
IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
50

12
--

F
R

+
E

N
G

ap por t

de r ech er ch e

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Compositional Verification using CADP of the
ScalAgent Deployment Protocol for Software

Components

Frédéric Tronel — Frédéric Lang — Hubert Garavel

N° 5012

Novembre 2003

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38330 Montbonnot-St-Martin (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Compositional Verification using CADP of the

ScalAgent Deployment Protocol for Software

Components

Frédéric Tronel∗ , Frédéric Lang† , Hubert Garavel‡

Thème 1 — Réseaux et systèmes
Projet VASY

Rapport de recherche n
�

5012 — Novembre 2003 — 25 pages

Abstract: In this report, we present the application of the Cadp verification toolbox to
check the correctness of an industrial protocol for deploying and configuring transparently a
large set of heterogeneous software components over a set of distributed computers/devices.
To cope with the intrinsic complexity of this protocol, compositional verification techniques
have been used, including incremental minimization and projections over automatically gen-
erated interfaces as advocated by Graf & Steffen and Krimm & Mounier. Starting from the
Xml description of a configuration of components to be deployed by the protocol, a trans-
lator produces a set of Lotos descriptions, µ-calculus formulas, and the corresponding
compositional verification scenario to be executed. The approach is fully automated, as for-
mal methods and tool invocations are made invisible to the end-user, who only has to check
the verification results for the configuration under study. Due to the use of compositional
verification, the approach can scale to large configurations. So far, Lotos descriptions of
more than seventy concurrent processes have been verified successfully.

Key-words: automated verification, compositional verification, concurrency, distributed
agents, objects, process algebra, protocol engineering, reachability analysis, software com-
ponents

A short version of this report is available as “Compositional Verification using CADP of the ScalAgent

Deployment Protocol for Software Components”, in P. Stevens and U. Nestmann, editors, Proceedings of
the 6th IFIP International Conference on Formal Methods for Open Object-based Distributed Systems
FMOODS’2003 (Paris, France), November 17-21, 2003.

This work was partially funded by the French Ministry of Industry under Rntl contract “Parfums”.

∗ Frederic.Tronel@inria.fr
† Frederic.Lang@inria.fr
‡ Hubert.Garavel@inria.fr

Vérification compositionnelle avec CADP du protocole

de déploiement de composants logiciels ScalAgent

Résumé : Dans ce rapport, nous présentons une application de la bôıte à outils Cadp
pour vérifier la correction d’un protocole industriel servant à déployer et configurer, de
manière transparente, un grand nombre de composants logiciels hétérogènes sur un en-
semble d’ordinateurs/appareils répartis. Pour faire face à la complexité intrinsèque de ce
protocole, des techniques de vérification compositionnelle ont été utilisées, notamment des
réductions incrémentales de l’espace des états et des projections sur des interfaces générées
automatiquement selon les travaux de Graf & Steffen et Krimm & Mounier. Partant de la
description en Xml d’une configuration de composants à déployer par le protocole, un tra-
ducteur produit un ensemble de descriptions Lotos, de formules de µ-calcul et le scénario
de vérification à exécuter. L’approche est complètement automatisée, les méthodes for-
melles et les appels d’outils étant cachés à l’utilisateur final, qui doit seulement contrôler
les résultats de la vérification pour la configuration étudiée. Grâce à l’utilisation de la
vérification compositionnelle, l’approche peut traiter de grandes configurations. Pour le mo-
ment, des descriptions Lotos comprenant plus de soixante-dix processus concurrents ont
été vérifiées avec succès.

Mots-clés : agents distribués, algèbre de processus, analyse d’accessibilité, composants
logiciels, concurrence, ingénierie des protocoles, objets, vérification automatisée, vérification
compositionnelle

Compositional Verification of the ScalAgent Deployment Protocol 3

1 Introduction

Formal verification methods are a key approach to establish the correctness of complex and
critical object-oriented systems. This is true for sequential systems, and even more true for
concurrent systems in which objects execute and interact using several threads of control.

However, the complexity of a system grows fast as the number of objects increases, so
that attempts at verifying real-life systems are quickly confronted to the state explosion
problem. It is therefore of crucial interest to focus on verification methods that scale up
appropriately when applied to systems of increasing complexity.

Compositional verification methods usually follow a divide and conquer approach. The
system to be verified is decomposed in several components, which are analyzed separately;
afterwards, the results of the separate analyses are combined together to analyze the whole
system. There are different approaches to compositional verification, depending whether
the system under analysis is sequential or concurrent, and in the latter case, depending
on the semantics used to model concurrency: linear-time or branching-time, state-based or
action-based, etc. There is an important corpus of literature on compositional verification;
for a survey, see for instance [19], [11, Section 1.1], [4, Sections 1.1 and 1.2], etc.

In spite of the many publications on compositional verification, the number of real-
life case-studies in which compositional techniques have been applied is still low. This
number is even lower if one considers the case of object-based systems, since compositional
verification has been so far mostly used for communication protocols [20, 10, 14] or hardware
protocols [3]. As for object-based systems specifically, one can mention several lines of work.
[2] uses compositional proofs and refinement techniques to verify one-to-many negotiation
processes for load balancing of electricity use. [1] uses a compositional proof system to verify
correctness properties (expressed using the modal µ-calculus) for a set of applets executing
on open platforms.

The present report is different, as it relies on enumerative (a.k.a., explicit state) model
checking rather than proof techniques. It builds upon a prior application of compositional
verification [6] to a dynamic reconfiguration protocol for a middleware agent-based platform.
Using the Cadp [9] verification toolbox, it was possible to establish the correctness of the
reconfiguration protocol for several finite configurations determined by the number of agents,
execution sites and protocol primitives. However, the approach did not scale well to larger
configurations, mainly because the architecture of the system was specified in a centralized
manner, all agents being connected to a central process modeling (an abstraction of) the
software bus provided by the middleware infrastructure. This central process — more or less
similar to a Fifo queue — prevented compositional verification from scaling up, as it was
not possible to generate its entire state space in isolation from the remainder of the system.
One key conclusion of [6] was the need for a more decentralized architecture specification in
order to improve scalability.

Precisely, this research direction is addressed in the present report, still in the framework
of industrial middleware infrastructures although on a different case-study than [6]. We
consider here a deployment protocol for software components, which is commercialized by the

RR n
�

5012

4 F. Tronel, F. Lang, H. Garavel

ScalAgent software company1, and which we analyze using the compositional verification
tools of Cadp.

The present report is organized as follows. Section 2 recalls the principles of composi-
tional verification techniques and explains how they are supported within the Cadp toolbox.
Section 3 describes the essential features of the ScalAgent deployment protocol. Section 4
gives hints of the formal modeling of the deployment protocol and indicates how the modeling
task was, to a large extent, automated. Section 5 presents the main results of compositional
verification. Finally, Section 6 concludes the report.

2 Compositional Verification with CADP

In this section, we first present enumerative and compositional verification techniques for
systems composed of asynchronous processes, and we then detail how these techniques are
supported by the Cadp verification toolbox.

Given a formal specification (e.g., using the Iso formal description technique Lotos [13])
of a concurrent system to be verified, enumerative verification relies on the systematic explo-
ration of (some or all) possible executions of the system. The set of all possible executions
can be represented as an Lts (Labeled Transition System), i.e., a graph (or state space) con-
taining states and transitions labeled with communication actions performed by concurrent
processes. There are two approaches to enumerative verification:

� In the first way, an explicit Lts is generated, i.e., states and transitions are first
enumerated and stored, then analyzed by verification algorithms.

� In the second way, an implicit Lts (consisting of an initial state and a function that
computes the successors of a given state) is constructed and verified at the same time,
the construction being done on the fly depending on the verification needs. This allows
to detect errors before the Lts has been generated entirely.

For complex systems, both approaches are often limited by the state explosion prob-
lem, which occurs when state spaces are too large for being enumerated. Two abstraction
mechanisms are of great help when attacking state explosion:

� Communication hiding permits to ignore communication actions that need not be
observed for verification purpose ;

� Minimization (with respect to various equivalence relations, such as strong bisimu-
lation, branching bisimulation [21], etc.) allows to merge Lts states with identical
futures and (possibly) to collapse sequences of hidden communication actions.

A further step is compositional verification, which consists in generating the Lts of each
concurrent process separately, then minimizing and recombining the minimized Ltss taking

1http://www.scalagent.com

INRIA

Compositional Verification of the ScalAgent Deployment Protocol 5

advantage of the congruence properties of parallel composition. The joint use of hiding and
minimization to reduce intermediate state spaces enables to tackle large state spaces that
could not be generated directly.

Although this simple form of compositional verification has been applied successfully to
several complex systems (e.g., [3]), it may be counter-productive in other cases: generating
the Lts of each process separately might lead to state explosion, whereas the generation of
the whole system of concurrent processes can succeed if processes constrain each other when
composed in parallel.

This issue has been addressed in various refined compositional verification approaches,
which allow to generate the Lts of each separate process by taking into account interface
constraints representing the behavioral restrictions imposed on each process by synchroniza-
tion with its neighbor processes. Taking into account the environment of each process allows
to eliminate states and transitions that are not reachable in the Lts of the whole system.

Exp.Open Bcg Open . . .

Lotos Exp Bcg

Implicit Lts

Lts generation (Generator)

interactive simulation (Ocis)

random execution (Executor)

temporal logic verification (Evaluator)

test generation (Tgv)

Open/Cæsar
libraries

Open/Cæsar Api

. . .

restriction with interface (Projector)

Cæsar

Cæsar.Adt

Figure 1: The Open/Cæsar environment.

Cadp2 (Construction and Analysis of Distributed Processes) is a widely spread toolbox
for protocol engineering, which offers a large range of functionalities, including interactive
simulation, formal verification, and testing. Cadp was originally dedicated to Lotos, but
its modular architecture makes it open to other languages and formalisms. Cadp contains
numerous tools for the compositional verification of complex specifications written in Lotos:

� As regards explicit Lts representation, Cadp provides a compact graph format, Bcg
(Binary Coded Graph) together with code libraries and tools to create, explore, and
visualize Bcg graphs, and to translate them from/to many other graph formats.

2http://www.inrialpes.fr/vasy/cadp

RR n
�

5012

6 F. Tronel, F. Lang, H. Garavel

� As regards implicit Lts representation, Cadp provides an extensible environment
named Open/Cæsar [7]. Although independent from any particular specifica-
tion language, Open/Cæsar has compilers for several languages: Lotos (Cæsar
& Cæsar.adt), explicit Ltss (Bcg Open), networks of communicating Ltss
(Exp.Open), etc. The corresponding architecture is illustrated in Figure 1. The code
generated by Open/Cæsar compilers is used by on the fly algorithms to perform
simulation, verification, test generation, etc. on implicit Ltss.

� As regards Lts generation from Lotos descriptions, Cadp provides the Cæsar and
Cæsar.adt compilers, which can compile a Lotos specification (or particular pro-
cesses in this specification).

� As regards parallel composition of Ltss, Cadp provides the Exp.Open compiler for
handling networks of communicating Ltss, connected using Lotos parallel composi-
tion and communication hiding operators.

� As regards communication hiding, Cadp provides the Bcg Labels tool, which allows
to hide and/or rename the communication actions of an Lts.

� As regards Lts minimization, Cadp contains two tools: Bcg Min, which performs
strong and branching minimization of Ltss efficiently, and Aldébaran, which im-
plements additional equivalences (safety equivalence, observational equivalence, and
tau*.a equivalence) and Lts comparison algorithms.

� As regards generation with interface constraints, Cadp provides the Projector
tool, which implements the refined compositional verification approach of [12, 15].
Projector can be used to restrict Lotos processes, explicit Ltss, as well as net-
works of communicating Ltss.

� As regards modeling of asynchronous communication media, we added a new tool
named Bcg Graph, which generates various classes of useful Ltss, such as Fifo
buffers and bags3. Distributed systems often contain many occurrences of such
buffers that differ only by a few parameters, such as size and message names. Using
Bcg Graph, very large buffers (several hundreds thousands states) can be generated
quickly, with a small memory footprint.

� Finally, Cadp includes a scripting language named Svl [8, 16], which provides a high-
level interface to all the aforementioned Cadp tools, thus enabling an easy description
of complex compositional verification scenarios. For instance, the scenario consisting
in generating separately the Ltss of three processes P, Q, and R contained in a file
named "spec.lotos", minimizing them for branching bisimulation, composing them
in parallel, minimizing the resulting network on the fly, and storing the resulting Lts
in the Bcg format in a file named "PQR.bcg", can be described by the simple Svl
script that follows:

3A bag is a fully asynchronous buffer that does not preserve message ordering.

INRIA

Compositional Verification of the ScalAgent Deployment Protocol 7

% DEFAULT_LOTOS_FILE="spec.lotos"

"PQR.bcg" = root leaf branching reduction of P || Q || R;

The Svl compiler translates such an Svl script into a Bourne shell script that, when
executed, invokes Cadp tools in the appropriate order and stores the results in inter-
mediate files.

Svl has many additional features, namely operations to restrict a system with respect
to a given interface, to minimize systems with respect to several other bisimulations
and equivalences, to hide and rename communication actions, and statements to verify
temporal logic formulas, to check for deadlocks and livelocks, and to compare systems
with respect to a given equivalence or bisimulation. Svl scripts can also contain
Bourne shell constructs, which enables to mix, e.g., conditionals, loops, and calls to
Unix commands with Svl statements.

3 The ScalAgent Deployment Protocol

The work presented in this report was funded in the scope of Parfums (Pervasive Agents for
Reliable and Flexible Ups Management Services), an industrial research project involving
three companies (Mge-Ups, Silicomp Research Institute, and ScalAgent Distributed
Technologies), and the Vasy research group at Inria.

The goal of Parfums is to solve problems of Ups (Uninterruptible Power Supply) man-
agement (installation, repair, and monitoring of remote equipments) in the case of large
scale sites, by embedding software within Upss (see Figure 2). To master the complexity in-
duced by the distribution of applications, the project relies on the ScalAgent platform for
embedded systems, written in Java, to configure, deploy, and reconfigure software. Our con-
tribution is about the modeling of the ScalAgent deployment protocol and its verification
using the Cadp toolbox.

To ensure scalability, the ScalAgent deployment protocol relies on a tree-like hierar-
chy of distributed agents communicating asynchronously by the mean of events. The tree
of agents is meant to reflect the geographical distribution of software components to be
deployed. The protocol uses two kinds of agents:

� Containers are located at the leaves of the tree hierarchy. They encapsulate software
components written in any language, and act as interfaces with the rest of the protocol.

� Controllers are located at higher nodes of the tree hierarchy and manage the deploy-
ment. They only communicate with their parent and children agents, which allows a
significant reduction of communications.

Controllers are specified by a workflow of activities , themselves structured as a tree, as
shown in Figure 3. Activities fall into three categories, depending on the way they spawn
subactivities:

RR n
�

5012

8 F. Tronel, F. Lang, H. Garavel

Figure 2: Outside and inside view of an Ups (picture courtesy of Mge-Ups).

INRIA

Compositional Verification of the ScalAgent Deployment Protocol 9

P27

P29P30

P31

P32

P18

P19

P13

P12 P25

P14 Binding Binding

P16
Waiting

P17 Waiting

Deployment

P26

Configuration Configuration

P2 Composite

P6

Referential

P1

Agent container Agent containerP7 P20

21 processes
30 media

Child controlChild control

Agent deployment Agent deployment

Agent configuration

Agent configuration

Parent control

instantiation
Asynchronous Asynchronous

instantiation

configuration

Parallel activity

Sequential activity

Elementary activity
P4

P5

Figure 3: Process and communication structure for a configuration with one controller and
two containers.

RR n
�

5012

10 F. Tronel, F. Lang, H. Garavel

� Elementary activities are simple tasks that do not involve other subactivities. An
example of such an activity is the receipt of a particular event from a container to
signal its successful deployment, followed by an appropriate reaction.

� Sequential activities can spawn a set of subactivities, each one being executed after
the previous one terminates.

� Parallel activities can spawn a set of simultaneous subactivities.

Beside activities, there exists a central referential process gathering information sent by
the elementary activities regarding the success or failure of the deployment. Given this
data, the referential process decides whether deployment is possible or not. The existence of
communications between elementary activities and the referential “slightly breaks” the tree
structure of communications. This is illustrated in Figure 3, the referential process being
the white node in the “tree” of activities.

To describe distributed configurations, the ScalAgent infrastructure relies on the use
of an Xml Dtd named Xolan. An Xolan configuration describes a set of controllers and
containers, their geographical distribution, as well as their dependencies in terms of provided
and required services, which rule the way the deployment must be performed. Xolan is
generic, that is, not specific to Ups management. A graphical interface (see Figure 4) allows
to specify a hierarchy of Upss and computers with the corresponding software to be deployed
and generates the corresponding Xolan configuration automatically (see Figure 5).

4 Automated Formal Modeling of Configurations

It would have been possible to model Xolan configurations using Lotos abstract data
types and to specify the deployment protocol as a Lotos process parameterized by the
configuration to be deployed. However, this would have required the dynamic creation of
processes in function of the configuration, which is not supported by mainstream enumerative
verification tools.

Instead, we chose an automated approach by developing a translator (11, 000 lines of
the object-oriented, functional language Ocaml [17]) that takes an Xolan configuration,
and produces both the Lotos specification corresponding to this configuration and an Svl
script to perform the verification. This approach meets several requirements:

� Dynamic creation of processes is avoided, since the Ocaml translator can statically
determine the set of processes created by the protocol for a given configuration.

� Xml parsing and Xolan data structure handling are delegated to the Ocaml trans-
lator rather than being coded as Lotos abstract data types.

� Even for simple configurations, the corresponding Lotos specifications and Svl scripts
are complex, due to the large number of concurrent processes. The existence of an
automated translator allows to propagate changes in the protocol modeling to each
configuration under study so as to maintain consistency.

INRIA

Compositional Verification of the ScalAgent Deployment Protocol 11

Figure 4: Graphical front-end for describing an Ups/computer hierarchy (picture courtesy
of Silicomp).

RR n
�

5012

12 F. Tronel, F. Lang, H. Garavel

Container

process

Referential

describes

into

translates Workflow of actvities

Controller

produces

Graphical

front−end

XML Xolan

Figure 5: Different description levels for the deployment protocol.

To keep the formal verification of the protocol as intuitive as possible, each activity in the
specification is translated into a separate process in the generated Lotos code. This way, an
incorrect behaviour in a given process can be immediately tracked back to the corresponding
activity.

The processes generated for all activities share a similar form shown in Figure 6. Each
process communicates with other parts of the system using three gates named SEND, RECV,
and ERROR:

� “SEND !from !to !event” is used by the process whose identifier is stored in vari-
able “from”. It indicates that message “event” should be sent to the process whose
identifier is stored in variable “to”.

� “RECV ?from:PID !to ?event:EVENT” is used by the process whose identifier is stored
in variable “to”. Once the receipt is done, the variable “from” of type PID will contain
the identifier of the sending process and the variable “event” of type EVENT will contain
the received event.

� “ERROR !from !number” is used by the process whose identifier is stored in variable
“from” to indicate that the error referenced as “number” has occurred. Each “ERROR”
occurring in the Lotos code has a different “number” that can be used to track down
the errors.

Each process is recursive and stores its current state in a parameter “state” of type
STATE. Each computation step of a process consists of message receipt, followed by some
reaction depending on the identity of the message sender, the event received, and the current
process state (the Lotos construct “[...] -> ...” reads as “if . . . then . . .”). A reaction
consists in sending zero or more messages, followed by a state change, which is expressed
by a recursive process call with actualized state. Some combinations of sender, event, and
state may trigger an error message.

INRIA

Compositional Verification of the ScalAgent Deployment Protocol 13

process P1 [SEND, RECV, ERROR] (state:STATE) : noexit :=

RECV ?from:PID !P1 ?event:EVENT ;

(

[from eq P3] -> (

[event eq E START] -> (

[state eq INIT] -> (

SEND !P1 !P4 !START ;

SEND !P1 !P6 !START ;

BehaviourP1 [SEND, RECV, ERROR] (RUN)

)

[]

[not (state eq INIT)] -> ERROR !P1 !E1 ; stop

)

[]

[event eq E STOP] -> (. . .)

[]

[not ((event eq E START) or (event eq E STOP))] -> ERROR !P1 !E2 ; stop

)

[]

[from eq P5] -> (. . .)

[]

[not ((from eq P3) or (from eq P5))] -> ERROR !P1 !E3 ; stop

)

endproc

Figure 6: A Lotos process following the asynchronous communicating process model.

RR n
�

5012

14 F. Tronel, F. Lang, H. Garavel

The ScalAgent protocol specification is strongly object-oriented as it was written to
prepare the way for a Java implementation of the protocol. All activities belong to an
abstract “activity” class, which is refined into three abstract subclasses corresponding to
elementary, sequential, and parallel activities respectively. Each of these abstract subclasses
has itself concrete subclasses (for instance, deployment activities are a subclass of parallel
activities).

The behaviour of an activity is a transition function obtained by combining the attributes
specific to this activity (such as the number of subactivities for sequential and parallel
activities, a unique identifier of the activity, a list of possible events, etc.) with the methods
belonging to the activity class or transitively inherited from superclasses. Inheritance has
the effect of adding reactions to new combinations of process parameters (events, states,
process identifiers, etc.). For a given configuration of the deployment protocol, inheritance
can be solved at compile-time. Thus, the Lotos process corresponding to an activity can be
synthesized statically from the methods defined in the activity class and superclasses. The
use of an object-oriented language such as Ocaml avoids the need for writing an inheritance
resolution algorithm explicitly: by implementing the activity class hierarchy with a similar
Ocaml class hierarchy, the resolution of inheritance is automatically performed by the
Ocaml compiler.

5 Compositional Verification of the Protocol

Compositional verification consists in decomposing the system under verification into smaller
components that can be analyzed in isolation. There are often several ways of modeling and
decomposing a given protocol; the feasibility and efficiency of compositional verification
crucially relies on a thorough study of components and their interactions. In this section,
we explain our choices and their impact on verification.

5.1 Centralized vs. Distributed Communication Media

By design, the ScalAgent deployment protocol ensures that communications are pairwise
between an activity and each of its subactivities, and that messages do not accumulate
indefinitely in communication media (i.e., Fifo buffers and bags). Therefore communica-
tion media can be described as finite processes containing a bounded number of messages
belonging to a finite set of possible values.

The protocol specification leaves a degree of freedom in the implementation of commu-
nication media: it does not specify whether communications are conveyed using one unique
centralized communication medium or several distributed communication media.

A system with a centralized medium is schematically depicted in Figure 7(a). This
was the approach followed in [6] to model a software bus between agents. Unfortunately,
this approach cannot be reused for the deployment protocol. As the number of activities
increases, the number of different messages that can be exchanged increases as well. As
more activities introduce more asynchrony in the system, the number of messages that must

INRIA

Compositional Verification of the ScalAgent Deployment Protocol 15

Centralized
communication medium

Activities

1 3

2

6

5

4 9

118

7 10

13

12

(a) Activities communicating
through a centralized medium.

Activities with distributed media

1

A

2

B

3

C

4

D

5

E

6

7

8

10

11

9

12

F H

I

J

K

13

L

G

(b) Activities communicating
through distributed media.

Figure 7: Centralized vs. distributed media. Thick lines represent communications between
activities and media, and thin lines represent the tree structure of activities.

be kept inside the medium also increases. Consequently, the state space of the centralized
medium holding these messages may become too large for being generated separately.

In a refined approach, we split the centralized medium into one medium for each pair
of communicating activities, as schematized in Figure 7(b). Each medium has to manage
only a limited amount of communications, and is therefore less complex than the centralized
medium.

This approach fits well with compositional verification, because the synchronizations
between communicating processes are taken into account earlier in the verification process,
leading to more constrained state spaces. Additionally, this permits to hide communications
earlier, which, combined with minimization, gives greater opportunities to obtain reductions.

As an example, the architecture of Figure 7(b), can be generated incrementally by gener-
ating the state spaces of medium A, activity 1, and activity 2 first, then composing them to-
gether with appropriate synchronizations. Then, the local communications between 1 and 2
(exchanged via medium A) can be hidden, and the resulting Lts minimized for branching
bisimulation. The resulting system is then composed with activity 3 and medium B, hiding
appropriate actions and minimizing the resulting Lts. This way, by incorporating media
and processes in the numbering order, the system can be generated up to the root of the
activity tree. The progressive application of hiding and minimization steps allows to keep a
state space of tractable size in spite of the complexity introduced by parallel composition.

RR n
�

5012

16 F. Tronel, F. Lang, H. Garavel

5.2 Communication Media Generation

In general, bounding the size of a communication medium may cause unexpected deadlocks
or lost behaviours because of buffer overflows.

We addressed the issue by first generating (using Bcg Graph) a medium of limited size
(say, N = 3 places), which is composed in parallel with its connected activities. This parallel
composition is then used as an interface to restrict (using Projector) the behaviour of the
medium itself. This produces a subset of the state space corresponding to the medium, in
which only the transitions synchronized with the activities are kept.

We then check whether the N places of the medium have been used in the composition
with its related activities. This is done by checking (using the Evaluator model checker)
whether there exists a sequence of N successive messages received by the medium. If not,
no buffer overflow has occurred, which means that the buffer size was bounded correctly.
Otherwise, an overflow might have occurred, and the experiment must be restarted after
incrementing the value of N .

This method should normally converge unless one medium appears to be unbounded,
which would indicate either a protocol design error or a modeling error. The compositional
approach permits to localize precisely such errors, which would be more difficult using a
centralized medium.

Figure 8 shows a fragment of Svl script implementing this technique. Svl statements
are intertwined with Bourne shell statements (starting with the % character). Figure 9
shows the information displayed to the user while the Svl script executes.

Although communication media could be expressed in Lotos and translated to Ltss
(as for the activities), the use of the dedicated Bcg Graph tool shortens the medium
generation time by a factor of 10 to 100. This has a great impact on the overall verification
time, since both the distributed media approach and the above technique to determine buffer
size incrementally, require a significant number of media to be generated.

5.3 Additional Compositional Verification Tactics

More tactics have been used to make verification tractable:

� The referential process mentioned in Section 3 has been used as an interface to restrict
(using the Projector tool) the behaviour of elementary activities communicating
with this process. This divides by 2 the state space of some elementary activities. The
referential process has been also used to restrict compositions of activities in several
places.

� The state space of a process isolated from its context may explode if data communi-
cations are broken off without caution. For instance, the state space of the parallel
composition of actions “G ?X : nat || G !1” has a single transition labeled “G !1”.
However, the state space of “G ?X : nat” taken isolately cannot be generated be-
cause infinitely many different natural numbers can be received on gate G. For the
deployment protocol, it is possible (though not easy) to determine statically the values

INRIA

Compositional Verification of the ScalAgent Deployment Protocol 17

% N=3

(* we know empirically that many media have at least 2 places

* we start from N=3 (instead of N=1) to save time *)

% while true

% do

(* generation of a bag with $N places between processes 18 and 19 *)

"MEDIUM_19_18.bcg" = bag "$N" using "LABELS_19_18.txt";

"TMP.bcg" =

branching reduction of

gate hide all but RECV_19_18, SEND_19_18, RECV_18_19, SEND_18_19 in

generation of

(

"CLUSTER_19_13.bcg"

|[RECV_18_19, SEND_19_18]|

(

"MEDIUM_19_18.bcg"

|[RECV_19_18, SEND_18_19]|

"ACTIVITY_18.bcg"

)

);

"SUB_MEDIUM.bcg" =

abstraction "TMP.bcg" of "MEDIUM_19_18.bcg";

% echo -n "checking if a bag medium with $N places is large enough: "

(* using the Evaluator model-checker of CADP, we check if SUB_MEDIUM.bcg

* contains a sequence of $N consecutive "SEND_xx_yy" actions *)

% RES=‘bcg_open SUB_MEDIUM.bcg evaluator CHECK_$N.mcl | grep ’\<TRUE\>’‘

% if ["$RES" = ""]

% then

% echo "yes"

% break

% else

% echo "no! (retrying with a larger bag medium)"

% N=‘expr $N + 1‘

% fi

% done

Figure 8: An excerpt of the generated SVL script.

RR n
�

5012

18 F. Tronel, F. Lang, H. Garavel

"MEDIUM_19_18.bcg" = bag 3 using "LABELS_19_18.txt"

(* 286 states, 1320 transitions, 7.2 Kbytes *)

"svl094.exp" =

"CLUSTER_19_13.bcg"

|[RECV_18_19, SEND_19_18]|

(

"MEDIUM_19_18.bcg"

|[RECV_19_18, SEND_18_19]|

"ACTIVITY_18.bcg"

)

"svl095.bcg" = generation of "svl094.exp"

(* 985 states, 3508 transitions, 10.8 Kbytes *)

"svl096.bcg" = hide all but RECV_19_18, SEND_19_18, RECV_18_19, SEND_18_19 in

"svl095.bcg"

"TMP.bcg" = branching reduction of "svl096.bcg"

(* 129 states, 361 transitions, 3.9 Kbytes *)

"svl099.aut" = safety reduction (* with hiding *) of "TMP.bcg"

(* 17 states, 24 transitions, 0.8 Kbytes *)

"SUB_MEDIUM.bcg" = abstraction "svl099.aut"

of "MEDIUM_19_18.bcg"

(* 13 states, 24 transitions, 3.0 Kbytes *)

checking if a bag medium with 3 places is large enough: yes

...

Figure 9: A run of the Svl script of Figure 8.

INRIA

Compositional Verification of the ScalAgent Deployment Protocol 19

exchanged by a process on gates SEND and RECV. We thus have improved the generated
Lotos code by adding communication guards (synthesized during a first phase of the
translation) to constrain the set of potentially received data.

5.4 Results of Compositional Verification

The study of the protocol allowed to clarify (in accordance with the ScalAgent designers)
several obscure points in the protocol specification. In particular, the original specification
was silent about the model of communications between activities. Model checking verifica-
tion revealed (by exhibiting an infinite loop of error messages) that the protocol was not
meant for handling asynchronous messages between the inner activities of a controller, and
would function properly only if communications inside a controller are implemented as local
procedure calls (i.e., the calling activity gets suspended until the procedure call returns).
Consequently, communications within a controller can be modeled as Fifo buffers instead
of bags. However, bags are still needed to model communications between controllers, which
can be geographically distributed.

Number of controllers 1 1 1 2

Number of containers 1 2 3 2

Total number of agents 2 3 4 4

Number of activities 13 21 29 34

Minimal size of activities (states) 7 7 7 7

Mean size of activities (states) 42 57 82 68

Maximal size of activities (states) 104 225 481 195

Number of media 18 30 42 36

Minimal size of media (states) 2 2 2 2

Mean size of media (states) 57 60 61 58

Maximal size of media (states) 111 111 111 111

Number of concurrent processes 31 51 71 70

Size of potential state space (states) 2.1024 3.1041 4.1068 9.1068

Size of largest generated Lts (states) 1, 824 48, 819 410, 025 76, 399

Size of generated Lotos file (lines) 2, 597 4, 494 6, 391 7, 208

Size of generated Svl file (lines) 617 1, 013 1, 409 1, 635

Number of intermediate files 221 316 503 519

Verification time 4 min 09 9 min 52 19 min 43 12 min 10

Figure 10: Collected data for several configurations of the deployment protocol.

Figure 10 summarizes the verification results for four configurations. All experiments
were done on a Linux workstation with 1Gb memory and 2.2 GHz Pentium IV processor.
We draw two main conclusions from these experiments:

RR n
�

5012

20 F. Tronel, F. Lang, H. Garavel

� Although the high number of concurrent processes could lead to a potentially huge
state space (up to 9.1068 states if we estimate its size by multiplying the numbers
of states of the minimized Ltss corresponding to all activities and media for a given
configuration), compositional verification allows to keep the state space to a tractable
size (below 106 states).

� Given the large number of intermediate files (several hundreds), these experiments
would not have been possible without the Svl language and associated compiler.

The correctness of each protocol configuration was determined by checking in the global
Lts the absence of ERROR messages (which could denote either protocol design errors or
implementation errors in the Ocaml translator). When the Lotos process corresponding
to an activity is generated without its environment, all possible ERROR messages can be
observed. However, when the process gets synchronized with all its children processes,
there should not remain any ERROR message tagged with this process identity. For each
configuration, we obtained the Lts of Figure 11, in which all communications are hidden
but those made by the root activity of a controller. This Lts summarizes the service provided
by the protocol to the end-user. The initial state has number 0. The two first transitions
start the deployment by sending a start event and its acknowledgement. Then, either the
user indicates that the deployment is not ready for activation, which will cause a failure
notification from subactivities prevented from deploying components, or the user activates
the deployment and receives either a notification that the deployment is successful or a
failure indication.

6 Conclusion

Considering the numerous publications dealing with compositional verification and its ex-
pected benefits, it is high time to put this approach into practice in real-life case studies.
Object-based distributed systems are an ideal target for this purpose, as they usually contain
many components, either to model physically distributed entities or to represent concurrent
activities taking place on a given execution site. This is the case with the ScalAgent
deployment protocol, whose architecture consists of a tree of distributed agents, each agent
being itself organized as a tree of concurrent activities.

From the verification activities undertaken in the Parfums project, we can draw a
number of conclusions.

The complexity of the ScalAgent deployment protocol grows quickly as new compo-
nents are added to the system. For instance, adding a new agent to deploy may start not less
than 20 additional concurrent processes. For this reason, it seems that only compositional
techniques have a chance to cope with the corresponding state explosion.

Because the ScalAgent deployment protocol is implemented in Java, we could have
tried to apply a software model checker (such as the Java PathFinder [22] or Bandera
[5]) directly on the Java source code. We did not choose such an approach because, to
the best of our knowledge, these tools can only analyze programs running on a single Java

INRIA

Compositional Verification of the ScalAgent Deployment Protocol 21

4

0

5

1

2

3

SEND !P1 !P2 !E_ACTIVATE

RECV !P5 !P1 !E_FAIL

RECV !P5 !P1 !E_FAIL

RECV !P5 !P1 !E_DONE

RECV !P5 !P1 !E_STARTACK

SEND !P1 !P2 !E_NOTREADY

SEND !P1 !P5 !E_START

Figure 11: Service provided by the root controller, as an Lts obtained by compositional
verification using Cadp.

virtual machine (Jvm), whereas the ScalAgent protocol is designed for multiple machines,
each running a separate Jvm. We also felt that a process algebra such as Lotos, with its
built-in concurrency and abstraction primitives, would provide better support for composi-
tional modeling and verification. As a consequence, our verification efforts mostly addressed
the higher level design (i.e., the reference specification of the protocol) rather than the im-
plementation (i.e., the Java code) although an examination of the latter was sometimes
needed.

Technically, the results of the verification effort are positive. Several ambiguities were
found in the reference specification and the verification work exhibited an undocumented
assumption (synchrony of communications) of crucial importance for a proper functioning
of the protocol. The use of compositional verification allowed to check significantly complex
finite configurations within a reasonable amount of time (at the moment, configurations
with 70 concurrent processes can be verified in less than 20 minutes).

In modeling the ScalAgent deployment protocol, we chose to introduce many dis-
tributed buffers, instead of one central buffer. This avoids a bottleneck problem, which
might prevent compositional verification from being applied [6]. We also took advantage
of the “doubly nested” tree-like structure of the ScalAgent deployment protocol. Origi-
nally designed to ensure the scalability of the protocol when deploying software components
on many machines, this tree-like structure also forms the skeleton of our compositional
verification scenarios, in which Lts generation and minimization phases are incrementally
performed from the leaves to the root of the trees.

RR n
�

5012

22 F. Tronel, F. Lang, H. Garavel

Last but not least, a complex system such as the ScalAgent deployment protocol
could not be analyzed in absence of mature verification tools. We found the Cadp toolbox
robust enough for this challenge, but had to extend it in several ways. Two existing tools
(Exp.Open and Projector) had to be entirely rewritten for performance reasons. A new
tool, Bcg Graph, was introduced for fast, automatic generation of communication buffers.
The SVL scripting language was enriched to allow a wider form of parameterization and
to take advantage of Bcg Graph functionalities. Interestingly, Svl scripts, originally to
be written by human experts, are now automatically generated by the Ocaml translator.
We observe here a situation in which new software layers are continuously added on top of
existing ones, an integration trend that also occurs in other branches of computer science.

As regards future work, we foresee two directions. First, we are currently attacking
larger configurations (90 and more concurrent processes) so as to discover the actual limits
of compositional verification. Second, we seek to detect various livelock situations automat-
ically using the Evaluator 3.0 model checker [18]; as the µ-calculus formulas needed to
characterize livelocks may depend on the set of components defined in the Xolan archi-
tectural description, the Ocaml translator could be extended to generate these formulas
automatically. This would reduce the risk of error and keep the verification fully transparent
to the end-user.

Acknowledgements

The authors are grateful to Roland Balter, Luc Bellissart, and David Felliot, for sharing
their knowledge of the ScalAgent deployment protocol. They would also like to thank
the Parfums project manager, Laurent Coussedière, as well as David Champelovier, Radu
Mateescu, and Wendelin Serwe for their useful comments about this report.

References

[1] Gilles Barthe, Dilian Gurov, and Marieke Huisman. Compositional Verification of Se-
cure Applet Interactions. In Ralf-Detlef Kutsche and Herbert Weber, editors, Pro-
ceedings of the 5th International Conference on Fundamental Approaches to Software
Engineering FASE’02 (Grenoble, France), number 2306 in Lecture Notes in Computer
Science, pages 15–32. Springer Verlag, April 2002.

[2] Frances Brazier, Frank Cornelissen, Rune Gustavsson, Catholijn M. Jonker, Olle Linde-
berg, Bianca Polak, and Jan Treur. Compositional Design and Verification of a Multi-
Agent System for One-to-Many Negotiation. In Proceedings of the Third International
Conference on Multi-Agent Systems ICMAS’98. IEEE Computer Society Press, 1998.

[3] Ghassan Chehaibar, Hubert Garavel, Laurent Mounier, Nadia Tawbi, and Ferruccio
Zulian. Specification and Verification of the PowerScale Bus Arbitration Protocol: An
Industrial Experiment with LOTOS. In Reinhard Gotzhein and Jan Bredereke, editors,
Proceedings of the Joint International Conference on Formal Description Techniques for

INRIA

Compositional Verification of the ScalAgent Deployment Protocol 23

Distributed Systems and Communication Protocols, and Protocol Specification, Testing,
and Verification FORTE/PSTV’96 (Kaiserslautern, Germany), pages 435–450. IFIP,
Chapman & Hall, October 1996. Full version available as INRIA Research Report RR-
2958.

[4] S. C. Cheung and J. Kramer. Checking Safety Properties Using Compositional Reacha-
bility Analysis. ACM Transactions on Software Engineering and Methodology, 8(1):49–
78, January 1999.

[5] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn
Laubach, and Hongjun Zheng. Bandera: Extracting Finite-state Models from Java
Source Code. In Proceedings of the 22nd International Conference on Software Engi-
neering ICSE’2000 (Limerick Ireland), pages 439–448, June 2000.

[6] Manuel Aguilar Cornejo, Hubert Garavel, Radu Mateescu, and Noël de Palma. Specifi-
cation and Verification of a Dynamic Reconfiguration Protocol for Agent-Based Appli-
cations. In Aleksander Laurentowski, Jacek Kosinski, Zofia Mossurska, and Radoslaw
Ruchala, editors, Proceedings of the 3rd IFIP WG 6.1 International Working Con-
ference on Distributed Applications and Interoperable Systems DAIS’2001 (Krakow,
Poland), pages 229–242. IFIP, Kluwer Academic Publishers, September 2001. Full
version available as INRIA Research Report RR-4222.

[7] Hubert Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification,
Simulation, and Testing. In Bernhard Steffen, editor, Proceedings of the First Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems TACAS’98 (Lisbon, Portugal), volume 1384 of Lecture Notes in Computer Sci-
ence, pages 68–84, Berlin, March 1998. Springer Verlag. Full version available as INRIA
Research Report RR-3352.

[8] Hubert Garavel and Frédéric Lang. SVL: a Scripting Language for Compositional
Verification. In Myungchul Kim, Byoungmoon Chin, Sungwon Kang, and Danhyung
Lee, editors, Proceedings of the 21st IFIP WG 6.1 International Conference on Formal
Techniques for Networked and Distributed Systems FORTE’2001 (Cheju Island, Korea),
pages 377–392. IFIP, Kluwer Academic Publishers, August 2001. Full version available
as INRIA Research Report RR-4223.

[9] Hubert Garavel, Frédéric Lang, and Radu Mateescu. An Overview of CADP 2001.
European Association for Software Science and Technology (EASST) Newsletter, 4:13–
24, August 2002. Also available as INRIA Technical Report RT-0254 (December 2001).

[10] D. Giannakopoulou, J. Kramer, and S. C. Cheung. Analysing the behaviour of dis-
tributed systems using TRACTA. Journal of Automated Software Engineering, Special
issue on Automated Analysis of Software, 6(1):7–35, January 1999.

RR n
�

5012

24 F. Tronel, F. Lang, H. Garavel

[11] S. Graf, B. Steffen, and G. Lüttgen. Compositional Minimization of Finite State Sys-
tems using Interface Specifications. Formal Aspects of Computation, 8(5):607–616,
September 1996.

[12] Susanne Graf and Bernhard Steffen. Compositional Minimization of Finite State Sys-
tems. In R. P. Kurshan and E. M. Clarke, editors, Proceedings of the 2nd Workshop
on Computer-Aided Verification (Rutgers, New Jersey, USA), volume 531 of Lecture
Notes in Computer Science, pages 186–196. Springer Verlag, June 1990.

[13] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. International Standard 8807, International Organization
for Standardization — Information Processing Systems — Open Systems Interconnec-
tion, Genève, September 1989.

[14] Guoping Jia and Susanne Graf. Verification Experiments on the MASCARA Protocol.
In Matthew Dwyer, editor, Proceedings of the 8th International SPIN Workshop on
Model Checking of Software SPIN’2001 (Toronto, Canada), volume 2057 of Lecture
Notes in Computer Science, pages 123–142. Springer Verlag, May 2001.

[15] Jean-Pierre Krimm and Laurent Mounier. Compositional State Space Generation from
LOTOS Programs. In Ed Brinksma, editor, Proceedings of TACAS’97 Tools and Algo-
rithms for the Construction and Analysis of Systems (University of Twente, Enschede,
The Netherlands), volume 1217 of Lecture Notes in Computer Science, Berlin, April
1997. Springer Verlag. Extended version with proofs available as Research Report
VERIMAG RR97-01.

[16] Frédéric Lang. Compositional Verification using SVL Scripts. In Joost-Pieter Katoen
and Perdita Stevens, editors, Proceedings of the 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems TACAS’2002 (Grenoble,
France), volume 2280 of Lecture Notes in Computer Science, pages 465–469. Springer
Verlag, April 2002.

[17] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
system (relase 3.06), documentation and user’s manual, 2002. http://caml.inria.

fr/ocaml/htmlman/index.html.

[18] Radu Mateescu and Mihaela Sighireanu. Efficient On-the-Fly Model-Checking for Reg-
ular Alternation-Free Mu-Calculus. Science of Computer Programming, 46(3):255–281,
March 2003.

[19] Willem-Paul de Roever, Frank de Boer, Ulrich Hanneman, Jozef Hooman, Yassine
Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification – Introduction
to Compositional and Noncompositional Methods, volume 54 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, November 2001.

INRIA

Compositional Verification of the ScalAgent Deployment Protocol 25

[20] K. K. Sabnani, A. M. Lapone, and M. U. Uyar. An Algorithmic Procedure for Checking
Safety Properties of Protocols. IEEE Transactions on Communications, 37(9):940–948,
September 1989.

[21] R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in Bisimula-
tion Semantics (extended abstract). CS R8911, Centrum voor Wiskunde en Informatica,
Amsterdam, 1989. Also in proc. IFIP 11th World Computer Congress, San Francisco,
1989.

[22] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In Yves
Ledru, editor, Proceedings of the 15th IEEE International Conference on Automated
Software Engineering ASE’2000 (Grenoble, France), pages 3–12, September 2000.

RR n
�

5012

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route desLucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

