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Abstract: Equivalence checking is a classical verification method for ensuring the com-
patibility of a finite-state concurrent system (protocol) with its desired external behaviour
(service) by comparing their underlying labeled transition systems (Ltss) modulo an ap-
propriate equivalence relation. The local (or on-the-fly) approach for equivalence checking
combats state explosion by exploring the synchronous product of the Ltss incrementally,
thus allowing an efficient detection of errors in complex systems. However, when the two
Ltss being compared are equivalent, the on-the-fly approach is outperformed by the global
one, which completely builds the Ltss and computes the equivalence classes between states
using partition refinement. In this report, we consider the technique based on translating
the on-the-fly equivalence checking problem in terms of the local resolution of a boolean
equation system (Bes). We propose two enhancements of this technique in the case of
equivalent Ltss: a new, faster encoding of equivalence relations in terms of Bess, and a new
local Bes resolution algorithm with a better average complexity. These enhancements were
incorporated into the Bisimulator 2.0 equivalence checker of the Cadp toolbox, and they
led to significant performance improvements w.r.t. existing on-the-fly equivalence checking
algorithms.
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Vérification améliorée à la volée par équivalences

au moyen de systèmes d’équations booléennes

Résumé : La vérification par équivalences (equivalence checking) est une méthode classique
pour assurer la compatibilité entre un système concurrent à nombre fini d’états (protocole)
et son comportement externe désiré (service) en comparant leurs systèmes de transitions
étiquetées (Stes) sous-jacents selon une relation d’équivalence appropriée. L’approche lo-
cale (ou à la volée) pour la vérification par équivalences lutte contre l’explosion d’états
en explorant le produit synchrone des Stes de manière incrémentale, permettant ainsi une
détection efficace des erreurs dans des systèmes complexes. Cependant, quand les deux
Stes à comparer sont équivalents, l’approche à la volée est outrepassée par l’approche glo-
bale, qui construit complètement les Stes et calcule les classes d’équivalence entre états par
raffinement de partitions. Dans ce rapport, nous considérons la technique basée sur une tra-
duction du problème de la vérification par équivalences vers la résolution locale d’un système
d’équations booléennes (Seb). Nous proposons deux améliorations de cette technique dans
le cas des Stes équivalents : un nouveau codage, plus rapide, des relations d’équivalence en
termes de Sebs et un nouvel algorithme de résolution locale de Sebs avec une meilleure com-
plexité moyenne. Ces améliorations one été incorporées dans le vérificateur par équivalences
Bisimulator 2.0 de la bôıte à outils Cadp et ont conduit à des améliorations significa-
tives des performances par rapport aux algorithmes existants de vérification à la volée par
équivalences.

Mots-clés : bisimulation, système d’équations booléennes, système de transitions étiquetées,
vérification par équivalences, vérification à la volée
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1 Introduction

Equivalence checking is a classical verification method for finite-state concurrent systems
that consists in comparing the behaviour of the system under design (typically, a protocol
or a low-level hardware description) with its desired external behaviour (typically, a service
or a high-level hardware description) modulo a suitable equivalence relation. Protocol and
service behaviours are usually represented as labeled transition systems (Ltss), and the
relations most used for comparing them are the bisimulations defined in the framework
of process algebras, such as Ccs [37], Csp [9], or Acp [6] and of the formal specification
languages inspired from them, such as Lotos [26] or Chp [31]. In practice, Ltss are often
represented in two complementary ways, which also determine the nature of equivalence
checking algorithms: either explicitly, by their list of states and transitions, or implicitly, by
their “successor function” returning the set of transitions going out of a given state. The
implicit and explicit Lts representations are suitable for protocols (which are usually large)
and services (which are usually small), respectively.

There are basically two approaches for equivalence checking: the global one [15], which
operates on explicit Ltss, computes the equivalence classes of states by using partition
refinement and then checks whether the initial states of the two Ltss fall into the same
equivalence class; and the local one [12], which operates on implicit Ltss, explores the
synchronous product between the two Ltss and searches for mismatches indicating the non
equivalence of their initial states. Global algorithms are more effective when the two Ltss are
equivalent, but require their complete construction, which is limited for large systems by the
amount of memory available. Local (or on-the-fly) algorithms are more effective when the
Ltss are not equivalent, allowing the detection of errors in complex systems even when the
global approach would fail. Therefore, on-the-fly algorithms are useful at the beginning of
the verification process, when errors occur frequently and must be detected quickly, whereas
global algorithms are more suitable at a later stage, once the formal descriptions of the
protocol and the service are stable and their underlying Ltss become equivalent.

Our objective is to improve the performance of on-the-fly equivalence checking algorithms
when the Ltss to be compared are equivalent, which is the worst case for this class of
algorithms because it forces them to explore the synchronous product of the two Ltss entirely.
This would combine the advantages of global and local verification, making the on-the-fly
approach suitable throughout the verification process. We consider here the technique relying
on the translation of on-the-fly equivalence checking to the local resolution of a boolean
equation system (Bes) [2, 35]. This technique involves two clearly separated aspects, namely
the Bes encodings of bisimulation relations and the local Bes resolution algorithms, which
can be developed and optimized independently. To improve performance, we seek to enhance
both these aspects.

First, we devise new Bes encodings of the branching [44] and weak [37] bisimulations, ob-
tained by migrating a part of the computation of transitive reflexive closures over internal
steps (τ -closures) into the boolean equations. This simplifies the structure of Bes equations
considerably and reveals to be faster than computing τ -closures separately by using spe-
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4 Mateescu & Oudot

cialized algorithms [34]. Second, we propose a new local Bes resolution algorithm, which
exhibits a smaller average complexity than previously published algorithms [1, 47, 17, 35].
Our algorithm is based on a suspend/resume depth first search (sr-Dfs) of the dependencies
between boolean variables, and stops as soon as the Bes portion explored contains a single
example or counterexample for the boolean variable to be solved, therefore being optimal
from this point of view.

These two enhancements led to version 2.0 of the Bisimulator [35] equivalence checker of the
Cadp [22] verification toolbox. The tool was developed using the generic Open/Cæsar [21]
environment for on-the-fly manipulation of Ltss, and uses as verification engine the
Cæsar Solve [35] library for on-the-fly resolution of Bess. The enhancements led to a
significant performance increase w.r.t. Bisimulator 1.0, as we observed on Ltss generated
from protocol and hardware descriptions or taken from the Vlts benchmark suite [46].

Related work. On-the-fly equivalence checking algorithms [12] received relatively little
attention from the verification community, the research being mainly focused on optimizing
global algorithms based on partition refinement [15, 20]. Among the first on-the-fly equiva-
lence checking algorithms were those proposed in [18] and subsequently implemented in the
Aldébaran tool [19]. Two different algorithms were elaborated: the first one compares de-
terministic Ltss by searching their synchronous product for a pair of non equivalent states,
and the second one handles nondeterministic Ltss by assuming that certain couples of states
are equivalent and by backtracking in the synchronous product whenever such an assump-
tion turns out to be wrong. The verification technique based on Bes resolution allows one
to reproduce the first algorithm by observing that the Bess corresponding to bisimulations
between deterministic Ltss are conjunctive, and by devising a specialized local resolution
algorithm for this case [35]. The algorithm for the nondeterministic case is outperformed in
practice by local Bes resolution algorithms, as it was observed experimentally [5].

Another approach of checking the equivalence of two Ltss is to rephrase the problem as the
model checking on one Lts of a characteristic formula [25] in modal µ-calculus derived from
the other Lts. This approach was elegantly implemented in the Concurrency Workbench [13,
10], but was hampered in practice for large Ltss by the prohibitive size of characteristic
formulas, which is at least of the same order as the Lts size. The quest for performance was
pursued by considering other intermediate formalisms suitable for representing equivalence
checking, such as the Bess, which are lower-level than the modal µ-calculus and therefore
are likely to require less computation effort.

Encodings of branching and weak bisimulation using Bess of alternation depth two were
proposed in [2]. These Bess contain two mutually recursive equation blocks, a maximal
fixed point one encoding the bisimulation relation, and a minimal fixed point one encoding
the τ -closures to be computed in the input Ltss. The local resolution algorithms underlying
this class of Bess have a quadratic complexity w.r.t. the Bes size [47], which makes them
impractical for large Ltss; no implementation of this approach was reported as far as we
know. Although a subquadratic algorithm for solving Bess with disjunctive/conjunctive
equation blocks of arbitrary alternation depth was proposed in [24], it does not seem to
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Improved On-the-Fly Equivalence Checking using BESs 5

capture the Bess for branching and weak bisimulations, which consist of a disjunctive block
encoding τ -closures and a general block encoding the equivalence relation. Simpler encodings
of weak equivalences using alternation-free Bess, obtained by leaving the computation of τ -
closures (possibly enhanced with on-the-fly τ -confluence reduction [38]) outside the Bes,
proved to be practically effective [35]. The resulting Bess can be solved using the many
local resolution algorithms available [28, 1, 47, 29, 17, 35].

An alternative approach consists in formulating equivalence checking by means of Horn
clauses [40], which can be solved using classical Hornsat resolution algorithms [16, 4]. We
believe that Bes encodings provide a more direct way of connecting on-the-fly equivalence
checking to graph exploration algorithms. In fact, local Bes resolution algorithms, such
as the one presented in this report, can also be used for solving Hornsat efficiently, by
applying the translation from Horn clauses to Bess proposed in [29].

Report outline. Section 2 defines the class of Bess we use and illustrates the functioning
of local resolution algorithms. Section 3 proposes new, faster Bes encodings for branching
and weak bisimulations. Section 4 describes our new local resolution algorithm, and Section 5
shows experimentally its performance when applied to equivalence checking. Section 6 gives
some concluding remarks and directions for future work. Annex A contains the proofs of our
Bes encodings for strong and branching bisimulation.

2 Background

A boolean equation system (Bes) is a set of possibly recursive equations B = {Xi
σ
=

Xi1 opi · · · opi Ximi
}1≤i≤n, where Xi ∈ X are boolean variables, opi ∈ {∨,∧} are disjunctive

or conjunctive connectors, and σ ∈ {µ, ν} is a minimal or maximal fixed point sign. An
empty disjunction (resp. conjunction) is equivalent to the false (resp. true) constant. Each
boolean variable occurring in the right-hand side of an equation must be defined by some
equation of the Bes. A variable Xi is said to be disjunctive (resp. conjunctive) iff opi = ∨
(resp. ∧). Bess of this kind are called simple, because each of their equations contains a
single type of boolean connector (either ∨, or ∧) in its right-hand side. Any Bes containing
arbitrary combinations of boolean connectors in the right-hand sides of its equations can
be brought to the simple form with at most a linear blow-up in size, by introducing new
equations to factor subformulas [3]. We focus our attention on Bess with a single equation
block (i.e., set of equations having the same fixed point sign), since they are suitable for
encoding equivalence checking problems [35]; more general Bess with multiple blocks are
used for encoding model checking problems [14, 36]. In-depth presentations of the theory
and applications of Bess can be found in [1, 30].

For each equation i of a Bes, the evaluation of the formula in its right-hand side yields a
boolean value defined as follows:

[[Xi1 opi · · · opi Ximi
]]δ = δ(Xi1) opi · · · opi δ(Ximi

).
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6 Mateescu & Oudot

where the context δ : X → Bool is a partial function assigning boolean values to all variables
occurring in the formula. The solution of a Bes is a vector 〈v1, ..., vn〉 ∈ Bool

n equal to the
fixed point σΦ of the functional Φ : Bool

n → Bool
n associated to the Bes:

Φ(b1, ..., bn) = 〈[[Xi1 opi · · · opi Ximi
]][b1/X1, ..., bn/Xn]〉1≤i≤n

where [b1/X1, ..., bn/Xn] is the context assigning the boolean value bi to variable Xi for
1 ≤ i ≤ n. Since the boolean formulas in a Bes do not contain negation operators, the
functional Φ is monotonic, which ensures the existence of its minimal and maximal fixed
points on 〈Bool

n, falsen, true
n,∨n,∧n〉, the pointwise extension of the boolean lattice [27]. In

the sequel, we consider only maximal fixed point Bess (i.e., with σ = ν), which allow to
encode equivalence checking.

The local resolution of a Bes B, which underlies on-the-fly verification (based on a forward
exploration of Ltss), amounts to computing the solution vi of a particular variable Xi by
solving as few equations of B as possible. Local resolution algorithms are easier to devise
and understand by representing Bess as boolean graphs [1]. Given a Bes B = {Xi

σ
=

Xi1 opi · · · opi Ximi
}1≤i≤n, its associated boolean graph G = (V,E,L) is defined as follows:

V = {X1, ...,Xn} is the set of vertices (boolean variables), E = {(Xi,Xj) | 1 ≤ i ≤ n ∧ j ∈
{i1, ..., imi

}} is the set of edges (dependencies between variables), and L : V → {∨,∧},
L(Xi) = opi for 1 ≤ i ≤ n is the labeling of vertices as disjunctive or conjunctive. The
constant false (resp. true) is represented as a sink ∨-vertex (resp. ∧-vertex). The local
resolution of a vertex Xi consists in two activities performed simultaneously [1, 47, 35]: a
forward exploration of the boolean graph along its edges, starting at Xi; and a backward
propagation of the stable variables found, i.e., whose boolean value has been computed. An
example of local Bes resolution is shown on Figure 1. The local resolution algorithm used is
based on a depth-first search (Dfs) of the boolean graph, starting at the variable of interest
X1. The light grey area delimits the boolean subgraph explored during resolution. Black
(resp. white) vertices correspond to variables whose solution is true (resp. false).































































X1

ν

=X2 ∧X7

X2

ν

=X3 ∧X5

X3

ν

=X1 ∨X4

X4

ν

= false

X5

ν

=X5 ∨X6

X6

ν

= true

X7

ν

=X2 ∨X6 ∨X8

X8

ν

=X7 ∧X9

X9

ν

= false

Figure 1: Boolean graph-based local resolution of variable X1

The solution of a Bes can also be characterized by interpreting on its boolean graph the
following example formula [32] written in modal µ-calculus:

φex = νX.(P∨ ∧ 〈−〉X) ∨ (P∧ ∧ [−]X)
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Improved On-the-Fly Equivalence Checking using BESs 7

where the atomic propositions P∨ and P∧ denote ∨-vertices and ∧-vertices, respectively.
Formula φex expresses that every ∨-vertex (resp. ∧-vertex) satisfying φex must have one
(resp. all) of its successors satisfying φex . The solution vi of a variable Xi is true iff the
corresponding vertexXi satisfies φex in the boolean graph. A positive diagnostic (or example)
for vertexXi is a boolean subgraph that containsXi and is a model for φex . Dually, a negative
diagnostic (or counterexample) for Xi is a boolean subgraph containing Xi and being a model
for the counterexample formula φcx = ¬φex . The dark grey area shown on Figure 1 delimits
an example for X1, generated by traversing again the boolean subgraph explored during
resolution [32].

3 Encoding Bisimulation Relations as BESs

Labeled transition systems (Ltss) are the semantic model underlying process algebras [7]
and the related languages, such as Lotos [26] and Chp [31]. An Lts is a quadruple M =
〈Q,A, T, q0〉, where Q is the set of states, A is the set of actions (including the internal action
τ), T ⊆ Q × A × Q is the transition relation, and q0 ∈ Q is the initial state. A transition
〈p, a, q〉 ∈ T (also written p

a
→ q) indicates that the system can move from state p to state

q by performing action a. The notation is extended to transition sequences: p
l
→ q denotes

the existence of a sequence going from p to q and whose concatenated labels form a word of
the language l ⊆ A∗.

To compare the Ltss modeling the behaviour of concurrent systems, various equivalence
relations were proposed (see [45] for a survey), among which bisimulations are most useful
in practice due to their congruence properties w.r.t. the parallel composition operators of
process algebras. We consider here three widely-used bisimulations: strong [39], branch-
ing [44], and weak [37], the last two being originally proposed as native equivalence relations
for Acp [6] and Ccs [37], respectively. Given two Ltss Mi = 〈Qi, Ai, Ti, q0i〉 with i ∈ {1, 2},
a bisimulation ≈ ⊆ Q1 × Q2 is a relation such that p ≈ q if ∀p

a
→ p′.∃q

a
→ q′.p′ ≈ q′ and

∀q
a
→ q′.∃p

a
→ p′.p′ ≈ q′, where p, p′ ∈ Q1, a ∈ A1 ∪ A2, and q, q′ ∈ Q2. Bisimulations

are closed under union, and the strong bisimulation ≈s is defined as the greatest one, i.e.,
the union of all bisimulations. M1 is strongly equivalent to M2 (notation M1 ≈s M2) iff
q01 ≈s q02.

A basic encoding of this mathematical definition as a maximal fixed point Bes is shown
in Table 1 (upper part, first row). The fact that p ≈s q is encoded as a boolean variable
Xpq defined by an equation whose right-hand side boolean formula is directly derived from
the two bisimulation conditions. The correctness of this encoding scheme (see the proof in
Annex A.1), which reformulates the definition of strong bisimulation in propositional logic
instead of first-order logic, relies on a bijection between the set of bisimulations and the set
of fixed point solutions of the functional associated to the Bes. To obtain a simple Bes com-
pliant with the definition given in Section 2, we introduce the new variables Yp′qa and Zpq′a

such that each right-hand side formula contains a single type of boolean connector (second
row). The Bes for the strong preorder relation �s is obtained by keeping only the coloured
parts of the equations. Checking the strong bisimilarity of M1 and M2 amounts to solving
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8 Mateescu & Oudot

the variable Xq01q02
of this Bes, which can be carried out using a local resolution algorithm.

The evaluation of the boolean formulas in the right-hand sides of the equations defining Xpq,
Yp′qa, and Zpq′a triggers a forward exploration of transitions in M1 and M2, which enables
an incremental construction of both Ltss, and therefore an on-the-fly verification.

Table 1: Basic and full Bes encodings of three widely-used bisimulations
Strong bisimulation

Xpq
ν
=

∧

p
a
→p′

∨

q
a
→q′

Xp′q′ ∧
∧

q
a
→q′

∨

p
a
→p′

Xp′q′

Xpq
ν
=

∧

p
a
→p′

Yp′qa ∧
∧

q
a
→q′

Zpq′a Yp′qa
ν
=

∨

q
a
→q′

Xp′q′ Zpq′a
ν
=

∨

p
a
→p′

Xp′q′

Branching bisimulation

Xpq
ν
=

∧

p
a
→p′

((a = τ ∧Xp′q) ∨
∨

q
τ∗
→q′

a
→q′′

(Xpq′ ∧Xp′q′′)) ∧
∧

q
a
→q′

((a = τ ∧Xpq′) ∨
∨

p
τ∗
→p′

a
→p′′

(Xp′q ∧Xp′′q′))

Xpq
ν
=

∧

p
a
→p′

Ypp′qa ∧
∧

q
a
→q′

Zpqq′a Ypp′qa
ν
= (a = τ ∧Xp′q) ∨ Upp′qa

Zpqq′a
ν
= (a = τ ∧Xpq′) ∨ Vpqq′a Upp′qa

ν
=

∨

q
a
→q′

Wpp′qq′ ∨
∨

q
τ
→q′

Upp′q′a

Vpqq′a
ν
=

∨

p
a
→p′

Wpp′qq′ ∨
∨

p
τ
→p′

Vp′qq′a Wpp′qq′
ν
= Xpq ∧Xp′q′

Weak bisimulation

Xpq
ν
=

∧

p
a
→p′

((a = τ ∧
∨

q
τ∗
→q′

Xp′q′) ∨
∨

q
τ∗.a.τ∗

→ q′
Xp′q′) ∧

∧

q
a
→q′

((a = τ ∧
∨

p
τ∗
→p′

Xp′q′) ∨
∨

p
τ∗.a.τ∗

→ p′
Xp′q′)

Xpq
ν
=

∧

p
a
→p′

Yp′qa ∧
∧

q
a
→q′

Zpq′a

Yp′qa
ν
= (a = τ ∧ Up′q) ∨ Vp′qa Up′q

ν
= Xp′q ∨

∨

q
τ
→q′

Up′q′

Vp′qa
ν
=

∨

q
a
→q′

Up′q′ ∨
∨

q
τ
→q′

Vp′q′a Zpq′a
ν
= (a = τ ∧Wpq′) ∨ Tpq′a

Wpq′
ν
= Xpq′ ∨

∨

p
τ
→p′

Wp′q′ Tpq′a
ν
=

∨

p
a
→p′

Wp′q′ ∨
∨

p
τ
→p′

Tp′q′a

Similar encoding schemes hold for the branching (≈b) and weak (≈w) bisimulations, as shown
in Table 1 (middle and lower parts, first rows). The important difference w.r.t. strong bisim-
ulation is the presence of transitive reflexive closures over τ -transitions, which correspond
to the abstraction of internal activity done by these two bisimulations. The simple Bess
derived from these encodings by introducing new variables (similarly to strong bisimula-
tion as shown above) were successfully used as basis for on-the-fly equivalence checking in
conjunction with linear-time local Bes resolution algorithms [35]. For Ltss with a high
percentage of τ -transitions, the encodings of weak bisimulations yield relatively small Bess,
but shift the computation effort to the evaluation of right-hand side boolean formulas, which

involve various forms of τ -closures (p
τ∗

→ p′
a
→ p′′, p

τ∗.a.τ∗

→ p′, and p
τ∗

→ p′) having a quadratic
worst-case complexity. Practical usage confirmed that computation of τ -closures, even using
optimized algorithms [34], is the most time-consuming part of the verification process.

INRIA



Improved On-the-Fly Equivalence Checking using BESs 9

An alternative solution for computing τ -closures would be to encode them directly using
boolean equations, yielding the Bess shown on Table 1 (middle and lower part, second rows);
however, this works only for τ -convergent Ltss (i.e., without τ -cycles). To see this, consider
the two LtssM1 = 〈{p0, p1}, {a, τ}, {p0

τ
→ p0, p0

a
→ p1}, p0〉 andM2 = 〈{q0, q1}, {b, τ}, {q0

τ
→

q0, q0
b
→ q1}, q0〉, which are obviously not equivalent modulo any of the three bisimulations

considered since they have different action sets. The comparison of M1 and M2 modulo weak
bisimulation yields the Bes below:

Xp0q0

ν
= Yp0q0τ ∧ Yp1q0a ∧ Zp0q0τ ∧ Zp0q1b

Yp0q0τ
ν
= Up0q0 ∨ Vp0q0τ Up0q0

ν
= Xp0q0 ∨ Up0q0 Vp0q0τ

ν
= Vp0q0τ

Zp0q0τ
ν
= Wp0q0 ∨ Tp0q0τ Wp0q0

ν
= Xp0q0 ∨Wp0q0 Tp0q0τ

ν
= Tp0q0τ

Yp1q0a
ν
= Vp1q0a Vp1q0a

ν
= Vp1q0a Zp0q1b

ν
= Tp0q1b Tp0q1b

ν
= Tp0q1b

We can easily compute the maximal fixed point solution of this Bes by using Kleene’s iter-
ative characterization [27], which consists in initializing all variables to true and repeatedly
evaluating the right-hand sides of equations until the values of all variables become stable; the
process converges in one iteration and all variables remain true, erroneously indicating that
M1 ≈w M2. The problem here is that τ -closures express the existence of finite τ -sequences
in the Ltss, and hence they correspond to minimal fixed point computations, which cannot
be done accurately by solving the equations of a maximal fixed point Bes. On the other
hand, if we eliminate the two τ -loops in M1 and M2, the Bes becomes:

Xp0q0

ν
= Yp1q0a ∧ Zp0q1b Yp1q0a

ν
= false Zp0q1b

ν
= false

and yields the correct solution false for the variable Xp0q0. This is a consequence of the
fact that minimal and maximal fixed points have the same interpretation on acyclic models,
as shown in [33] for modal µ-calculus formulas. Thus, if the Ltss being compared are τ -
convergent, the encoding of τ -closures using maximal fixed point equations is correct. A proof
of this fact for branching bisimulation is available in Annex A.2. The elimination of τ -cycles
by collapsing their states (also called τ -compression), which preserves both branching and
weak bisimulation, can be performed in linear-time during an on-the-fly Lts exploration [34],
using an adaptation of Tarjan’s algorithm [41] for detecting strongly connected components
(Sccs). To make the Bes encodings in Table 1 correct, it is therefore sufficient to reduce both
Ltss on-the-fly by applying τ -compression simultaneously with the local Bes resolution.

The new Bess obtained in this way for branching and weak bisimulation have a size compa-
rable (see Figure 3 (a), (b)) with the Bess resulting from the previous encodings in which
τ -closures were computed separately by specialized algorithms [34]; however, we observed
experimentally that their resolution (using the same algorithms) is about one order of mag-
nitude faster. This is due to the fact that intermediate results of τ -closure computations are
stored as values of the boolean variables used to encode τ -closures (e.g., variables Upp′qa and
Vpqq′a of the Bes for branching bisimulation), which are retrieved immediately if needed again
during resolution; the only risk with this scheme was a too important quantity of such vari-
ables, which was not observed in practice. We also encoded as Bess, using similar schemes,
the τ∗.a [18] and safety [8] equivalences, which are weaker than branching bisimulation and
slightly less used in practice.
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4 Local BES Resolution based on Suspend/Resume DFS

Several local Bes resolution algorithms with a linear-time complexity are available [1, 47,
17, 35], typically based on Dfs or breadth-first search (Bfs) strategies for exploring the
dependencies between boolean variables, i.e., the edges of the boolean graph. Here we aim
to satisfy the following optimality criterion for local Bes resolution algorithms, based on the
notion of diagnostic [32]: the resolution must stop as soon as the boolean subgraph already
explored contains exactly one diagnostic (example or counterexample) for the variable of
interest. To our knowledge, all existing algorithms satisfy only a half of this criterion, i.e.,
they detect optimally either the presence of examples, or of counterexamples, but not of both
of them. The Lmc algorithm proposed in [17], based on a Dfs traversal of the boolean graph
with computation of Sccs, detects counterexamples optimally and speeds up the search of
examples (in maximal fixed point Bess) without attempting their optimal detection.

In the Bess produced from equivalence checking problems, false constants (sink ∨-vertices)
denote couples of non equivalent states; if their backward propagation along edges in the
boolean graph is done as soon as these vertices are encountered, it leads to an optimal
detection of counterexamples, as in the A0 algorithm proposed in [35]. However, when
the Ltss being compared are equivalent, the variable of interest is true and the associated
diagnostic is an example, which must be detected as soon as possible during resolution. Using
the characterization of examples induced by the µ-calculus formula φex given in Section 2, we
can draw an alternative graph-based characterization: an example for vertex X is a subgraph
containing X in which every ∨-vertex (resp. ∧-vertex) must have exactly one successor (resp.
all its successors) contained in the example. Each example can be split into maximal Sccs,
which are connected acyclically; in the sequel, we denote them as pseudo-Sccs, since they
are special cases of Sccs in the boolean graph (for instance, a trivial Scc containing a single
sink ∨-vertex denotes a false constant, which is neither an example, nor a pseudo-Scc).
These pseudo-Sccs are the smallest “building blocks” of the examples, and therefore their
presence in the boolean subgraph already explored must be determined as soon as possible
in order to achieve an optimal detection of examples.

To detect pseudo-Sccs, one can adapt Tarjan’s algorithm [41], which relies on a Dfs traver-
sal. The problem is that a classical Dfs of the boolean graph does not allow the detection
of pseudo-Sccs as soon as they occur, because Tarjan’s algorithm identifies Sccs only when
their root vertex is popped from the Dfs stack, meaning that the subgraph reachable from
the root has been entirely explored; this subgraph may very well contain other pseudo-Sccs,
which could make several examples to be contained in the boolean subgraph explored at the
end of the resolution, i.e., when the variable of interest will be popped in turn from the Dfs
stack (if it evaluates to true, this variable is the root of the last pseudo-Scc identified). In
order to detect the first pseudo-Scc encountered, it is necessary to suspend the Dfs for each
∨-vertex when one of its successors was already visited; if this successor turns out to be false

at some later stage (and thus not part of a pseudo-Scc), and the ∨-vertex is encountered
again, it is necessary to resume the Dfs by considering some other successor of the ∨-vertex
that may belong to a pseudo-Scc. The exploration of ∧-vertices is done as in the classical
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Dfs, since for each ∧-vertex, all its successors must be visited before attempting to detect a
pseudo-Scc containing it.

The local resolution algorithm sr-Dfs that we propose, based on this suspend/resume Dfs,
is illustrated below. Taking as input a boolean graph G = (V,E,L) represented implicitly
(i.e., by its successor function) and a variable of interest x, the algorithm performs iteratively
a forward search of G starting at vertex x. Visited vertices are stored in a set A ⊆ V . The
Dfs stack is stored in a variable dfs and the stack used for detecting pseudo-Sccs is stored
in a variable scc. The variable count keeps a global counter allowing the assignement of
unique Dfs numbers to visited vertices. To each vertex v are associated the following fields:� a counter c(v) which counts the number of remaining successors of v to visit in order

to stabilize v;� a number p(v) recording the index of the next successor of v to be visited (the successors
in E(v) are supposed to be indexed from 0 to |E(v)| − 1);� a number n(v) representing the Dfs number of v;� a number l(v) representing the “lowlink” number [41] of v, used to detect if a vertex
is the root of a pseudo-Scc;� a set d(v) containing the vertices that currently depend upon v;� a boolean on scc(v) which is true if v is on the scc stack and false otherwise;� a boolean stop(v) which is true if the Dfs must be suspended for v (i.e., v is a ∨-vertex
and one of its successors has been visited);� a boolean stable(v), which is true if v is stable;� a boolean value(v), which represents the value of v (this field is of interest only if v is
stable).

At each iteration of the main while-loop (lines 20–122), the vertex y at the top of the dfs
stack is explored. If y is stable, or the Dfs must be suspended for y (that is, y is a ∨-vertex
and one of its successors has already been visited), the value of y is back-propagated along
its predecessors d (lines 30–62). For each vertex w which is not stabilized by the back-
propagation, the algorithm must keep on visiting its successors, if w will be visited again
during the Dfs (the variable stop(w) becomes false). Due to the suspend/resume principle,
this propagation phase may influence the contents of the pseudo-Scc currently stored on the
scc stack. Indeed, each ∨-vertex which is visited during the propagation phase is stored on
the scc stack. The definition of pseudo-Sccs requires that each ∨-vertex must have exactly
one successor contained in its pseudo-Scc. But, as the vertex was not stabilized by the
value of the successor which was propagated, it does not meet any more the definition of
the pseudo-Scc. Since the scc does not contain a pseudo-Scc anymore, it must be cleared.
A variable called purge is used for this purpose and becomes true when the scc stack must
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12 Mateescu & Oudot

Algorithm 1 Local Bes resolution based on suspend/resume Dfs

1: function sr-Dfs (x, (V, E, L)) : Bool is

2: var A, B : 2V ; d : V → 2V ;
3: u, w, y, z : V ; dfs, scc : V ∗;
4: c, p, n, l : V → Nat;
5: stop, stable : V → Bool;
6: value , on scc : V → Bool;
7: count , max , min : Nat;
8: purge : Bool;
9: if L(x) = ∧ then

10: c(x) := |E(x)|
11: else

12: c(x) := 1
13: end if

14: p(x) := 0; stable(x) := false;
15: d(x) := ∅; value(x) := false;
16: A := {x}; count := 0;
17: dfs := push(x, nil);
18: scc := push(x, nil);
19: on scc(x) := true; stop(x) := false;
20: while dfs 6= nil do

21: y := top(dfs);
22: n(y) := count ;
23: l(y) := n(y);
24: count := count + 1;
25: max := 0;
26: min := n(y);
27: if stable(y) ∨ stop(y) then

28: if d(y) 6= ∅ then

29: B := {y};
30: while B 6= ∅ do

31: let u ∈ B;
32: B := B \ {u};
33: for all w ∈ d(u) do

34: if ¬stable(w) then

35: if ((L(w) = ∨) ∧ value(u)) ∨ ((L(w) =
∧) ∧ ¬value(u)) then

36: c(w) := 0
37: else

38: c(w) := c(w) − 1
39: end if

40: if c(w) = 0 then

41: stable(w) := true;
42: value(w) := value(u);
43: B := B ∪ {w};
44: if n(w) < min then

45: min := n(w)
46: end if

47: else

48: stop(w) := false;
49: if L(w) = ∧ then

50: c(w) := 1;
51: p(w) := 0
52: else

53: E(w) := E(w) \ {u};
54: if n(w) > max then

55: max := n(w)
56: end if

57: end if

58: end if

59: end if

60: end for

61: d(u) := ∅
62: end while;

63: if max > min then

64: purge := true
65: end if

66: else

67: dfs := pop(dfs);
68: if dfs 6= nil then

69: l(top(dfs)) :=
min (l(top(dfs)), l(y))

70: end if

71: end if

72: else

73: if purge then

74: while top(scc) 6= top(dfs) do

75: scc := pop(scc)
76: end while;
77: purge := false
78: end if

79: if p(y) < |E(y)| then

80: if L(y) = ∨ then

81: stop(y) := true
82: end if

83: z := (E(y))p(y);
84: p(y) := p(y) + 1;
85: d(z) := d(z) ∪ {y};
86: if z ∈ A then

87: if on scc(z) then

88: if n(z) < n(y) then

89: l(y) := min (n(z), n(y))
90: end if

91: else

92: dfs := push(z, dfs);
93: scc := push(z, scc);
94: on scc(z) := true
95: end if

96: else

97: if L(z) = ∧ then

98: c(z) := |E(z)|
99: else

100: c(z) := 1
101: end if ;
102: p(z) := 0;
103: A := A ∪ {z};
104: dfs := push(z, dfs);
105: scc := push(z, scc);
106: on scc(z) := true
107: end if

108: else

109: if (l(y) = n(y)) ∧ (top(scc) 6= y) then

110: repeat

111: z := top(scc);
112: c(z) := 0;
113: scc := pop(scc)
114: until top(scc) = y
115: end if

116: dfs := pop(dfs);
117: if dfs 6= nil then

118: l(top(dfs)) :=
min (l(top(dfs)), l(y))

119: end if

120: end if

121: end if

122: end while;
123: return value(x)

INRIA



Improved On-the-Fly Equivalence Checking using BESs 13

be cleared (two variables min and max are used to determine if scc must be cleared: min
represents the least Dfs number among all the Dfs numbers of vertices stabilized during
the propagation phase and max represents the greatest Dfs number among all ∨-vertices
towards which a false value has been propagated).

If the vertex y at the top of the dfs stack is unstable or that the exploration must continue for
this vertex, its next unexplored successor z = E(y)p(y) is visited. Before that, the scc stack
is cleared if needed (i.e., if a back-propagation of a false value took place at some previous
iteration of the main while-loop). If z is a new vertex (lines 96-107), it is pushed on the dfs
stack. If z is an already explored vertex, two cases may appear. Either z is on the scc stack
(lines 87-90) and therefore its lowlink number must be updated, or it is not on the stack
(lines 91-95), and therefore it must be explored as if it was a new vertex (i.e., z was popped
from the scc stack after a propagation phase which induced a clearing of this stack). Finally,
if y is unstable and all its successors have been visited, the algorithm watches if y is the root
of a pseudo-Scc (lines 108–120). If this is the case, the scc stack is cleared from its top until
y and each vertex of the pseudo-Scc is stabilized. Then, y is popped from the dfs stack.
Finally, after termination of the main while-loop, the value computed for x is returned.

Figure 2: Local resolution of variable X1 using the sr-Dfs algorithm

The execution of algorithm sr-Dfs on the boolean graph considered in Section 2 is illustrated
on Figure 2. We observe on this example an optimal behaviour of sr-Dfs: due to the
suspension of the Dfs for the ∨-vertices X3, X5, and X7 when one of their successors was
visited, the subgraph explored by the algorithm (light grey area) coincides with the example
found for vertex X1 (dark grey area), made of the pseudo-Sccs {X1,X2,X3,X7} and {X5}.
The resolution previously shown on Figure 1 was done using the algorithm A0 [35], which
is based on a classical Dfs without computation of Sccs, and therefore explores a larger
subgraph than sr-Dfs in order to find another, larger example for X1.

Complexity. For boolean graphs G = (V,E,L) without sink ∨-vertices (i.e., for maximal
fixed point Bess without false constants in the right-hand sides of their equations), the
sr-Dfs algorithm has a linear-time complexity O(|V |+ |E|). The presence of false constants
could trigger the reexploration of some vertices (those present on the portions of the scc
stack that were cleared after back-propagation of false constants), increasing the complexity
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14 Mateescu & Oudot

of the algorithm towards quadratic-time O((|V |+ |E|)2), which is the theoretical worst-case.
This is the price to pay for achieving an optimal detection of examples and counterexamples
in the boolean graph. However, the behaviour of the sr-Dfs algorithm that we observed
in practice for equivalence checking (by measuring the number of variables explored and
reexplored) shows that its complexity is close to linear-time.

5 Implementation and Experiments

The Cæsar Solve [35] library of Cadp [22] provides a generic implementation of several
local Bes resolution algorithms. The library was developed using the Open/Cæsar [21]
generic environment for Lts manipulation, which offers many graph exploration primi-
tives (stacks, hash tables, edge lists, etc.). Bess are handled by Cæsar Solve by means
of their corresponding boolean graphs, represented implicitly in a way similar to Ltss in
Open/Cæsar. This representation is application-independent, allowing to employ the reso-
lution algorithms as computing engines for several on-the-fly verification tools of Cadp: the
model checker Evaluator 3.x [36, 35], the equivalence checker Bisimulator 1.0 [5, 35],
and the Reductor 5.0 tool for Lts generation equipped with partial order reductions.

Table 2: Algorithms of Cæsar Solve and their application to equivalence checking
Alg. Bes type Strategy Time Memory Condition

A0 general Dfs O(|V | + |E|) nondeterm. Ltss
A1 Bfs
A2 acyclic one Lts acyclic
A3 disjunctive Dfs O(|V | + |E|) O(|V |) —
A4 conjunctive one Lts determ., τ -free
A5 general O(|V | + |E|) nondeterm. Ltss
A6 disjunctive Bfs O(|V |) —
A7 conjunctive one Lts determ., τ -free

Table 2 summarizes the local resolution algorithms currently available in the Cæsar Solve
library and their application for equivalence checking within Bisimulator. All algorithms
have a linear complexity w.r.t. the size of boolean graphs (number of vertices and edges).
Algorithms A0, A1, and A5 can solve general Bess (without constraints on the structure of
equations), A1 being Bfs-based and thus able to produce small-depth diagnostics. When one
Lts is deterministic (for strong equivalence) and τ -free (for weak equivalences), the resulting
Bes is conjunctive and can be solved using the memory-efficient algorithm A4 [35], which
stores only the vertices of the boolean graph (and not its edges), i.e., only the states of the
Ltss (and not their transitions). Also, when one Lts is acyclic, the resulting Bes is also
acyclic (i.e., it has an acyclic boolean graph) and can be solved using the memory-efficient
algorithm A2. The Bfs-based algorithm A7, recently added to the library, can be applied to
conjunctive Bess and combines the advantages of algorithms A1 (small-depth diagnostics)
and A4 (low memory consumption) when one Lts is deterministic and τ -free.
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The version Bisimulator 2.0 includes the new Bes encodings of weak equivalences defined
in Section 3 and the new resolution algorithm sr-Dfs given in Section 4, which was recently
added to Cæsar Solve with the number A8. In the sequel, we present various perfor-
mance measures showing the effect of these two enhancements. The Ltss considered were
generated from the demo examples of Cadp (specifications of communication protocols and
asynchronous circuits) or taken from the Vlts benchmark suite [46].

New encodings of weak equivalences. The new Bes encodings of weak equivalences that
we proposed in Section 3 compute τ -closures by means of Bes equations instead of relying
on external, dedicated graph algorithms as the previous encodings used in Bisimulator 1.0.
Figure 3(a)–(b) compares the performance of the two encodings for branching bisimulation
as regards the size of the underlying Bess and their resolution time using algorithm A0.
As expected, the Bess produced by the new encoding are larger (more variables but less
operators) because intermediate results of τ -closure computations are stored as boolean
variables, but they are solved faster due to the simpler structure of boolean equations. Of
course, what matters from the end-user point of view is the overall performance of using
sr-Dfs in conjunction with the new Bes encoding; this is illustrated below.

Resolution using the sr-Dfs algorithm. The series of experiments shown in Figure 3(c)–
(f) compare the behaviour of Bisimulator 1.0 (algorithm A0 and previous Bes encoding)
w.r.t. version 2.0 (algorithm sr-Dfs and new Bes encoding) for branching bisimulation.
To improve readability, we separated the Ltss in two groups according to their number of
transitions. When applying version 2.0, we observed reductions of both the number of vertices
visited and edges explored, which determine the memory consumption and the execution
time, respectively. These reductions become more important as the Lts size increases, as
indicated by curves (e) and (f); in particular, the number of transitions traversed can decrease
by a factor 8. It is worth noticing that some of the Ltss compared were not equivalent
(e.g., certain erroneous variants of a leader election protocol examined in [23]), showing that
version 2.0 of the tool exhibits a good behaviour also for counterexample detection. These
experimental results indicate that the increase in Bes size induced by the new encoding
of weak equivalences is compensated by the reduction achieved using sr-Dfs, leading to an
overall improvement of the on-the-fly verification procedure. As regards strong bisimulation,
sr-Dfs reduces the number of variables explored by up to 25%, as shown in Figure 3(g).

Complexity w.r.t. theoretical worst-case. As pointed out in [18], the on-the-fly com-
parison of two nondeterministic Ltss M1 = 〈Q1, A1, T1, q01〉 and M2 = 〈Q2, A2, T2, q02〉 has
a worst-case complexity O((|Q1| · |T2|) + (|Q2| · |T1|)). Considering the Bes formulation of
the problem, this complexity can be estimated in terms of Bes size: the Bess given in Ta-
ble 1 have a number of boolean variables proportional to the size of the synchronous product
between the two Ltss. However in practice, the Bess produced from equivalence checking
have a much smaller size (several orders of magnitude) than the theoretical worst-case, as it
is illustrated in Figure 3(h) for strong bisimulation. This also holds for weak equivalences,
in particular for branching bisimulation.

RR n° 6777



16 Mateescu & Oudot

(a)

 10000

 100000

 1e+06

 1e+07

 1e+08

 300000 400000 500000 600000 700000 800000 900000 1e+06 1.1e+06 1.2e+06 1.3e+06 1.4e+06

B
E

S
 s

iz
e

 (
n

u
m

b
e

r 
o

f 
v

a
ri

a
b

le
s

)

LTS size (number of transitions)

Branching bisimulation with the two BES encodings

V2.0
V1.0

(b)

 1

 10

 100

 1000

 10000

 300000 400000 500000 600000 700000 800000 900000 1e+06 1.1e+06 1.2e+06 1.3e+06 1.4e+06

ti
m

e
 (

s
e

c
)

LTS size (number of transitions)

Branching bisimulation with the two BES encodings

V2.0
V1.0

(c)

 10

 100

 1000

 10000

 100000

 1e+06

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

B
E

S
 s

iz
e

 (
n

u
m

b
e

r 
o

f 
v

a
ri

a
b

le
s

)

LTS size (number of transitions)

Branching bisimulation (LTSs with less than 100000 transitions)

V2.0
V1.0

(d)

 10

 100

 1000

 10000

 100000

 1e+06

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

B
E

S
 s

iz
e

 (
n

u
m

b
e

r 
o

f 
o

p
e

ra
to

rs
)

LTS size (number of transitions)

Branching bisimulation (LTSs with less than 100000 transitions)

V2.0
V1.0

(e)

 10000

 100000

 1e+06

 1e+07

 1e+08

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06  3e+06  3.5e+06  4e+06  4.5e+06

B
E

S
 s

iz
e

 (
n

u
m

b
e

r 
o

f 
v

a
ri

a
b

le
s

)

LTS size (number of transitions)

Branching bisimulation (LTSs with more than 100000 transitions)

V2.0
V1.0

(f)

 10000

 100000

 1e+06

 1e+07

 1e+08

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06  3e+06  3.5e+06  4e+06  4.5e+06

B
E

S
 s

iz
e

 (
n

u
m

b
e

r 
o

f 
o

p
e

ra
to

rs
)

LTS size (number of transitions)

Branching bisimulation (LTSs with more than 100000 transitions)

V2.0
V1.0

(g)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0  200000  400000  600000  800000  1e+06  1.2e+06 1.4e+06 1.6e+06 1.8e+06

B
E

S
 s

iz
e

 (
n

u
m

b
e

r 
o

f 
v

a
ri

a
b

le
s

)

LTS size (number of transitions)

V2.0
V1.0

(h)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1000  10000  100000  1e+06  1e+07

B
E

S
 s

iz
e

 (
n

u
m

b
e

r 
o

f 
v

a
ri

a
b

le
s

)

LTS size (number of transitions)

Strong bisimulation (complexity w.r.t. theoretical worst-case)

V2.0
V1.0

worst case

Figure 3: Performance of equivalence checking using Bisimulator 1.0 and 2.0
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6 Conclusion and Future Work

Building efficient software tools for on-the-fly equivalence checking between Ltss is a difficult
and time-consuming task. The usage of intermediate formalisms, such as Bess, allows one to
separate the concerns of phrasing the verification problem and of solving it, leading to highly
modular verification tools [36, 5]. The two optimizations we proposed, namely the new en-
codings of weak equivalences by applying τ -compression on the input Ltss and computing
τ -closures using boolean equations (Section 3) and the new sr-Dfs local Bes resolution algo-
rithm (Section 4) significantly increased the performance of on-the-fly equivalence checking
w.r.t. existing approaches.

These optimizations underlie the new version 2.0 of the Bisimulator equivalence
checker [35] of the Cadp toolbox [22]. The sr-Dfs algorithm was integrated to the
generic Cæsar Solve library [35] for on-the-fly Bes resolution, which is part of the generic
Open/Cæsar environment [21] for Lts manipulation. Local Bes resolution proved to be
a suitable alternative way for computing τ -closures on Ltss produced from protocols and
distributed systems, competing favourably with general transitive closure algorithms. The
sr-Dfs algorithm is able to detect optimally the presence of both examples and counterex-
amples in the boolean graph, and appears to be quite effective for comparing Ltss modulo
weak equivalences.

We plan to continue our work along two directions. First, the range of equivalences and
preorders already available in Bisimulator 2.0 (strong, branching, weak, τ∗.a, safety, trace,
and weak trace) could be extended by devising Bes encodings for other weak equivalences,
such as Cffd [43] and testing equivalence [11], following the scheme in Section 3. Next,
we will pursue experimenting the sr-Dfs algorithm and study its applicability for solving
Bess coming from other verification problems, such as the model checking of alternation-
free modal µ-calculus and the on-the-fly Lts reduction modulo partial order relations (e.g.,
τ -confluence, τ -inertness, etc.) as formulated in [38].
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A Proofs of the BES encodings

We prove in the sequel the correctness of our Bes encodings for strong and branching bisim-
ulation. The correctness proof for weak bisimulation is very similar to the one for branching
bisimulation and is therefore left as exercise for the interested reader.

A few additional notions are needed in order to proceed. Let M1 = 〈Q1, A1, T1, q01〉
and M2 = 〈Q2, A2, T2, q02〉 be two Ltss. Consider the two lattices 〈Bool

|Q1|·|Q2|,⊑
, false|Q1|·|Q2|, true

|Q1|·|Q2|,⊔,⊓〉 and 〈2Q1×Q2,⊆, ∅, Q1 × Q2,∪,∩〉, where the relation ⊑ and
the operations ⊔, ⊓ are defined as the pointwise extensions of the boolean connectors
⇒, ∨, and ∧, respectively. These lattices are isomorphic, being related by the function
Γ : Bool

|Q1|·|Q2| → 2Q1×Q2 defined below:

Γ(〈bpq〉p∈Q1,q∈Q2) = {〈p, q〉 | bpq = true}.

It is straightforward to show that Γ is an isomorphism, i.e., it is a bijection preserving the
compatibility of operations (b ⊑ b

′ ⇔ Γ(b) ⊆ Γ(b′), Γ(false|Q1|·|Q2|) = ∅, Γ(true
|Q1|·|Q2|) =

Q1 ×Q2, Γ(b ⊔ b
′) = Γ(b) ∪ Γ(b′), and Γ(b ⊓ b

′) = Γ(b) ∩ Γ(b′)).

A.1 BES encoding of strong bisimulation

We recall below the definitions of strong bisimulation [39] and the corresponding Bes en-
coding given in Section 3.

Definition 1 (Strong bisimulation) Let M1 = 〈Q1, A1, T1, q01〉, M2 = 〈Q2, A2, T2, q02〉
be two Ltss. A relation ≈ ⊆ Q1 × Q2 is a bisimulation between M1 and M2 iff for every
p ∈ Q1 and q ∈ Q2, p ≈ q if the two conditions below are satisfied:

1. ∀p
a
→ p′ ∈ T1.∃q

a
→ q′ ∈ T2.p

′ ≈ q′;

2. ∀q
a
→ q′ ∈ T2.∃p

a
→ p′ ∈ T1.p

′ ≈ q′.

The strong bisimulation ≈s ⊆ Q1 ×Q2 is the union of all bisimulations between M1 and M2.

Definition 2 (Strong bisimulation BES) Let M1 = 〈Q1, A1, T1, q01〉, M2 =
〈Q2, A2, T2, q02〉 be two Ltss. The strong bisimulation ≈s ⊆ Q1 × Q2 is encoded by
the maximal fixed point Bes below:

Bs =







Xpq
ν
=

∧

p
a
→p′

∨

q
a
→q′

Xp′q′ ∧
∧

q
a
→q′

∨

p
a
→p′

Xp′q′







p∈Q1,q∈Q2

The interpretation [[Bs]] is defined as the maximal fixed point νΦs, where Φs : Bool
|Q1|·|Q2| →

Bool
|Q1|·|Q2| is the (monotonic) functional associated to Bs:

Φs(〈bpq〉p∈Q1,q∈Q2) = 〈[[
∧

p
a
→p′

∨

q
a
→q′

Xp′q′ ∧
∧

q
a
→q′

∨

p
a
→p′

Xp′q′ ]][bpq/Xpq]〉p∈Q1,q∈Q2.
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According to Tarski’s theorem [42], the maximal fixed point νΦs can be computed as follows:

νΦs =
⊔

{b ∈ Bool
|Q1|·|Q2| | b ⊑ Φs(b)}.

The following lemma provides a link between bisimulations and the functional associated to
the Bes above.

Lemma 1 Let M1 = 〈Q1, A1, T1, q01〉, M2 = 〈Q2, A2, T2, q02〉 be two Ltss, and let b ∈
Bool

|Q1|·|Q2|. Then:
b ⊑ Φs(b) iff Γ(b) is a bisimulation.

Proof. If. Let b = 〈bpq〉p∈Q1,q∈Q2 such that Γ(b) is a bisimulation. We must show that
b ⊑ Φs(b).

Let p ∈ Q1, q ∈ Q2 such that bpq = true. From the definition of Γ, this implies 〈p, q〉 ∈ Γ(b).
Since Γ(b) is a bisimulation, from Definition 1 this implies the two conditions below:

∀p
a
→ p′ ∈ T1.∃q

a
→ q′ ∈ T2.〈p

′, q′〉 ∈ Γ(b) and ∀q
a
→ q′ ∈ T2.∃p

a
→ p′ ∈ T1.〈p

′, q′〉 ∈ Γ(b)

Let p
a
→ p′ ∈ T1. From the first condition above, there exists q

a
→ q′ ∈ T2 such that 〈p′, q′〉 ∈

Γ(b). From the definition of Γ, this implies bp′q′ = true, which means that the boolean
formula

∧

p
a
→p′

∨

q
a
→q′

bp′q′ is true. A symmetric reasoning applied to the second condition

above shows that the formula
∧

q
a
→q′

∨

p
a
→p′

bp′q′ is also true. From the interpretation of
boolean formulas given in Section 2 and Definition 2, this implies:

[[
∧

p
a
→p′

∨

q
a
→q′

Xp′q′ ∧
∧

q
a
→q′

∨

p
a
→p′

Xp′q′ ]][bpq/Xpq]p∈Q1,q∈Q2 = true

meaning that Φs(b) = true. Therefore, b ⊑ Φs(b).

Only if. Let b = 〈bpq〉p∈Q1,q∈Q2 such that b ⊑ Φs(b). We must show that Γ(b) is a
bisimulation, i.e., it satisfies the two conditions stated in Definition 1.

Let 〈p, q〉 ∈ Γ(b). From the definition of Γ, this implies bpq = true. Since b ⊑ Φs(b), from
Definition 2 and the interpretation of boolean formulas defined in Section 2, this implies:

[[
∧

p
a
→p′

∨

q
a
→q′

Xp′q′ ]][bpq/Xpq]p∈Q1,q∈Q2 ∧ [[
∧

q
a
→q′

∨

p
a
→p′

Xp′q′ ]][bpq/Xpq]p∈Q1,q∈Q2 = true.

In order this equality to hold, both conjuncts must be true, which yields, after further
applying the interpretation of boolean formulas, the two conditions below:

∧

p
a
→p′

∨

q
a
→q′

bp′q′ = true and
∧

q
a
→q′

∨

p
a
→p′

bp′q′ = true.

Let p
a
→ p′ ∈ T1. From the first condition above, each conjunct associated to such a transition

must be true, i.e.,
∨

q
a
→q′

bp′q′ = true. This means that some disjunct corresponding to a

transition q
a
→ q′ ∈ T2 must be true, i.e., there exists such a transition such that bp′q′ = true.

From the definition of Γ, this implies 〈p′, q′〉 ∈ Γ(b), which means that Γ(b) satisfies condition
1 of Definition 1. A symmetric reasoning applied to the second condition above shows that
Γ(b) also satisfies condition 2 of Definition 1, and therefore Γ(b) is a bisimulation. �

We are now ready to show the correctness of the Bes encoding for strong bisimulation.
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Proposition 1 (Correctness of strong bisimulation BES) Let M1 = 〈Q1, A1, T1, q01〉,
M2 = 〈Q2, A2, T2, q02〉 be two Ltss, and let Bs be the Bes encoding the strong bisimulation
between M1 and M2. Then:

Γ([[Bs]]) = ≈s .

Proof.
Γ([[Bs]]) = Γ(νΦs) by Definition 2

= Γ(
⊔

{b | b ∈ Bool
|Q1|·|Q2| ∧ b ⊑ Φs(b)}) by Tarski’s theorem

=
⋃

{Γ(b) | b ∈ Bool
|Q1|·|Q2| ∧ b ⊑ Φs(b)} by Γ isomorphism

=
⋃

{Γ(b) | b ∈ Bool
|Q1|·|Q2| ∧ Γ(b) is a bisimulation} by Lemma 1

=
⋃

{≈ ⊆ Q1 ×Q2 | ≈ is a bisimulation} by Γ bijection
= ≈s by Definition 1.

�

A.2 BES encoding of branching bisimulation

We recall below the definitions of branching bisimulation [44] and the corresponding Bes
encoding given in Section 3.

Definition 3 (Branching bisimulation) Let M1 = 〈Q1, A1, T1, q01〉, M2 =
〈Q2, A2, T2, q02〉 be two Ltss. A relation ≈ ⊆ Q1 × Q2 is a branching-like bisimula-
tion between M1 and M2 iff for every p ∈ Q1 and q ∈ Q2, p ≈ q if the two conditions below
are satisfied:

1. ∀p
a
→ p′ ∈ T1.((a = τ ∧ p′ ≈ q) ∨ ∃q

τ∗

→ q′
a
→ q′′ ∈ T ∗

2 .(p ≈ q′ ∧ p′ ≈ q′′));

2. ∀q
a
→ q′ ∈ T2.((a = τ ∧ p ≈ q′) ∨ ∃p

τ∗

→ p′
a
→ p′′ ∈ T ∗

1 .(p
′ ≈ q ∧ p′′ ≈ q′)).

The branching bisimulation ≈b ⊆ Q1 × Q2 is the union of all branching-like bisimulations
between M1 and M2.

Definition 4 (Branching bisimulation BES) Let M1 = 〈Q1, A1, T1, q01〉, M2 =
〈Q2, A2, T2, q02〉 be two τ -convergent Ltss. The branching bisimulation ≈b ⊆ Q1 × Q2 is
encoded by the maximal fixed point Bes below:

Bb =







































Xpq
ν
=

∧

p
a
→p′

Ypp′qa ∧
∧

q
a
→q′

Zpqq′a

Ypp′qa
ν
= (a = τ ∧Xp′q) ∨ Upp′qa

Upp′qa
ν
=

∨

q
a
→q′

Wpp′qq′ ∨
∨

q
τ
→q′

Upp′q′a

Zpqq′a
ν
= (a = τ ∧Xpq′) ∨ Vpqq′a

Vpqq′a
ν
=

∨

p
a
→p′

Wpp′qq′ ∨
∨

p
τ
→p′

Vp′qq′a

Wpp′qq′
ν
= Xpq ∧Xp′q′







































p,p′∈Q1,q,q′∈Q2,a∈A1∪A2.
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We first prove several lemmas concerning Bes manipulation, and then we prove the correct-
ness of the Bes encoding for branching bisimulation.

Definition 5 Let X be a set of boolean variables including X1, ...,Xn,Xn+1. Let B = {Xi
ν
=

ϕi}1≤i≤n and B′ = {Xi
ν
= ϕi}1≤i≤n+1 be two Bess having their first n equations identical

(ϕi are boolean formulas built from disjunctions and conjunctions) and δ : X → Bool be
a context. Let Φδ : Bool

n → Bool
n and Φ′

δ : Bool
n+1 → Bool

n+1 be the two functionals
associated to B and B′ in the context δ:

Φδ(〈bi〉1≤i≤n) = 〈[[ϕi]](δ ⊘ [bj/Xj ]1≤j≤n)〉1≤i≤n

Φ′
δ(〈bi〉1≤i≤n+1) = 〈[[ϕi]](δ ⊘ [bj/Xj ]1≤j≤n+1)〉1≤i≤n+1

where δ⊘ [bj/Xj ]1≤j≤n denotes a context identical to δ except for variables X1, ...,Xn, which
are assigned values b1, ..., bn. According to Kleene’s theorem [27], the maximal fixed points
of the functionals Φδ and Φ′

δ can be computed as follows:

νΦδ = ⊓k≥0Φ
k
δ (true

n) νΦ′
δ = ⊓k≥0Φ

′
δ
k
(true

n+1).

The notation 〈ei, e〉1≤i≤n, where ei and e are boolean expressions, is a shorthand for
〈e1, ..., en, e〉. We define the series Uk ∈ Bool

n+1 associated to B, B′, and δ as follows:

U0 = true
n+1, Uk+1 = 〈(νΦδ⊘[(Φ′

δ
(Uk))n+1/Xn+1])i, (Φ

′
δ(Uk))n+1〉1≤i≤n.

The following lemma relates the maximal fixed points of the two functionals Φδ and Φ′
δ.

Lemma 2 Consider two Bess B, B′ and a context δ as in Definition 5. Then:

(νΦδ⊘[(νΦ′

δ
)n+1/Xn+1])i ⊒ (νΦ′

δ)i

for all 1 ≤ i ≤ n.

Proof. According to Kleene’s theorem [27], the maximal fixed point of Φ has the iterative
characterization below:

νΦδ⊘[(νΦ′

δ
)n+1/Xn+1] = ⊓k≥0Φ

k
δ⊘[(νΦ′

δ
)n+1/Xn+1](true

n).

Therefore, to show the desired inequality, it is sufficient to show the following statement for
all k ≥ 0 and 1 ≤ i ≤ n:

(Φk
δ⊘[(νΦ′

δ
)n+1/Xn+1](true

n))i ⊒ (νΦ′
δ)i.

We proceed by induction on k.

Base step. (Φ0
δ⊘[(νΦ′

δ
)n+1/Xn+1]

(true
n))i = (true

n)i ⊒ (νΦ′
δ)i.

Inductive step.
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(Φk+1
δ⊘[(νΦ′

δ
)n+1/Xn+1]

(true
n))i = (Φδ⊘[(νΦ′

δ
)n+1/Xn+1](Φ

k
δ⊘[(νΦ′

δ
)n+1/Xn+1](true

n)))i

by definition
⊒ (Φδ⊘[(νΦ′

δ
)n+1/Xn+1](〈(νΦ

′
δ)j〉1≤j≤n))i
by induction hypothesis

= [[ϕi]]((δ ⊘ [(νΦ′
δ)n+1/Xn+1]) ⊘ [(νΦ′

δ)j/Xj ]1≤j≤n)
by definition of Φ

= [[ϕi]](δ ⊘ [(νΦ′
δ)j/Xj ]1≤j≤n+1)

= (Φ′
δ(νΦ

′
δ))i by definition of Φ′

= (νΦ′
δ)i by definition of ν.

�

The following lemma states two useful properties of the series Uk.

Lemma 3 Consider two Bess B, B′, a context δ, and the associated series Uk as in Defi-
nition 5. The following properties hold for all k ≥ 0:

1. Uk ⊒ Φ′
δ(Uk) ⊒ Uk+1;

2. Φ′
δ
k(true

n+1) ⊒ Uk ⊒ νΦ′
δ.

Proof.
Property 1. We proceed by induction on k.

Base step. From the definition of Uk, we derive the first inequality: U0 = true
n+1 ⊒ Φ′

δ(U0).

We derive now the second inequality:

Φ′
δ(U0) = Φ′

δ(true
n+1) by definition of Uk

= 〈[[ϕi]](δ ⊘ [true/Xj ]1≤j≤n+1)〉1≤i≤n+1 by definition of Φ′
δ

= 〈(Φδ⊘[true/Xn+1](true
n))i, (Φ

′
δ(true

n+1))n+1〉1≤i≤n by definition of Φδ, Φ′
δ

⊒ 〈(νΦδ⊘[true/Xn+1])i, (Φ
′
δ(true

n+1))n+1〉1≤i≤n by Kleene’s theorem

⊒ 〈(νΦδ⊘[(Φ′

δ
(truen+1))n+1/Xn+1])i, (Φ

′
δ(true

n+1))n+1〉1≤i≤n by monotonicity

= U1 by definition of Uk.

Inductive step. We derive the first inequality:

Uk+1 = 〈(νΦδ⊘[(Φ′

δ
(Uk))n+1/Xn+1])i, (Φ

′
δ(Uk))n+1〉1≤i≤n by definition of Uk

= 〈(Φδ⊘[(Φ′

δ
(Uk))n+1/Xn+1](νΦδ⊘[(Φ′

δ
(Uk))n+1/Xn+1]))i, (Φ

′
δ(Uk))n+1〉1≤i≤n

by definition of ν
= 〈(Φδ⊘[(Φ′

δ
(Uk))n+1/Xn+1](〈(Uk+1)j〉1≤j≤n))i, (Φ

′
δ(Uk))n+1〉1≤i≤n

by definition of Uk

⊒ 〈(Φδ⊘[(Uk+1)n+1/Xn+1](〈(Uk+1)j〉1≤j≤n))i, (Φ
′
δ(Uk+1))n+1〉1≤i≤n

by induction hypothesis and monotonicity
= 〈[[ϕi]](δ ⊘ [(Uk+1)j/Xj ]1≤j≤n+1), [[ϕn+1]](δ ⊘ [(Uk+1)j/Xj ]1≤j≤n+1)〉1≤i≤n

by definition of Φδ and Φ′
δ

= Φ′
δ(Uk+1) by definition of Φ′

δ.

We derive now the second inequality:
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Φ′
δ(Uk+1) = 〈[[ϕi]](δ ⊘ [(Uk+1)j/Xj ]1≤j≤n+1), [[ϕn+1]](δ ⊘ [(Uk+1)j/Xj ]1≤j≤n+1)〉1≤i≤n

by definition of Φ′
δ

= 〈(Φδ⊘[(Uk+1)n+1/Xn+1](〈(Uk+1)j〉1≤j≤n))i, (Φ
′
δ(Uk+1))n+1〉1≤i≤n

by definition of Φδ and Φ′
δ

⊒ 〈(Φδ⊘[(Φ′

δ
(Uk+1))n+1/Xn+1](〈(Uk+1)j〉1≤j≤n))i, (Φ

′
δ(Uk+1))n+1〉1≤i≤n

by the property above and monotonicity
= 〈(Φδ⊘[(Φ′

δ
(Uk+1))n+1/Xn+1](νΦδ⊘[(Φ′

δ
(Uk))n+1/Xn+1]))i, (Φ

′
δ(Uk+1))n+1〉1≤i≤n

by definition of Uk

⊒ 〈(Φδ⊘[(Φ′

δ
(Uk+1))n+1/Xn+1](νΦδ⊘[(Φ′

δ
(Uk+1))n+1/Xn+1]))i, (Φ

′
δ(Uk+1))n+1〉1≤i≤n

by induction hypothesis and monotonicity
= 〈(νΦδ⊘[(Φ′

δ
(Uk+1))n+1/Xn+1])i, (Φ

′
δ(Uk+1))n+1〉1≤i≤n by definition of ν

= Uk+2 by definition of Uk.

Property 2. We proceed by induction on k.

Base step. Φ′
δ
0(true

n+1) = true
n+1 = U0 ⊒ νΦ′

δ.

Inductive step. We derive the first inequality:

Φ′
δ
k+1(true

n+1) = Φ′
δ(Φ

′
δ
k(true

n+1)) by definition of Φ′
δ

⊒ Φ′
δ(Uk) by induction hypothesis

= 〈[[ϕi]](δ ⊘ [(Uk)j/Xj ]1≤j≤n+1), [[ϕn+1]](δ ⊘ [(Uk)j/Xj ]1≤j≤n+1)〉1≤i≤n

by definition of Φ′
δ

= 〈(Φδ⊘[(Uk)n+1/Xn+1](〈(Uk)j〉1≤j≤n))i, (Φ
′
δ(Uk))n+1〉1≤i≤n

by definition of Φδ and Φ′
δ

= 〈(Φδ⊘[(Uk)n+1/Xn+1](νΦδ⊘[(Φ′

δ
(Uk−1))n+1/Xn+1]))i, (Φ

′
δ(Uk))n+1〉1≤i≤n

by definition of Uk

⊒ 〈(Φδ⊘[(Uk)n+1/Xn+1](νΦδ⊘[(Uk)n+1/Xn+1]))i, (Φ
′
δ(Uk))n+1〉1≤i≤n

by Property 1
= 〈(νΦδ⊘[(Uk)n+1/Xn+1])i, (Φ

′
δ(Uk))n+1〉1≤i≤n by definition of ν

⊒ 〈(νΦδ⊘[(Φ′

δ
(Uk))n+1/Xn+1])i, (Φ

′
δ(Uk))n+1〉1≤i≤n by Property 1

= Uk+1 by definition of Uk.

We derive now the second inequality:

Uk+1 = 〈(νΦδ⊘[(Φ′

δ
(Uk))n+1/Xn+1])i, (Φ

′
δ(Uk))n+1〉1≤i≤n by definition of Uk

⊒ 〈(νΦδ⊘[(Φ′

δ
(νΦ′

δ
))n+1/Xn+1])i, (Φ

′
δ(νΦ

′
δ))n+1〉1≤i≤n by induction hypothesis

= 〈(νΦδ⊘[(νΦ′

δ
)n+1/Xn+1])i, (νΦ

′
δ)n+1〉1≤i≤n by definition of ν

⊒ 〈(νΦ′
δ)i, (νΦ

′
δ)n+1〉1≤i≤n by Lemma 2

= νΦ′
δ by definition.

�

The following lemma states that appending an equation to two Bess that have the same
interpretation yields new Bess still having the same interpretation.

Lemma 4 (Equation appending) Consider two couples of Bess B = {Xi
ν
= ϕi}1≤i≤n,

B′ = {Xi
ν
= ϕi}1≤i≤n+1 and C = {Xi

ν
= ψi}1≤i≤n, C ′ = {Xi

ν
= ψi}1≤i≤n+1 like in Defini-

tion 5, such that ϕn+1 and ψn+1 are identical. Let Φδ, Φ′
δ and Ψδ, Ψ′

δ be the functionals
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associated to B, B′ and C, C ′ in a context δ. Suppose that B and C have the same inter-
pretation in any context δ, i.e., νΦδ = νΨδ. Then:

νΦ′
δ = νΨ′

δ

for any context δ.

Proof. Let δ be a context. We show the desired equality by double inclusion.

Inclusion νΦ′
δ ⊒ νΨ′

δ. Consider the two series Uk and U ′
k associated to the couples of Bess

B, B′ and C, C ′ in the context δ as in Definition 5. We show first that for all k ≥ 0, Uk = U ′
k.

We proceed by induction on k.

Base step. U0 = true
n+1 = U ′

0.

Inductive step. We first show the statement below:

(Φ′
δ(Uk))n+1 = [[ϕn+1]](δ ⊘ [(Uk)j/Xj ]1≤j≤n+1) by definition of Φ′

δ

= [[ψn+1]](δ ⊘ [(Uk)j/Xj ]1≤j≤n+1) by hypothesis
= (Ψ′

δ(Uk))n+1 by definition of Ψ′
δ

= (Ψ′
δ(U

′
k))n+1 by induction hypothesis.

We show the equality:

Uk+1 = 〈(νΦδ⊘[(Φ′

δ
(Uk))n+1/Xn+1])i, (Φ

′
δ(Uk))n+1〉1≤i≤n by definition of Uk

= 〈(νΦδ⊘[(Ψ′

δ
(U ′

k
))n+1/Xn+1])i, (Ψ

′
δ(U

′
k))n+1〉1≤i≤n by the property above

= 〈(νΨδ⊘[(Ψ′

δ
(U ′

k
))n+1/Xn+1])i, (Ψ

′
δ(U

′
k))n+1〉1≤i≤n by hypothesis

= U ′
k+1 by definition of U ′

k.

We now prove the desired inclusion by using the Kleene’s characterization of Φ′
δ and proving

that for all k ≥ 0, Φ′
δ
k(true

n+1) ⊒ νΨ′
δ:

Φ′
δ
k(true

n+1) ⊒ Uk by Lemma 3, property 2
= U ′

k by the property above
⊒ νΨ′

δ by Lemma 3, property 2.

Inclusion νΦ′
δ ⊑ νΨ′

δ. The proof is symmetric to the converse inclusion.

This concludes the proof of the desired equality. �

We are now ready to show the correctness of the Bes encoding for branching bisimulation.
We show first a lemma concerning the computation of τ -closures using boolean equations,
and then we show the main proposition.

Lemma 5 Let M1 = 〈Q1, A1, T1, q01〉, M2 = 〈Q2, A2, T2, q02〉 be two τ -convergent Ltss, and
consider the Bess:

B =







Upp′qa
ν
=

∨

q
τ∗
→q′

∨

q′
a
→q′′

Wpp′q′q′′

Vpqq′a
ν
=

∨

p
τ∗
→p′

∨

p′
a
→p′′

Wp′p′′qq′







p,p′∈Q1,q,q′∈Q2,a∈A1∪A2
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and

B′ =

{

Upp′qa
ν
=

∨

q
a
→q′

Wpp′qq′ ∨
∨

q
τ
→q′

Upp′q′a

Vpqq′a
ν
=

∨

p
a
→p′

Wpp′qq′ ∨
∨

p
τ
→p′

Vp′qq′a

}

p,p′∈Q1,q,q′∈Q2,a∈A1∪A2.

Then:
[[B]]δ = [[B′]]δ

for any context δ : X → Bool, where the set X contains the variables Upp′qa and Vpqq′a.

Proof. Let δ : X → Bool be a context and Φδ,Φ
′
δ : Bool

|Q1|2·|Q2|·(|A1|+|A2|) ×

Bool
|Q1|·|Q2|2·(|A1|+|A2|) → Bool

|Q1|2·|Q2|·(|A1|+|A2|) × Bool
|Q1|·|Q2|2·(|A1|+|A2|) be the function-

als associated to B and B′ in the context δ (for simplicity, we omit the subscript domains
when their meaning is clear):

Φδ(〈upp′qa, vpqq′a〉) = 〈[[
∨

q
τ∗
→q′

∨

q′
a
→q′′

Wpp′q′q′′ ]](δ ⊘ [upp′qa/Upp′qa, vpqq′a/Vpqq′a]),

[[
∨

p
τ∗
→p′

∨

p′
a
→p′′

Wp′p′′qq′ ]](δ ⊘ [upp′qa/Upp′qa, vpqq′a/Vpqq′a])〉

= 〈
∨

q
τ∗
→q′

∨

q′
a
→q′′

δ(Wpp′q′q′′),
∨

p
τ∗
→p′

∨

p′
a
→p′′

δ(Wp′p′′qq′)〉

Φ′
δ(〈upp′qa, vpqq′a〉) = 〈[[

∨

q
a
→q′

Wpp′qq′ ∨
∨

q
τ
→q′

Upp′q′a]](δ ⊘ [upp′qa/Upp′qa, vpqq′a/Vpqq′a]),

[[
∨

p
a
→p′

Wpp′qq′ ∨
∨

p
τ
→p′

Vp′qq′a]](δ ⊘ [upp′qa/Upp′qa, vpqq′a/Vpqq′a])〉

= 〈
∨

q
a
→q′

δ(Wpp′qq′) ∨
∨

q
τ
→q′

upp′q′a,
∨

p
a
→p′

δ(Wpp′qq′) ∨
∨

p
τ
→p′

vp′qq′a〉

To prove that νΦδ = νΦ′
δ, we show first that νΦδ ⊑ νΦ′

δ and then we show that the strict
inclusion νΦδ ⊏ νΦ′

δ does not hold. Since the right-hand sides of the equations of B contain
neither occurrences of Upp′qa, nor of Vpqq′a, the associated functional Φδ is constant and
its maximal fixed point is obtained simply by evaluating the functional on some arbitrary
arguments:

νΦδ = 〈(
∨

q
τ∗
→q′

∨

q′
a
→q′′

δ(Wpp′q′q′′))pp′qa, (
∨

p
τ∗
→p′

∨

p′
a
→p′′

δ(Wp′p′′qq′))pqq′a〉

By applying Φ′
δ on this fixed point, we obtain:

Φ′
δ(νΦδ) = Φ′

δ(〈
∨

q
τ∗
→q′

∨

q′
a
→q′′

δ(Wpp′q′q′′),
∨

p
τ∗
→p′

∨

p′
a
→p′′

δ(Wp′p′′qq′)〉)

by definition of νΦδ

= 〈
∨

q
a
→q′

δ(Wpp′qq′) ∨
∨

q
τ
→q′

(
∨

q
τ∗
→q′

∨

q′
a
→q′′

δ(Wpp′q′q′′))pp′q′a,
∨

p
a
→p′

δ(Wpp′qq′) ∨
∨

p
τ
→p′

(
∨

p
τ∗
→p′

∨

p′
a
→p′′

δ(Wp′p′′qq′))p′qq′a〉

by definition of Φ′
δ

= 〈
∨

q
a
→q′

δ(Wpp′qq′) ∨
∨

q
τ
→q′

∨

q′
τ∗
→q′′

∨

q′′
a
→q′′′

δ(Wpp′q′′q′′′)
∨

p
a
→p′

δ(Wpp′qq′) ∨
∨

p
τ
→p′

∨

p′
τ∗
→p′′

∨

p′′
a
→p′′′

δ(Wp′′p′′′qq′)〉

by subscript substitution
= 〈(

∨

q
τ∗
→q′

∨

q′
a
→q′′

δ(Wpp′q′q′′))pp′qa, (
∨

p
τ∗
→p′

∨

p′
a
→p′′

δ(Wp′p′′qq′))pqq′a〉

by definition of τ -closure
= νΦδ by definition of νΦδ.
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From Tarski’s theorem [42], this implies νΦδ ⊑ νΦ′
δ. It remains to show that the strict

inclusion νΦδ ⊏ νΦ′
δ does not hold. Suppose that νΦδ ⊏ νΦ′

δ, meaning that:

〈(νΦδ)pp′qa, (νΦδ)pqq′a〉 ⊏ 〈(νΦ′
δ)pp′qa, (νΦ

′
δ)pqq′a〉

Two cases are possible, depending on whether the first or the second component of νΦδ is
smaller than the corresponding component of νΦ′

δ. We consider only the first case here, the
other one being completely symmetric. Let p, p′ ∈ Q1, q ∈ Q2, and a ∈ A1 ∪ A2 such that
(νΦδ)pp′qa = false and (νΦ′

δ)pp′qa = true.

From the definition of Φδ, we infer that
∨

q
τ∗
→q′

∨

q′
a
→q′′

δ(Wpp′q′q′′) = false, meaning that there

is no τ -sequence going out of q and leading to a state q′ that has an outgoing transition
q′

a
→ q′′ such that δ(Wpp′q′q′′) = true.

From the definition of Φ′
δ and the fact that νΦ′

δ is a fixed point, we infer that
∨

q
a
→q′

δ(Wpp′qq′) ∨
∨

q
τ
→q′

(νΦ′
δ)pp′q′a = true. But the disjunct

∨

q
a
→q′

δ(Wpp′qq′) cannot be
true because this would imply the existence of a zero-step τ -sequence going out of q and
leading, after an a-transition, to a state q′ such that Wpp′qq′ = true, which is forbidden
by the condition above. So the other disjunct must be true, meaning that there exists a
transition q

τ
→ q′ such that (νΦ′

δ)pp′q′a = true.

By repeating the above reasoning, we can construct an infinite sequence (q =)q0
τ
→ q1

τ
→

q2
τ
→ · · · such that (νΦ′

δ)pp′qia = true for all i ≥ 0. This contradicts the hypothesis of M2

being τ -convergent, and therefore concludes the proof. �

Proposition 2 (Correctness of branching bisimulation BES) Let M1 =
〈Q1, A1, T1, q01〉, M2 = 〈Q2, A2, T2, q02〉 be two τ -convergent Ltss, and let Bb be the
Bes encoding the branching bisimulation between M1 and M2. Then:

Γ([[Bb]]) = ≈b .

Proof. We start with the direct Bes encoding of branching bisimulation (previously shown
in Table 1, middle part, first row) and we progressively refine it until obtaining the full Bes
encoding given by Definition 4 (previously shown in Table 1, middle part, second row).

The direct encoding of branching bisimulation is given by the Bes Bb1 defined below:

Bb1 =

{

Xpq
ν
=

∧

p
a
→p′

((a = τ ∧Xp′q) ∨
∨

q
τ∗
→q′

a
→q′′

(Xpq′ ∧Xp′q′′)) ∧
∧

q
a
→q′

((a = τ ∧Xpq′) ∨
∨

p
τ∗
→p′

a
→p′′

(Xp′q ∧Xp′′q′))

}

p∈Q1,q∈Q2

This encoding is correct, i.e., [[Bb1]] = ≈b. The proof of this fact is similar to that of
Proposition 1 and is omitted here for the sake of conciseness. Note that this proof is valid
for arbitrary Ltss, and therefore also for τ -convergent Ltss.

We now refine the Bes Bb1 into a Bes Bb2 by replacing certain subformulas with new
variables defined by additional equations, such that the right-hand side of each equation of
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Bb2 contains a single type of boolean operator:

Bb2 =











































Xpq
ν
=

∧

p
a
→p′

Ypp′qa ∧
∧

q
a
→q′

Zpqq′a

Ypp′qa
ν
= (a = τ ∧Xp′q) ∨ Upp′qa

Upp′qa
ν
=

∨

q
τ∗
→q′

∨

q′
a
→q′′

Wpp′q′q′′

Zpqq′a
ν
= (a = τ ∧Xpq′) ∨ Vpqq′a

Vpqq′a
ν
=

∨

p
τ∗
→p′

∨

p′
a
→p′′

Wp′p′′qq′

Wpp′qq′
ν
= Xpq ∧Xp′q′











































p,p′∈Q1,q,q′∈Q2,a∈A1∪A2

This transformation into a simple Bes Bb2 as we consider in our framework (see Section 2)
does not change the interpretation of the variables Xp,q of the original Bes, i.e., ([[Bb1]])Xp,q =
([[Bb2]])Xp,q for all p ∈ Q1 and q ∈ Q2.

The final step towards the Bes Bb given in Definition 4 is to get rid of the τ -closures present
in the right-hand sides of the equations defining Upp′qa and Vpqq′a. To achieve this, we
consider the following Bes:

B =







Upp′qa
ν
=

∨

q
τ∗
→q′

∨

q′
a
→q′′

Wpp′q′q′′

Vpqq′a
ν
=

∨

p
τ∗
→p′

∨

p′
a
→p′′

Wp′p′′qq′







p,p′∈Q1,q,q′∈Q2,a∈A1∪A2

Since both Ltss M1 and M2 are τ -convergent, Lemma 5 ensures that [[B]]δ = [[B′]]δ, where
B′ is defined as follows:

B′ =

{

Upp′qa
ν
=

∨

q
a
→q′

Wpp′qq′ ∨
∨

q
τ
→q′

Upp′q′a

Vpqq′a
ν
=

∨

p
a
→p′

Wpp′qq′ ∨
∨

p
τ
→p′

Vp′qq′a

}

p,p′∈Q1,q,q′∈Q2,a∈A1∪A2

Starting with the Bess B and B′, which have the same interpretation in any context δ, we
can apply Lemma 4 repeatedly in order to add all the equations of Bb2 defining variables
Xpq, Ypp′qa, Zpqq′a, and Wpp′qq′ for all p, p′ ∈ Q1, q, q

′ ∈ Q2, and a ∈ A1 ∪ A2, still ensuring
that the resulting Bess have the same interpretation. Upon completion of this process, the
Bes derived from B is Bb2 and the Bes derived from B′ is Bb (note that we can permute
freely the equations of a Bes without changing the interpretation of its variables):

Bb =







































Xpq
ν
=

∧

p
a
→p′

Ypp′qa ∧
∧

q
a
→q′

Zpqq′a

Ypp′qa
ν
= (a = τ ∧Xp′q) ∨ Upp′qa

Upp′qa
ν
=

∨

q
a
→q′

Wpp′qq′ ∨
∨

q
τ
→q′

Upp′q′a

Zpqq′a
ν
= (a = τ ∧Xpq′) ∨ Vpqq′a

Vpqq′a
ν
=

∨

p
a
→p′

Wpp′qq′ ∨
∨

p
τ
→p′

Vp′qq′a

Wpp′qq′
ν
= Xpq ∧Xp′q′







































p,p′∈Q1,q,q′∈Q2,a∈A1∪A2

By vertue of Lemma 4 these Bess have the same interpretation (the context δ becomes
useless since both Bess are closed), meaning that Bb has in turn the same interpretation as
Bb1, and thus it reflects the branching bisimulation of the τ -convergent Ltss M1 and M2

correctly. �
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