research Report RR-5948, July 2006.

[51] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Science of Computer Programming, 46(3):255–281, March
2003.

[52] R. Mateescu and D. Thivolle. A model checking language for concurrent value-passing
systems. In Proceedings of the 15th International Symposium on Formal Methods FM’08
(Turku, Finland), 2008.

[53] P.T. Monteiro, D. Ropers, R. Mateescu, A.T. Freitas, and H. de Jong. Temporal logic
patterns for querying dynamic models of cellular interaction networks. Bioinformatics,
2008. In press.

[54] A. Regev and E. Shapiro. Cells as computation. Nature, 419(6905):343, 2002.

[55] D. Ropers, H. de Jong, M. Page, D. Schneider, and J. Geiselmann. Qualitative simula-
tion of the carbon starvation response in Escherichia coli. Biosystems, 84(2):124–152,
2006.

[56] B. Schoeberl, C. Eichler-Jonsson, E.-D. Gilles, and G. Mller. Computational modeling
of the dynamics of the MAP kinase cascade activated by surface and internalized EGF
receptors. Nature Biotechnology, 20(4):370–375, 2002.

[57] R. Streett. Propositional dynamic logic of looping and converse. Information and
Control, 1982.

[58] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5, 1955.

RR n° 6521

38 Mateescu, Monteiro, Dumas & de Jong

[59] R. Thomas, D. Thieffry, and M. Kaufman. Dynamical behaviour of biological regulatory
networks: I. Biological role of feedback loops and practical use of the concept of the
loop-characteristic state. Bulletin of Mathematical Biology, 57(2):247–276, 1995.

[60] W. Thomas. Computation Tree Logic and regular ω-languages, volume 354 of Lecture
Notes in Computer Science, pages 690–713. 1989.

[61] B. Vergauwen and J. Lewi. Efficient local correctness checking for single and alternating
boolean equation systems. In S. Abiteboul and E. Shamir, editors, Proceedings of the
21st ICALP (Vienna), volume 820 of Lecture Notes in Computer Science, pages 304–
315, Berlin, July 1994. Springer Verlag.

[62] P. Wolper. A translation from full branching time temporal logic to one letter proposi-
tional dynamic logic with looping, 1982. Unpublished manuscript.

[63] P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1/2):72–
99, January-February 1983.

A Proofs of the translation

A.1 Translation from CTRL to RESs

A few additional definitions and lemmas are required in order to prove Proposition 1.
Given a propositional environment δ = [U1/X1, ..., Un/Xn], its support is defined as
supp(δ) = {X1, ...,Xn}, i.e., the set of variables that are mapped by δ to state sets. It
is straightforward to show that, for environments with disjoint supports, the ⊘ operator is
associative, commutative, and has the empty environment [] as neutral element. Moreover,
supp([[B]]Kδ) = bv(B) and supp([[BL]]Kδ) = bv(BL) for any Kripke structure K, equation
block B, equation block list BL, and environment δ.

Lemma 2 Let K be a Kripke structure, B an equation block, and δ1, δ2 two propositional
environments such that supp(δ1) ∩ supp(δ2) = ∅ and fv(B) ⊆ supp(δ1). Then:

[[B]]K(δ1 ⊘ δ2) = [[B]]Kδ1.

Proof Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block and δ1, δ2 two propositional environ-

ments as stated in the hypothesis. The semantics of B in the context of an environment δ is
determined by the associated functional Φδ : (2S)n → (2S)n defined as follows:

Φδ(U1, ..., Un) = 〈[[ϕi]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])〉1≤i≤n

To prove the lemma, we show that the two functionals Φ(δ1⊘δ2) and Φδ1 are identical, i.e.,
[[ϕ]]K((δ1 ⊘ δ2)⊘ [U1/X1, ..., Un/Xn]) = [[ϕ]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) for any formula ϕ and
any U1, ..., Un ⊆ S. We proceed by structural induction on ϕ.

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 39� ϕ ::= p:

[[p]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])
= {s ∈ S | p ∈ L(s)} by def. of [[]]
= [[p]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of [[]].� ϕ ::= X:

Two cases are possible.

1. X ∈ {X1, ...,Xn}, i.e., X is bound in B. Let i ∈ [1, n] such that X = Xi.

[[Xi]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])
= ((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])(Xi) by def. of [[]]
= [U1/X1, ..., Un/Xn](Xi) by def. of ⊘
= Ui by def. of []
= [[Xi]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of [[]].

2. X 6∈ {X1, ...,Xn}, i.e., X is free in B. This means X ∈ supp(δ1).

[[X]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])
= ((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])(X) by def. of [[]]
= (δ1 ⊘ δ2)(X) by def. of ⊘
= δ1(X) fv(B) 6⊆ supp(δ2)
= [[X]]Kδ1 by def. of [[]]
= [[X]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of ⊘.� ϕ ::= ϕ1 ∨ ϕ2 (similarly for ϕ ::= ϕ1 ∧ ϕ2):

[[ϕ1 ∨ ϕ2]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])
= ([[ϕ1]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn]))∪

([[ϕ2]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])) by def. of [[]]
= [[ϕ1]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) ∪ [[ϕ2]]K((δ1 ⊘ [U1/X1, ..., Un/Xn]) by ind. hyp.
= [[ϕ1 ∨ ϕ2]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of [[]].� ϕ ::= EFρϕ (similarly for ϕ ::= AFρϕ | EGρϕ | AGρϕ):

[[EFρϕ]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧
πi ∈ [[ϕ]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])} by def. of [[]]

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧
πi ∈ [[ϕ]]K(δ1 ⊘ [U1/X1, ..., Un/Xn])} by ind. hyp.

= [[EFρϕ]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of [[]].� ϕ ::= EF∞
ρ (similarly for ϕ ::= AF∞

ρ | EG⊣
ρ | AG⊣

ρ):

[[EF∞
ρ]]K(δ1⊘δ2) = [[EF∞

ρ]]Kδ1 because EF∞
ρ is closed, so its interpretation is independent

of any environment δ.

2

RR n° 6521

40 Mateescu, Monteiro, Dumas & de Jong

Lemma 3 Let K be a Kripke structure and BL1, BL2 be two closed equation block lists.
Then:

[[BL1;BL2]]K = [[BL1]]K ⊘ [[BL2]]K .

Proof Let K,BL1, BL2 as stated in the hypothesis. We proceed by structural induction
on BL1.� BL1 ::= ε:

[[ε;BL2]]K = [[BL2]]K by def. of ;
= [] ⊘ [[BL2]]K
= [[ε]]K ⊘ [[BL2]]K by def. of [[]].� BL1 ::= B.BL1:

[[(B.BL1);BL2]]K = [[B.(BL1;BL2)]]K by def. of ;
= [[B]]K([[BL1;BL2]]K) ⊘ [[BL1;BL2]]K by def. of [[]]
= [[B]]K([[BL1]]K ⊘ [[BL2]]K) ⊘ ([[BL1]]K ⊘ [[BL2]]K) by ind. hyp.
= [[B]]K([[BL1]]K) ⊘ ([[BL1]]K ⊘ [[BL2]]K) by Lemma 2
= ([[B]]K([[BL1]]K) ⊘ [[BL1]]K) ⊘ [[BL2]]K by assoc.
= [[B.BL1]]K ⊘ [[BL2]]K by def. of [[]].

2

Proof (Proposition 1). Let K be a Kripke structure, ϕ be a state formula of Ctrl, and δ
be a propositional environment. We proceed by structural induction on ϕ.� ϕ ::= p:

[[t(p)]]Kδ = [[〈X, {X
µ
= p}〉]]Kδ by def. of t

= ([[{X
µ
= p}]]Kδ)(X) by def. of [[]]

= [[p]]Kδ by def. of [[]].� ϕ ::= ϕ1 ∨ ϕ2 (similarly for ϕ ::= ϕ1 ∧ ϕ2):

[[t(ϕ1 ∨ ϕ2)]]Kδ = [[〈X, {X
µ
= tX(ϕ1) ∨ tX(ϕ2)}.(tBL(ϕ1); tBL(ϕ2))〉]]Kδ by def. of t

= ([[{X
µ
= tX(ϕ1) ∨ tX(ϕ2)}.(tBL(ϕ1); tBL(ϕ2))]]Kδ)(X) by def. of [[]]

= ([[{X
µ
= tX(ϕ1) ∨ tX(ϕ2)}]]K(δ ⊘ [[tBL(ϕ1); tBL(ϕ2)]]Kδ)

⊘([[tBL(ϕ1); tBL(ϕ2)]]Kδ))(X) by def. of [[]]

= ([[{X
µ
= tX(ϕ1) ∨ tX(ϕ2)}]]K(δ ⊘ [[tBL(ϕ1); tBL(ϕ2)]]Kδ))(X)

= [[tX(ϕ1)]]K(δ ⊘ [[tBL(ϕ1)]]Kδ ⊘ [[tBL(ϕ2)]]Kδ) ∪
[[tX(ϕ2)]]K(δ ⊘ [[tBL(ϕ1)]]Kδ ⊘ [[tBL(ϕ2)]]Kδ)

= [[tX(ϕ1)]]K([[tBL(ϕ1)]]Kδ) ∪ [[tX(ϕ2)]]K([[tBL(ϕ2)]]Kδ) by Lemma 2
= [[t(ϕ1)]]Kδ ∪ [[t(ϕ2)]]Kδ by def. of t
= [[ϕ1]]Kδ ∪ [[ϕ2]]Kδ by ind. hyp.
= [[ϕ1 ∨ ϕ2]]Kδ by def. of [[]].

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 41� ϕ ::= EFρϕ (similarly for ϕ ::= AFρϕ | EGρϕ | AGρϕ):

[[t(EFρϕ)]]Kδ = [[〈X, {X
µ
= EFρtX(ϕ)}.tBL(ϕ)〉]]Kδ by def. of t

= ([[tBL(ϕ)]]Kδ ⊘ [[{X
µ
= EFρtX(ϕ)}]]K([[tBL(ϕ)]]Kδ))(X) by def. of [[]]

= ([[{X
µ
= EFρtX(ϕ)}]]K([[tBL(ϕ)]]Kδ))(X)

= [[{EFρtX(ϕ)}]]K([[tBL(ϕ)]]Kδ) by def. of [[]]
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧

πi ∈ [[tX(ϕ)]]K([[tBL(ϕ)]]Kδ)} by def. of [[]]
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧

πi ∈ [[ϕ]]Kδ} by ind. hyp.
= [[EFρϕ]]Kδ by def. of [[]].� ϕ ::= EF∞

ρ (similarly for ϕ ::= AG⊣
ρ):

[[t(EF∞
ρ)]]Kδ = [[〈X, {X

ν
= EFρX}〉]]K by def. of t.

= ([[{X
ν
= EFρX}]]K)(X) = νΦ by def. of [[]],

where Φ : 2S → 2S , Φ(U) = [[EFρX]]K [U/X]. Note that the δ environment is omitted

in the definition of Φ because the equation block {X
ν
= EFρX} is closed.

The lattice 〈2S , ∅, S,∩,∪〉 being finite, the maximal fixed point νΦ has also the following
iterative characterization [42]:

νΦ =
⋂

j≥0

Φj(S), where Φ0(S) = S, Φj(S) = [[EFρX]]K [Φj−1(S)/X].

Intuitively, the terms Φj(S) contain those states from which there is an outoing se-
quence having a prefix that matches ρj :

Φj(S) = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρj}

This can be easily shown by induction on j. For j = 0, we take i = 0 (empty prefix).
For the inductive step, we have:

Φj+1(S) = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ Φj(S)} by def. of Φ
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.

π0,i |=K ρ ∧ ∃π′ ∈ PathK(πi).∃l ≥ 0.π′0,l |=K ρj} by ind. hyp.

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρj+1} repl. i by i+ l.

To show that [[EF∞
ρ]]K ⊆ νΦ, let s ∈ [[EF∞

ρ]]K and j ≥ 0. From the definition of EF∞
ρ ,

there exists π ∈ PathK(s) and i ≥ 0 such that π0,i |=K ρj, which implies s ∈ Φj(S).
Since this holds for every j ≥ 0, it means that s ∈

⋂

j≥0 Φj(S), i.e., s ∈ νΦ.

To show that νΦ ⊆ [[EF∞
ρ]]K , let s ∈ νΦ. Since νΦ is a fixed point of Φ, we have:

νΦ = Φ(νΦ) = [[EFρX]]K [νΦ/X]
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ νΦ}.

Based on this, we construct the following path:

π = πi0 → · · · → πi1 → · · · → πi2 → · · · → πij · · ·

RR n° 6521

42 Mateescu, Monteiro, Dumas & de Jong

where πij ∈ νΦ for every j ≥ 0, i0 = 0, πi0 = s, and the intervals πij → · · · → πm →
· · · → πij+1

are defined as follows. Since πij ∈ νΦ, according to the equation above,
there exists π ∈ PathK(πij) and l ≥ 0 such that π0,l |=K ρ and πl ∈ νΦ. We take
ij+1 = ij + l and for each m ∈ [ij , ij+1], πm = πm−ij . The infinite path π is such that
for every j ≥ 0, there exists i′ = ij such that π0,i′ |=K ρj , and therefore s ∈ [[EF∞

ρ]]K .

2

A.2 Translation from RESs to MESs

Some additional definitions and lemmas are needed in order to prove the translation. Let
B = {Xi

σ
= ϕi}1≤i≤n be an equation block and Φδ : (2S)n → (2S)n, Φδ(U1, ..., Un) =

〈[[ϕi]]K(δ⊘ [U1/X1, ..., Un/Xn])〉1≤i≤n be its associated functional in the context of a Kripke
structure K and an environment δ. For a given l ∈ [1, n], the projection of Φδ on the

equations [l, n], noted Φl,n : (2S)n−l+1 → (2S)n−l+1, is defined as follows: Φl,n
δ (Ul, ..., Un) =

〈[[ϕj]]K(δ⊘ [Ul/Xl, ..., Un/Xn])〉l≤j≤n. Similarly, the projection of a value 〈U1, ..., Un〉 ∈ (2S)n

on the fields [l, n] is defined as 〈U1, ..., Un〉[l,n] = 〈Ul, ..., Un〉.

A.2.1 Operators EFρ and AGρ

Lemma 4 Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block, K be a Kripke structure, δ be an

environment, and Φδ : (2S)n → (2S)n be the functional associated to B, K, and δ. Then,
for all l ∈ [1, n]:

σΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1]

= 〈(σΦδ)l, ..., (σΦδ)n〉

where Φl,n
δ : (2S)n−l+1 → (2S)n−l+1 is the projection of Φδ on the equations [l, n].

Proof Let B, K, δ, and l as stated in the hypothesis. We show the equality by double
inclusion, only for σ = µ, the proof for the case σ = ν being symmetric.

Inclusion “⊒”: By definition of fixed points we have µΦδ = Φδ(µΦδ), meaning that for all
l ≤ j ≤ n:

(µΦδ)j = [[ϕj]]K(δ ⊘ [(µΦδ)1/X1, ..., (µΦδ)n/Xn]) =
[[ϕj]]K((δ ⊘ [(µΦδ)1/X1, ..., (µΦδ)l−1/Xl−1]) ⊘ [(µΦδ)l/Xl, ..., (µΦδ)n/Xn])

This in turn means that:

Φl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1]((µΦδ)l, ..., (µΦδ)n) = 〈(µΦδ)l, ..., (µΦδ)n〉

i.e., 〈(µΦδ)l, ..., (µΦδ)n〉 is a fixed point of Φl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1], and therefore it is

greater than the least fixed point of this functional:

µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1] ⊑ 〈(µΦδ)l, ..., (µΦδ)n〉.

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 43

Inclusion “⊒”: We use the iterative characterization [42] of µΦδ on the finite lattice
〈2S

n
, ∅, Sn,⊓,⊔〉 (the operations ⊓ and ⊔ are the pairwise extensions of ∩ and ∪):

µΦδ =
⋃

k≥0

Φk
δ (∅

n), where Φ0
δ(∅

n) = ∅n, Φk+1
δ (∅n) = Φδ(Φ

k
δ (∅

n)).

We show, by induction on k, that (Φk
δ (∅

n))[l,n] ⊑ µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1].

Base step. (Φ0
δ(∅

n))[l,n] = (∅n)[l,n] = ∅n−l+1 ⊑ µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1].

Inductive step. We have:
(Φk+1

δ (∅n))[l,n] = (Φδ(Φ
k
δ (∅

n)))[l,n]

= 〈[[ϕj]]K(δ ⊘ [(Φk
δ (∅

n))1/X1, ..., (Φ
k
δ (∅

n))n/Xn])〉l≤j≤n by def. of Φ
= 〈[[ϕj]]K((δ ⊘ [(Φk

δ (∅
n))1/X1, ..., (Φ

k
δ (∅

n))l−1/Xl−1]) ⊘
[(Φk

δ (∅
n))l/Xl, ..., (Φ

k
δ (∅

n))n/Xn])〉l≤j≤n
⊑ 〈[[ϕj]]K((δ ⊘ [(µΦδ)1/X1, ..., (µΦδ)l−1/Xl−1]) ⊘

[(Φk
δ (∅

n))l/Xl, ..., (Φ
k
δ (∅

n))n/Xn])〉l≤j≤n by monotonicity

= Φl,n
δ⊘[(µΦδ)1/X1,...,(µΦδ)l−1/Xl−1]

((Φk
δ (∅

n))l, ..., (Φ
k
δ (∅

n))n) by def. of Φl,n

= Φl,n
δ⊘[(µΦδ)1/X1,...,(µΦδ)l−1/Xl−1]((Φ

k
δ (∅

n))[l,n])

⊑ Φl,n
δ⊘[(µΦδ)1/X1,...,(µΦδ)l−1/Xl−1](µΦl,n

δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1]) by ind. hyp.

= µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1] by def. of µ.

Thus, (µΦδ)[l,n] = (
⋃

k≥0 Φk
δ (∅

n))[l,n] =
⋃

k≥0(Φ
k
δ (∅

n))[l,n] ⊑ µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1],

which concludes the proof. 2

The following lemma allows to replace an equation of a block by a set of equations, provided
that the interpretation of the variable in the left-hand side of the equation remains unchanged
in the original and the substituting block w.r.t. all environments.

Lemma 5 (Substitution) Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block, and let {Xn

σ
=

ψn, Yj
σ
= ψj}n<j≤m be another block suitable for the substitution of the equation Xn

σ
= ϕn

such that ([[{Xn
σ
= ϕn}]]Kδ)(Xn) = ([[{Xn

σ
= ψn, Yj

σ
= ψj}n<j≤m]]Kδ)(Xn) for any Kripke

structure K and environment δ. Then:

([[{Xi
σ
= ϕi}1≤i≤n[Xn

σ
= ϕn := Xn

σ
= ψn, Yj

σ
= ψj]n<j≤m]]Kδ)(Xi) = ([[{Xi

σ
= ϕi}1≤i≤n]]Kδ)(Xi)

for all i ∈ [1, n] and for any K, δ.

Proof We show the lemma for σ = µ, the proof for the case σ = ν being symmetric. Let
Φ1,m
δ : (2S)m → (2S)m be the functional associated to the substituted equation block, defined

as follows:

Φ1,m
δ (U1, ..., Un,Wn+1, ...,Wn) =

〈[[ϕi]]K(δ ⊘ [U1/X1, ..., Un/Xn,Wn+1/Yn+1, ...,Wm/Ym]),
[[ψj]]K(δ ⊘ [U1/X1, ..., Un/Xn,Wn+1/Yn+1, ...,Wm/Ym])〉1≤i<n,n≤j≤m

We first show that 〈(µΦ1,m
δ)1, ..., (µΦ1,m

δ)n〉 is a fixed point of the functional Φδ as-

sociated to B and δ. From the definition of µΦ1,m
δ , it follows that [[ϕi]]K(δ ⊘

RR n° 6521

44 Mateescu, Monteiro, Dumas & de Jong

[(µΦ1,m
δ)1/X1, ..., (µΦ1,m

δ)n/Xn, (µΦ1,m
δ)n+1/Yn+1, ..., (µΦ1,m

δ)m/Ym]) = (µΦ1,m
δ)i for all i ∈

[1, n − 1]. The suitability condition
⋃n
i=1 fv(ϕi) ∩ {Yn+1, ..., Ym} = ∅ implies that all

formulas ϕi for i ∈ [1, n − 1] depend only upon X1, ...,Xn and therefore [[ϕi]]K(δ ⊘
[(µΦ1,m

δ)1/X1, ..., (µΦ1,m
δ)n/Xn]) = (µΦ1,m

δ)i. To show that this equality also holds for i = n,
we apply Lemma 4 for l = n on the substituted block and we obtain:

µΦn,m

δ⊘[(µΦ1,m
δ

)1/X1,...,(µΦ1,m
δ

)n−1/Xn−1]
= 〈(µΦ1,m

δ)n, ..., (µΦ1,m
δ)m〉

where Φn,m
δ : (2S)m−n+1 → (2S)m−n+1 is the projection of Φ1,m

δ on the equations [n,m].

From the hypothesis of the lemma and the definition of the interpretation [[{Xn
σ
= ψn, Yj

σ
=

ψj}n<j≤m]]Kδ, this implies:

([[{Xn
σ
= ϕn}]]K(δ ⊘ [(µΦ1,m

δ)1/X1, ..., (µΦ1,m
δ)n−1/Xn−1]))(Xn) = (µΦ1,m

δ)n

or, according to the definition of [[{Xn
σ
= ϕn}]]Kδ:

µΦn
δ⊘[(µΦ1,m

δ)1/X1,...,(µΦ1,m
δ)n−1/Xn−1]

= (µΦ1,m
δ)n

where Φn
δ : 2S → 2S , Φn

δ (U) = [[ϕn]]K(δ ⊘ [U/Xn]). Since (µΦ1,m
δ)n is by definition a fixed

point of Φn
δ⊘[(µΦ1,m

δ
)1/X1,...,(µΦ1,m

δ
)n−1/Xn−1]

, this means:

([[ϕn]]K((δ ⊘ [(µΦ1,m
δ)1/X1, ..., (µΦ1,m

δ)n−1/Xn−1]) ⊘ [(µΦ1,m
δ)n/Xn]))((µΦ1,m

δ)n) = (µΦ1,m
δ)n

i.e.,
([[ϕn]]K(δ ⊘ [(µΦ1,m

δ)1/X1, ..., (µΦ1,m
δ)n/Xn]))((µΦ1,m

δ)n) = (µΦ1,m
δ)n.

Therefore, 〈(µΦ1,m
δ)i〉1≤i≤n is a fixed point of Φδ.

It remains to show that this is indeed the minimal fixed point of Φδ. Since the lattice
〈2S

m
, ∅, Sm,⊓,⊔〉 is finite (the operations ⊓ and ⊔ being the pairwise extensions of ∩ and

∪), the minimal fixed point µΦ1,m
δ also has an iterative characterization [42]:

µΦ1,m
δ =

⋃

k≥0

(Φ1,m
δ)k(∅m), where (Φ1,m

δ)0(∅m) = ∅m, (Φ1,m
δ)k+1(∅m) = Φ1,m

δ ((Φ1,m
δ)k(∅m)).

We show, by induction on k, that ((Φ1,m
δ)k(∅m))i ⊆ (µΦδ)i for all i ∈ [1, n] and k ≥ 0. Let

i ∈ [1, n].
Base step. ((Φ1,m

δ)0(∅m))i = ∅ ⊆ (µΦδ)i.
Inductive step. For i ∈ [1, n − 1], we have:

((Φ1,m
δ)k+1(∅m))i = (Φ1,m

δ ((Φ1,m
δ)k(∅m)))i

= [[ϕi]]K(δ ⊘ [((Φ1,m
δ)k(∅m))1/X1, ..., ((Φ

1,m
δ)k(∅m))m/Ym]) by def. of [[]]

= [[ϕi]]K(δ ⊘ [((Φ1,m
δ)k(∅m))1/X1, ..., ((Φ

1,m
δ)k(∅m))n/Xn]) by suitability

⊆ [[ϕi]]K(δ ⊘ [(µΦδ)1/X1, ..., (µΦδ)n/Xn]) by ind. hyp.
= (µΦδ)i by def. of µΦδ.

For i = n, we have:

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 45

((Φ1,m
δ)k+1(∅m))n = [[ψn]]K(δ ⊘ [((Φ1,m

δ)k(∅m))1/X1, ..., ((Φ
1,m
δ)k(∅m))m/Ym])

⊆ [[ψn]]K(δ ⊘ [((Φ1,m
δ)k(∅m))1/X1, ..., ((Φ

1,m
δ)k(∅m))n−1/Xn−1,

(µΦ1,m
δ)n/Xn, ..., (µΦ1,m

δ)m/Ym]) by def. µΦ1,m
δ

= ([[{Xn
µ
= ψn, Yj

µ
= ψj}n<j≤m]]K

(δ ⊘ [((Φ1,m
δ)k(∅m))1/X1, ..., ((Φ

1,m
δ)k(∅m))n−1/Xn−1]))(Xn) by def. of [[]]

= ([[Xn
µ
= ϕn]]K

(δ ⊘ [((Φ1,m
δ)k(∅m))1/X1, ..., ((Φ

1,m
δ)k(∅m))n−1/Xn−1]))(Xn) by hyp.

= µΦn
δ⊘[((Φ1,m

δ)k(∅m))1/X1,...,((Φ
1,m
δ)k(∅m))n−1/Xn−1]

by def. of [[]]

⊆ µΦn
δ⊘[(µΦδ)1/X1,...,(µΦδ)n−1/Xn−1] by ind. hyp.

= (µΦδ)n by Lemma 4.

The last application of Lemma 4 above considers the block B = {Xi
σ
= ϕi}1≤i≤n and takes

l = n. This concludes the proof that 〈(µΦ1,m
δ)i〉1≤i≤n is the least fixed point of Φδ. 2

Lemma 5 allows to prove the correctness of a substitution by focusing only on the equations
involved in the substitution, as illustrated in the proof below.

Proof (Proposition 2). Let K be a Kripke structure, B1 = {Xi
µ
= ϕi}1≤i≤n and B2 =

{Xi
ν
= ϕi}1≤i≤n two equation blocks, and δ a propositional environment as stated in the

hypothesis. We show the proposition only for blocks of type B1 and the substitutions in the
upper part of Figure 5, the other cases being dual.� Substitution X

µ
= EFρ1.ρ2Y := X

µ
= EFρ1Z,Z

µ
= EFρ2Y . It is sufficient to show that

this substitution satisfies the condition in the hypothesis of Lemma 5:

([[{X
µ
= EFρ1.ρ2Y }]]Kδ)(X) = ([[{X

µ
= EFρ1Z,Z

µ
= EFρ2Y }]]Kδ)(X).

By applying the definition of [[]] and simple properties about substitution of variables
in a Res, we obtain:

([[{X
µ
= EFρ1.ρ2Y }]]Kδ)(X)

= [[EFρ1.ρ2Y]]Kδ
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ1.ρ2 ∧ πi ∈ [[Y]]K}
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃k ∈ [0, i].π0,k |=K ρ1 ∧ πk,i |=K ρ2 ∧ πi ∈ [[Y]]K}
= {s ∈ S | ∃π ∈ PathK(s).∃k ≥ 0.π0,k |=K ρ1 ∧ ∃i ≥ k.πk,i |=K ρ2 ∧ πi ∈ [[Y]]K}
= {s ∈ S | ∃π ∈ PathK(s).∃k ≥ 0.π0,k |=K ρ1 ∧ ∃π′ ∈ PathK(πk).∃i ≥ k.

π′k,i |=K ρ2 ∧ π
′
i ∈ [[Y]]K}

= {s ∈ S | ∃π ∈ PathK(s).∃k ≥ 0.π0,k |=K ρ ∧ πk ∈ [[EFρ2Y]]K}
= [[EFρ1EFρ2Y]]Kδ

= ([[{X
µ
= EFρ1EFρ2Y }]]Kδ)(X)

= ([[{X
µ
= EFρ1Z,Z

µ
= EFρ2Y }]]Kδ)(X).

RR n° 6521

46 Mateescu, Monteiro, Dumas & de Jong� Substitution X
µ
= EFρ1|ρ2Y := X

µ
= Z ∨ U,Z

µ
= EFρ1Y,U

µ
= EFρ2Y . As above, it is

sufficient to show that:

([[{X
µ
= EFρ1|ρ2Y }]]Kδ)(X) = ([[{X

µ
= Z ∨ U,Z

µ
= EFρ1Y,U

µ
= EFρ2Y }]]Kδ)(X).

By applying the definition of [[]] and simple properties about substitution of variables
in a Res, we obtain:

([[{X
µ
= EFρ1|ρ2Y }]]Kδ)(X)

= [[EFρ1|ρ2Y]]Kδ

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ1|ρ2 ∧ πi ∈ [[Y]]Kδ}
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.(π0,i |=K ρ1 ∨ π0,i |=K ρ2) ∧ πi ∈ [[Y]]Kδ}
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.((π0,i |=K ρ1 ∧ πi ∈ [[Y]]Kδ) ∨

(π0,i |=K ρ2 ∧ πi ∈ [[Y]]Kδ))}
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ1 ∧ πi ∈ [[Y]]Kδ ∨

∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ2 ∧ πi ∈ [[Y]]Kδ}
= [[EFρ1Y ∨ EFρ2Y]]Kδ

= ([[{X
µ
= EFρ1Y ∨ EFρ2Y }]]Kδ)(X)

= ([[{X
µ
= Z ∨ U,Z

µ
= EFρ1Y,U

µ
= EFρ2Y }]]Kδ)(X).� Substitution X

µ
= EFρ∗Y := X

µ
= Y ∨ Z,Z

µ
= EFρX. As above, it is sufficient to show

that:
([[{X

µ
= EFρ∗Y }]]Kδ)(X) = ([[{X

µ
= Y ∨ Z,Z

µ
= EFρX}]]Kδ)(X).

Let A = ([[{X
µ
= EFρ∗Y }]]Kδ)(X). We have:

([[{X
µ
= EFρ∗Y }]]Kδ)(X) = by def. of [[]]

[[EFρ∗Y]]Kδ =
{s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ∗ ∧ πi ∈ [[Y]]Kδ} =
{s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃k ≥ 0.π0,i |=K ρk ∧ πi ∈ δ(Y)}.

Let B = ([[{X
µ
= Y ∨ Z,Z

µ
= EFρX}]]Kδ)(X). We have:

([[{X
µ
= Y ∨ Z,Z

µ
= EFρX}]]Kδ)(X) = by subst. on Y

([[{X
µ
= Y ∨ EFρX}]]Kδ)(X) = µΦδ

where the functional Φδ : 2S → 2S is defined as follows:

Φδ(U) = [[Y ∨ EFρX]]K(δ ⊘ [U/X])
= [[Y]]K(δ ⊘ [U/X]) ∪ [[EFρX]]K(δ ⊘ [U/X])
= δ(Y) ∪ [[EFρX]]K [U/X].

The lattice 〈2S , ∅, S,∩,∪〉 being finite, the minimal fixed point µΦδ has also the fol-
lowing iterative characterization [42]:

µΦδ =
⋃

k≥0

Φk(∅), where Φ0(∅) = ∅, Φk+1(∅) = δ(Y) ∪ [[EFρX]]K [Φk(∅)/X].

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 47

Intuitively, Φk+1(∅) contains those states having an outgoing sequence that matches
ρj for some j ∈ [0, k] and leads to a state in δ(Y):

Φk+1(∅) = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k].π0,i |=K ρj ∧ πi ∈ δ(Y)}.

This statement can be easily shown by induction on k.
Base step.
Φ1(∅) = δ(Y) ∪ [[EFρX]]K [Φ0(∅)/X]

= δ(Y) ∪ [[EFρX]]K [∅/X]
= δ(Y)
= {s ∈ S | ∃π ∈ PathK(s).π0,0 |=K ρ0 ∧ π0 ∈ δ(Y)} by choosing i, j = 0.

Inductive step.
Φk+2(∅) = Φ(Φk+1(∅)) by def. of Φ

= δ(Y) ∪ {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.
π0,i |=K ρ ∧ πi ∈ Φk+1(∅)} by ind. hyp.

= δ(Y) ∪ {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧
∃π′ ∈ PathK(πi).∃i

′ ≥ 0.∃j ∈ [0, k].
π′0,i′ |=K ρj ∧ π′i′ ∈ δ(Y)}

= δ(Y) ∪ {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k].
π0,i |=K ρj+1 ∧ πi ∈ δ(Y)} repl. i by i+ i′

= δ(Y) ∪ {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [1, k + 1].
π0,i |=K ρj ∧ πi ∈ δ(Y)}

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k + 1].
π0,i |=K ρj ∧ πi ∈ δ(Y)}.

From the above statement, we obtain:

B =
⋃

k≥0 Φk(∅) = Φ0(∅) ∪
⋃

k≥0 Φk+1(∅) =
⋃

k≥0 Φk+1(∅)

=
⋃

k≥0{s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k].π0,i |=K ρj ∧ πi ∈ δ(Y)}

= {s ∈ S | ∃k ≥ 0.∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k].π0,i |=K ρj ∧ πi ∈ δ(Y)}
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃k ≥ 0.∃j ∈ [0, k].π0,i |=K ρj ∧ πi ∈ δ(Y)}
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃k ≥ 0.π0,i |=K ρk ∧ πi ∈ δ(Y)} choose j = k
= A.

2

A.2.2 Operators AFρ and EGρ

Translation to guarded form

Proof (Lemma 1). Let K be a Kripke structure, B = {Xi
µ
= ϕi}1≤i≤n be an equation block

and δ a propositional environment as stated in the hypothesis. It is sufficient to show that
the absorption substitution satisfies the condition in the hypothesis of Lemma 5:

([[{X
µ
= X ∨ ϕ}]]Kδ)(X) = ([[{X

µ
= ϕ}]]Kδ)(X)

RR n° 6521

48 Mateescu, Monteiro, Dumas & de Jong

which amounts to show, applying the definition of [[]], that:

µΦδ = [[ϕ]]Kδ

where the functional Φδ : 2S → 2S is defined as Φδ(U) = [[X ∨ϕ]]K(δ⊘ [U/X]) = U ∪ [[ϕ]]Kδ.
The lattice 〈2S , ∅, S,∩,∪〉 being finite, the minimal fixed point µΦδ has also the following
iterative characterization [42]:

µΦδ =
⋃

k≥0

Φk(∅), where Φ0
δ(∅) = ∅, Φk+1

δ (∅) = Φk
δ (∅) ∪ [[ϕ]]Kδ.

To obtain the desired equality, it is therefore sufficient to show that Φk+1
δ (∅) = [[ϕ]]Kδ for

every k ≥ 0. We proceed by induction on k.

Base step: Φ1
δ(∅) = Φ0

δ(∅) ∪ [[ϕ]]Kδ = [[ϕ]]Kδ.

Inductive step:

Φk+1
δ (∅) = Φk

δ (∅) ∪ [[ϕ]]Kδ by def.
= [[ϕ]]Kδ ∪ [[ϕ]]Kδ by ind. hyp.
= [[ϕ]]Kδ.

2

Determinization

Several definitions and lemmas are needed in order to prove Proposition 3. Consider a Kripke
structure K and the following potentiality Res:

Xi
µ
=

n
∨

j=1

(hij ∧ EFρij
Xj) ∨ (hi ∧ Y)

1≤i≤n

(∗)

where hij , hi ∈ Bool and ρij are regular formulas for all 1 ≤ i, j ≤ n. Unguarded occurrences
of variables Xj in the right-hand sides of the equations are obtained by taking ρij = nil.
Ress of the form (∗) are encountered throughout the translation from a potentiality Res

to its guarded form. For instance, a potentiality Res {X1
µ
= EFρY } can be rewritten as

{X1
µ
= EFρX2,X2

µ
= Y }, which is in the form above by considering n = 2, h11 = false,

h12 = true, ρ12 = ρ, h1 = false, h21 = h22 = false, and h2 = true. Similarly, a guarded
potentiality Res is a particular case of form (∗) in which all regular formulas ρij are simply
atomic propositions pij.

To each propositional variable Xi of the potentiality Res (∗) and environment δ is associated
a path predicate Pδ,i : PathK → Bool characterizing the paths denoted by Xi in the context
of δ. These path predicates are defined by the following equation system:

Pδ,i(π)
µ
=

n
∨

j=1

(

hij ∧ ∃lij ≥ 0.π0,lij |= ρij ∧ Pδ,j(πlij ,∞)
)

∨ (hi ∧ π0 ∈ δ(Y))

1≤i≤n

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 49

where πlij ,∞ denotes the suffix of path π starting at the state of index lij .

The translation from a potentiality Mes {X1
µ
= EFρY } to its guarded form preserves the

path predicate associated to the main variable X1, as shown by the lemma below.

Lemma 6 Let K be a Kripke structure, R = {X1
µ
= EFρY } be an equation block, M be

its corresponding guarded potentiality Mes in the form (∗), and Pδ,i be its associated path
predicates. Then:

Pδ,1(π) = ∃l ≥ 0.π0,l |= ρ ∧ πl ∈ δ(Y)

for any π ∈ PathK and any propositional environment δ.

Proof Let K be a Kripke structure and δ be a propositional environment. Let the equation
block R = {X1

µ
= EFρX2,X2

µ
= Y } in form (∗). Its associated path predicates are defined as

follows:
Pδ,1(π) = ∃l12 ≥ 0.π0,l12 |= ρ12 ∧ Pδ,2(πl12,∞)
Pδ,2(π) = π0 ∈ δ(Y)

where π ∈ PathK . After appropriate renamings, we obtain the desired equality:

Pδ,1(π) = ∃l ≥ 0.π0,l |= ρ ∧ πl ∈ δ(Y).

It remains to show that this equality also holds along the translation of R into guarded
form. This translation consists of two phases: elimination of the regular operators present
in ρ (Proposition 2) and elimination of unguarded occurrences of variables (Lemma 1).
The substitutions performed in both phases preserve the path predicates associated to the
variables defined by the substituted equations. This can be shown using similar arguments
as in Proposition 2 and Lemma 1; we show below the path predicate preservation only for
the first rule in Proposition 2, leaving the other ones as exercises for the interested reader.

This rule transforms the Res R = {X
µ
= EFρ1.ρ2Y } into the Res R′ = {X

µ
= EFρ1Z,Z

µ
=

EFρ2Y }. The predicate P ′
δ,1 associated to X1 in R′ is defined as follows:

P ′
δ,1(π) = ∃l ≥ 0.π0,l |= ρ1 ∧ P

′
δ,2(πl,∞) by def. of P ′

δ,1

= ∃l ≥ 0.π0,l |= ρ1 ∧ ∃l′ ≥ 0.πl,l+l′ |= ρ2 ∧ πl+l′ ∈ δ(Y) by def. of P ′
δ,2

= ∃l ≥ 0.∃l′ ≥ 0.π0,l |= ρ1 ∧ πl,l+l′ |= ρ2 ∧ πl+l′ ∈ δ(Y)
= ∃k ≥ 0.∃j ≥ 0.π0,j |= ρ1 ∧ πj,k |= ρ2 ∧ πk ∈ δ(Y) by taking k = l + l′ and j = l
= ∃k ≥ 0.∃j ≥ 0.π0,j |= ρ1 ∧ πj,k |= ρ2 ∧ πk ∈ δ(Y) by def. of ρ1.ρ2

which coincides with the definition of Pδ,1 in R. Thus, the path predicate Pδ,1 associated to
X1 in R remains unchanged during the translation of R into guarded form, which shows the
desired equality. 2

The relation between the path predicates associated to a guarded potentiality Mes and the
interpretation of the corresponding determinized Mes is given by the lemma below.

RR n° 6521

50 Mateescu, Monteiro, Dumas & de Jong

Lemma 7 Let K be a Kripke structure, M be a guarded potentiality Mes in the form (∗),
and Pδ,i be its associated path predicates. The determinized Mes corresponding to M is
defined as in Section 3.2.2. Then:

([[{

XI
µ
=
∨

∅⊂Q⊆prop(I) AFQXvars(Q,I) ∨ (h(I) ∧ Y)
}

I⊆[1,n]

]]

K
δ
)

(XJ)

=
{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.Pδ,j(π)}

for any index set J ⊆ [1, n] and any propositional environment δ.

Proof Let K, M , δ, and Pδ,i as stated in the hypothesis. The functional Φδ : (2S)
2n−1

→

(2S)
2n−1

associated to the determinized Mes corresponding to M is defined as follows:

Φδ(〈UJ 〉J⊆[1,n]) =
〈[[

∨

∅⊂Q⊆prop(I) AFQXvars(Q,I) ∨ (h(I) ∧ Y)
]]

K
(δ ⊘ [UJ/XJ]J⊆[1,n])

〉

I⊆[1,n]

The interpretation of the determinized Mes is equal to µΦδ. Let U = 〈{s ∈ S | ∀π ∈
PathK(s).∃j ∈ J.Pδ,j(π)}〉J⊆[1,n]. We must show that µΦδ = U , which we split into a double
inclusion.

Inclusion ⊆. By Tarski’s theorem [58], showing that µΦδ ⊆ U amounts to show that
Φδ(U) ⊆ U . We have:

Φδ(U) =
〈 [[

∨

∅⊂Q⊆prop(I) AFQXvars(Q,I) ∨ (h(I) ∧ Y)
]]

K

(δ ⊘ [{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.Pδ,j(π)}/XJ]J⊆[1,n])
〉

I⊆[1,n]

Let I ⊆ [1, n] and s ∈ (Φδ(U))I . By using the definition of Φδ and the interpretation of
AF, and doing a simple first order reasoning, this is equivalent to the disjunction of the two
conditions below:

(a) ∃∅ ⊂ Q ⊆ prop(I).(s |= Q ∧ ∀π ∈ PathK(s).∃j ∈ vars(Q, I).Pδ,j(π1,∞))
(b) h(I) ∧ s ∈ δ(Y).

We must show that s ∈ UI , i.e., that ∀π ∈ Path(s).∃i ∈ I.Pδ,i(π). By applying the definition
of path predicates, this expands as follows:

∀π ∈ Path(s).∃i ∈ I.(∃j ∈ [1, n].(hij ∧ s |= pij ∧ Pδ,j(π1,∞)) ∨ (hi ∧ s ∈ δ(Y)))

which is equivalent to the disjunction of the two conditions below:

(a’) ∀π ∈ Path(s).∃j ∈ [1, n].(∃i ∈ I.(hij ∧ s |= pij) ∧ Pδ,j(π1,∞))
(b’) ∃i ∈ I.hi ∧ s ∈ δ(Y).

Two cases are possible, depending on the fact that (a) or (b) holds.

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 51

Case (a). Let Q ⊆ prop(I) such that s ∈ Q and for all π ∈ PathK(s) there exists j ∈
vars(Q, I) such that Pδ,j(π1,∞). Let π ∈ PathK(s). From condition (a), we can choose
j ∈ vars(Q, I) such that Pδ,j(π1,∞). Based on the definition of vars(Q, I), we can
choose i ∈ I such that pij ∈ Q and hij = true. Since s |= Q and pij ∈ Q, it follows
that s |= pij (recall from Section 3.2.2 that Q stands for the conjunction of all atomic
propositions that it contains). This implies condition (a’).

Case (b). Assume that h(I) = true and s ∈ δ(Y). From the definition of h(I), it follows
that we can choose i ∈ I such that hi = true. This implies condition (b’).

Inclusion ⊇. The equation system defining the path predicates associated to M is defined
as follows:

{

Pδ,j(π)
µ
=

n
∨

k=1

(hjk ∧ π0 |= pjk ∧ Pδ,k(π1,∞)) ∨ (hj ∧ π0 ∈ δ(Y))

}

1≤j≤n

For simplicity, we assume that all predicates occurring in the right-hand sides of equations
are defined by some other equations of the system; this corresponds to the fact that M
does not have free propositional variables excepting Y , whose interpretation is given by the
environment δ. The functional Πδ : (PathK → Bool)n → (PathK → Bool)n associated to
this system is defined below:

Πδ(P1, ..., Pn) =

〈

λπ.

(

n
∨

k=1

(hjk ∧ π0 |= pjk ∧ Pk(π1,∞)) ∨ (hj ∧ π0 ∈ δ(Y))

)〉

1≤j≤n

It is straightforward to check that the functional Πδ is continuous on the lattice 〈(PathK →
Bool)n, (λπ.false)n, (λπ.true)n,⊓,⊔〉, where ⊔ and ⊓ are the pointwise extensions of disjunc-
tion and conjunction operations on path predicates. Therefore, its minimal fixed point µΠδ,
which gives the interpretation of the equation system, has the following iterative character-
ization [42]:

µΠδ =
⊔

k≥0

Πk
δ ((λπ.false)

n), Π0
δ((λπ.false)

n) = (λπ.false)n.

We note 〈P kδ,j〉1≤j≤n = Πk
δ ((λπ.false)

n). From the iterative characterization of µΠδ and the
definition of ⊔, we have:

Pδ,j(π) =

⊔

k≥0

〈P kδ,j〉1≤j≤n

 (π) = ∃k ≥ 0.P kδ,j(π).

To obtain the desired inclusion, we use the following statement:

∀k ≥ 0.

(

〈

{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.P kδ,j(π)}
〉

J⊆[1,n]
⊆ µΦδ

)

(∗∗)

RR n° 6521

52 Mateescu, Monteiro, Dumas & de Jong

To show that U ⊆ µΦδ, let J ⊆ [1, n] and let s ∈ UJ , which means that for all π ∈ PathK(s),
there exists j ∈ J such that Pδ,j(π). The definition of Pδ,j(π) above ensures that we can find
k ≥ 0 such that P kδ,j(π). By applying (∗∗) for that k, we obtain s ∈ (µΦδ)J , which implies
in turn the desired inclusion U ⊆ µΦδ.

It remains to show the (∗∗) statement. We proceed by induction on k.

Base step.
〈

{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.P 0
δ,j(π)}

〉

J⊆[1,n]
= by def. Π0

δ((λπ.false)
n)

〈{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.false}〉J⊆[1,n] = 〈∅〉J⊆[1,n] ⊆ µΦδ.

Inductive step. Let Uk = 〈{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.P kδ,j(π)}〉J⊆[1,n]. We show below

that Uk+1 ⊆ Φδ(U
k), which together with the inductive hypothesis and the definition of

minimal fixed points implies Uk+1 ⊆ Φδ(U
k) ⊆ Φδ(µΦδ) = µΦδ, i.e., the desired inequality.

Let J ⊆ [1, n] and let s ∈ (Uk+1)J , which means that for every π ∈ PathK(s) there exists
j ∈ J such that P k+1

δ,j (π). From the definition of Πδ and P kδ,j, we have:

P k+1
δ,j (π) =

n
∨

l=1

(hjl ∧ π0 |= pjl ∧ P
k
δ,l(π1,∞)) ∨ (hj ∧ π0 ∈ δ(Y)).

By expanding this equality and doing a simple first order reasoning, the conditions above
can be rewritten as the disjunction of the two conditions below:

(c) ∀π ∈ PathK(s).∃l ∈ [1, n].(∃j ∈ J.(hjl ∧ s |= pjl) ∧ P
k
δ,l(π1,∞))

(d) ∃j ∈ J.hj ∧ s ∈ δ(Y).

Let s ∈ (Φδ(U
k))J . From the definition of Φδ, this is equivalent to:

s ∈
[[

∨

∅⊂Q⊆prop(J) AFQXvars(Q,J) ∨ (h(J) ∧ Y)
]]

K
(δ ⊘ [(Uk)L/XL]L⊆[1,n])

Using the definition of Uk and the interpretation of AF, and doing a simple first order
reasoning, this is equivalent to the disjunction of the two conditions below:

(c’) ∃∅ ⊂ Q ⊆ prop(J).(s |= Q ∧ ∀π ∈ PathK(s).∃l ∈ vars(Q,J).P kδ,l(π1,∞))

(d’) h(J) ∧ s ∈ δ(Y).

Two cases are possible, depending on the fact that (c) or (d) holds.

Case (c). Let the set of atomic propositions Q be defined as follows:

Q =
⋃

π∈PathK(s)

{pjl | j ∈ J ∧ l ∈ [1, n] ∧ s |= pjl}

Condition (c) guarantees that Q is not empty and the definition of prop(J) implies
that Q ⊆ prop(J). Since s |= pjl for every pjl ∈ Q, it follows that s |= Q (recall

INRIA

Computation Tree Regular Logic for Genetic Regulatory Networks 53

from Section 3.2.2 that Q stands for the conjunction of all atomic propositions that
it contains). Let π ∈ PathK(s). From condition (c), we can find l ∈ [1, n] and j ∈ J
such that hjl and s |= pjl and Pδ,j(π1,∞). Since pjl ∈ Q by definition of Q, from the
definition of vars(Q,J) it follows that l ∈ vars(Q,J). This implies condition (c’).

Case (d). Let j ∈ J such that hj = true. From the definition of h(J), it follows that
h(J) = true. Since s ∈ δ(Y) from condition (d), this implies condition (d’).

This concludes the proof of the lemma. 2

We are finally ready to prove Proposition 3.

Proof (Proposition 3).

Let K be a Kripke structure, δ be a propositional environment, R = {X1
µ
= AFρY } an

equation block. Let Pδ,i be the path predicates associated to the guarded potentiality Mes
obtained by translating R, and let M be the Mes further obtained after determinization.

We have:

([[M]]Kδ)(X{1}) = by Lemma 7

{s ∈ S | ∀π ∈ PathK(s).Pδ,1(π)} = by Lemma 6
{s ∈ S | ∀π ∈ PathK(s).∃l ≥ 0.π0,l |= ρ ∧ πl ∈ δ(Y)} = by def. of AFρY and [[]]

([[{X1
µ
= AFρY }]]Kδ)(X1).

2

RR n° 6521

Centre de recherche INRIA Grenoble – Rhône-Alpes
Inovallée, 655, avenue de l’Europe, Montbonnot - 38334 Saint Ismier Cedex (France)

Centre de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes, 4, rue Jacques Monod - Bât. G - 91893 Orsay Cedex (France)
Centre de recherche INRIA Nancy – Grand Est : 615, rue du Jardin Botanique - 54600 Villers-lès-Nancy (France)

Centre de recherche INRIA Rennes – Bretagne Atlantique : Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Syntax and Semantics
	Computation Tree Regular Logic
	Examples of temporal properties
	Expressiveness
	Regular and modal equation systems

	Translation from CTRL to modal equation systems
	Translation to regular equation systems
	Translation to modal equation systems
	Operators EF and AG
	Operators AF and EG
	Operators EF, AF, EG, and AG

	On-the-fly model checking
	Operators EF, AF, EG, and AG
	Operators EF, AF, EG, and AG
	Operator EF
	Operator AF

	Complexity

	Implementation and Use
	An on-the-fly model checker for CTRL
	Verification of genetic regulatory networks

	Conclusions and Future Work
	Proofs of the translation
	Translation from CTRL to RESs
	Translation from RESs to MESs
	Operators EF and AG
	Operators AF and EG

